Can Public Health Interventions Change Immediate and Long-Term Dietary Behaviours? Encouraging Evidence from a Pilot Study of the U.K. Change4Life Sugar Swaps Campaign
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
- (i)
- Baseline: two weeks immediately prior to beginning Sugar Swaps.
- (ii)
- Intervention: two weeks while families participated in Sugar Swaps.
- (iii)
- Immediate follow-up: two weeks during which no dietary advice was provided.
- (iv)
- One-year follow-up: a two-week period, one year later, during the same calendar weeks as the intervention.
2.2. The Intervention
2.3. Participants
2.4. Procedure
2.5. Analysis
3. Results
3.1. Nutritional Outcomes
3.1.1. Children—Specific Dietary Benefits
3.1.2. Female Parent—Specific Dietary Benefits
3.1.3. Male Parent—Specific Dietary Benefits
3.2. Sugar Swaps during the Intervention (Swapping High Sugar Items for Low Sugar Items, Self-Reported)
4. Discussion
4.1. The Intervention Period
4.2. Immediate Follow-Up
4.3. One Year Follow-Up
4.4. Theoretical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013, 346, e7492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 21, 351. [Google Scholar] [CrossRef] [Green Version]
- Ho, F.K.; Celis-Morales, C.A.; Gray, S.R.; Katikireddi, S.V.; Niedzwiedz, C.L.; Hastie, C.; Ferguson, L.D.; Berry, C.; Mackay, D.F.; Gill, J.M.; et al. Modifiable and non-modifiable risk factors for COVID-19: Results from UK Biobank. BMJ Open 2020, 10, e040402. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. MedRxiv 2020. [Google Scholar] [CrossRef]
- Van Jaarsveld, C.H.; Gulliford, M.C. Childhood obesity trends from primary care electronic health records in England between 1994 and 2013: Population-based cohort study. Arch. Dis. Child. 2015, 100, 214–219. [Google Scholar] [CrossRef] [Green Version]
- NHS Digital 2018 Statistics on Obesity, Physical Activity and Diet—England. 2018. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet/england-2020 (accessed on 2 November 2021).
- Hu, F.B. Resolved: There is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 2013, 14, 606–619. [Google Scholar] [CrossRef]
- Verger, E.O.; Holmes, B.A.; Huneau, J.F.; Mariotti, F. Simple changes within dietary subgroups can rapidly improve the nutrient adequacy of the diet of French adults. J. Nutr. 2014, 144, 929–936. [Google Scholar] [CrossRef]
- Wrieden, W.L.; Levy, L.B. ‘Change4Life Smart Swaps’: Quasi-experimental evaluation of a natural experiment. Public Health Nutr. 2016, 19, 2388–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.; Gardner, G.; Rowland, M.K.; Fay, M.; Mann, K.; Holmes, R.; Foster, E.; Exley, C.; Bosco, A.D.; Hugueniot, O.; et al. Impact of a health marketing campaign on sugars intake by children aged 5–11 years and parental views on reducing children’s consumption. BMC Public Health 2020, 20, 331. [Google Scholar] [CrossRef] [Green Version]
- McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s the Composition of Foods; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Vargas-Garcia, E.J.; Evans, C.E.; Cade, J.E. Impact of interventions to reduce sugar-sweetened beverage intake in children and adults: A protocol for a systematic review and meta-analysis. Syst. Rev. 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hollingworth, W.; Hawkins, J.; Lawlor, D.A.; Brown, M.; Marsh, T.; Kipping, R.R. Economic evaluation of lifestyle interventions to treat overweight or obesity in children. Int. J. Obes. 2012, 36, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobstein, T.; Jackson-Leach, R.; Moodie, M.L.; Hall, K.D.; Gortmaker, S.L.; Swinburn, B.A.; James, W.P.T.; Wang, Y.; McPherson, K. Child and adolescent obesity: Part of a bigger picture. Lancet 2015, 385, 2510–2520. [Google Scholar] [CrossRef] [Green Version]
- Hersch, D.; Perdue, L.; Ambroz, T.; Boucher, J.L. Peer reviewed: The impact of cooking classes on food-related preferences, attitudes, and behaviors of school-aged children: A systematic review of the evidence, 2003–2014. Prev. Chronic Dis. 2014, 11, E193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, M.G.M.; Mackenbach, J.D.; Charreire, H.; Oppert, J.M.; Bárdos, H.; Glonti, K.; Rutter, H.; Compernolle, S.; De Bourdeaudhuij, I.; Beulens, J.W.J.; et al. Exploring the relationship between perceived barriers to healthy eating and dietary behaviours in European adults. Eur. J. Nutr. 2018, 57, 1761–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, J.M.; McElhone, S. Perceived barriers in trying to eat healthier–results of a pan-EU consumer attitudinal survey. Br. J. Nutr. 1999, 81, S133–S137. [Google Scholar] [CrossRef] [Green Version]
- Pollard, C.; Miller, M.; Woodman, R.J.; Meng, R.; Binns, C. Changes in knowledge, beliefs, and behaviors related to fruit and vegetable consumption among Western Australian adults from 1995 to 2004. Am. J. Public Health 2009, 99, 355–361. [Google Scholar] [CrossRef]
- Skuland, S.E. Healthy eating and barriers related to social class. The case of vegetable and fish consumption in Norway. Appetite 2015, 92, 217–226. [Google Scholar] [CrossRef]
- Yeh, M.C.; Ickes, S.B.; Lowenstein, L.M.; Shuval, K.; Ammerman, A.S.; Farris, R.; Katz, D.L. Understanding barriers and facilitators of fruit and vegetable consumption among a diverse multi-ethnic population in the USA. Health Promot. Int. 2008, 23, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Burrows, T.L.; Martin, R.J.; Collins, C.E. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J. Am. Diet. Assoc. 2010, 110, 1501–1510. [Google Scholar] [CrossRef]
- Thompson, F.E.; Subar, A.F. Dietary assessment methodology. Nutr. Prev. Treat. Dis. 2017, 1, 5–48. [Google Scholar]
- Brunner, E.; Juneja, M.; Marmot, M. Dietary assessment in Whitehall II: Comparison of 7 d diet diary and food-frequency questionnaire and validity against biomarkers. Br. J. Nutr. 2001, 86, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Timon, C.M.; Astell, A.J.; Hwang, F.; Adlam, T.D.; Smith, T.; Maclean, L.; Spurr, D.; Forster, S.E.; Williams, E.A. The validation of a computer-based food record for older adults: The Novel Assessment of Nutrition and Ageing (NANA) method. Br. J. Nutr. 2015, 113, 654–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchesson, M.J.; Rollo, M.E.; Callister, R.; Collins, C.E. Self-monitoring of dietary intake by young women: Online food records completed on computer or smartphone are as accurate as paper-based food records but more acceptable. J. Acad. Nutr. Diet. 2015, 115, 87–94. [Google Scholar] [CrossRef] [PubMed]
Female Parent (n = 14) | Male Parent (n = 12) | Average Child (n = 23 *) | |
---|---|---|---|
Height (cm) | 164.7 (1.6; 154–174) | 179.1 (2.6; 163–191) | 129.7 (4.2; 112–167) |
Weight (kg) | 64.2 (2.8; 48–88) | 78.2 (2.9; 64–98) | 28.7 (2.7; 19–56) |
BMI (kg/m2) ** | 23.75 | 24.47 | n/a |
Baseline | Intervention | Immediate Follow-Up | One Year Follow-Up | Main Effect of TIME (df 339) | Time * Meal Interaction (df 9117) | |
---|---|---|---|---|---|---|
Child (n = 23) | ||||||
Energy (kcal) | 1792 (90) | 1555 * (42) | 1630 (66) | 1576 * (59) | 0.001 | 0.068 |
Carbohydrate | 251 (15) | 215 (7) | 221 (11) | 213 * (10) | 0.002 | 0.088 |
Fibre | 17 (1) | 20 * (1) | 19 (1) | 18 (1) | 0.001 | 0.077 |
Fructose | 19 (2) | 19 (2) | 18 (2) | 19 (3) | 0.956 | 0.704 |
Glucose | 19 (3) | 16 (2) | 16 (2) | 16 (2) | 0.429 | 0.591 |
Lactose | 14 (2) | 14 (1) | 14 (2) | 15 (2) | 0.982 | 0.007 |
Sucrose | 46 (4) | 21 ** (2) | 26 ** (3) | 28 ** (3) | <0.000001 | <0.000001 |
Sugar | 115 (12) | 78 ** (5) | 84 * (7) | 89 (8) | 0.0002 | 0.011 |
Fat | 66 (3) | 54 ** (2) | 59 (3) | 57 * (3) | 0.0001 | 0.012 |
Sat Fat | 25 (1) | 19 ** (1) | 21 (1) | 21 * (1) | 0.0002 | 0.0002 |
Protein | 64 (4) | 66 (3) | 65 (3) | 66 (2) | 0.799 | 0.255 |
Salt | 4.8 (0.3) | 4.4 (0.2) | 4.8 (0.3) | 4.6 (0.2) | 0.083 | 0.91 |
Vitamin C (mg) | 59 (16) | 65 (16) | 84 (8) | 90 (28) | 0.356 | 0.028 |
Fruit and veg | 2.4 (0.3) | 3.4 ** (0.3) | 3.2 * (0.4) | 3.5 ** (0.2) | 0.0001 | n/a |
Energy (kcal) | 1762 (79) | 1473 ** (79) | 1530 * (81) | 1693 (96) | 0.012 | 0.018 |
Carbohydrate | 226 (12) | 189 * (12) | 198 (13) | 201 (15) | 0.014 | 0.04 |
Fibre | 18 (1) | 20 (2) | 19 (2) | 19 (2) | 0.481 | 0.614 |
Fructose | 17 (2) | 15 (2) | 17 (3) | 17 (2) | 0.658 | 0.026 |
Glucose | 16 (2) | 13 (2) | 16 (2) | 14 (2) | 0.236 | 0.051 |
Lactose | 14 (2) | 13 (2) | 12 (2) | 12 (2) | 0.293 | 0.006 |
Sucrose | 36 (3.9) | 15 ** (1.5) | 21* (3.2) | 26 (3.5) | 0.00002 | 0.0003 |
Sugar | 92 (7) | 60 ** (5) | 74 * (7) | 76 (8) | 0.003 | 0.052 |
Fat | 67 (4) | 53 ** (3) | 56 ** (4) | 68 (5) | 0.003 | 0.168 |
Sat Fat | 24 (2) | 17 ** (2) | 19 ** (2) | 24 (2) | 0.006 | 0.41 |
Protein | 68 (3) | 68 (4) | 67 (4) | 80 (10) | 0.372 | 0.4 |
Salt | 4.7 (0.3) | 4.2 (0.3) | 4.5 (0.4) | 4.8 (0.3) | 0.063 | 0.026 |
Vitamin C (mg) | 68 (15) | 71 (13) | 73 (14) | 96 (21) | 0.365 | 0.919 |
Fruit and veg | 2.3 (0.3) | 2.9 (0.4) | 3.1 (0.5) | 2.9 (0.4) | 0.15 | n/a |
Male parent (n = 12) | ||||||
Energy (kcal) | 1959 (99) | 1636 * (70) | 1731 * (81) | 1873 (95) | 0.00006 | 0.187 |
Carbohydrate | 237 (16) | 198 * (13) | 213 (16) | 227 (17) | 0.002 | 0.084 |
Fibre | 19 (1) | 20 (2) | 19 (1) | 20 (1) | 0.456 | 0.075 |
Fructose | 13 (2) | 10 (2) | 12 (2) | 14 (2) | 0.055 | 0.292 |
Glucose | 13 (2) | 9 (1) | 11 (2) | 13 (2) | 0.036 | 0.309 |
Lactose | 14 (2) | 5 (1) | 8 (2) | 14 (2) | 0.45 | 0.733 |
Sucrose | 37 (5) | 15 ** (3) | 23 (4) | 33 (7) | 0.0002 | 0.008 |
Sugar | 85 (9) | 52 ** (6) | 65 (9) | 78 (11) | 0.0004 | 0.457 |
Fat | 77 (3) | 62 ** (3) | 67 * (2) | 73 (5) | 0.003 | 0.42 |
Sat Fat | 27 (2) | 21 (2) | 22 * (1) | 23 (2) | 0.006 | 0.2 |
Protein | 79 (6) | 75 (4) | 73 (3) | 78 (4) | 0.406 | 0.602 |
Salt | 6 (0.4) | 5.3 (0.3) | 5.6 (0.4) | 5.5 (0.3) | 0.111 | 0.308 |
Vitamin C (mg) | 49 (9) | 46 (7) | 45 (7) | 69 (11) | 0.04 | 0.417 |
Fruit and veg | 1.5 (0.2) | 1.9 (0.3) | 1.8 (0.2) | 2.4 * (0.3) | 0.004 | n/a |
Intervention | Immediate Follow-Up | One Year Follow-Up | |
---|---|---|---|
Child (n = 23) | |||
Energy | 237 kcal | - | 215 kcal |
Carbohydrate | - | - | 38.6 g |
Fibre * | 3.1 g | - | - |
Sugar (s) | 36.8 g Breakfast 7.3 g EM 7 g Sucrose 24.4 g Sucrose breakfast 4.7 g Sucrose EM 4.4 g Sucrose snacks 14.1 g | 31.2 g Sucrose 25.7 g Sucrose snacks 12.6 g | EM 6.1 g Sucrose 17.9 g Sucrose snacks 11 g |
Fat | 11.7 g Snack 6.5 g | - | 8.6 g Breakfast 2.5 g |
Sat Fat | 5.8 g Snack 3.3 g | Snack 1.9 g | 3.8 g |
Fruit and Veg * | 0.96 portions | 0.75 portions | 1.03 portions |
Female parent (n = 14) | |||
Energy | 289 kcal EM 119 kcal | 232 kcal Lunch 86 kcal | - |
Carbohydrate | 36.5 g EM 16.6 g | - | - |
Sugar (s) | 32.1 g Sucrose 20.7 g Sucrose lunch 3.8 g Sucrose EM 5 g Sucrose snacks 5.3 g | Sucrose 14.3 g Sucrose snacks 4 g | - |
Fat | 14.5 g | 10.8 g | - |
Saturated Fat | 7 g | 5.8 g | - |
Male parent (n = 12) | |||
Energy | 323 kcal | 228 kcal | - |
Carbohydrate | 38.6 g | - | - |
Sugar (s) | 32.9 g Sucrose 21.9 g Sucrose breakfast 3.3 g Sucrose snacks 11 g | - | - |
Fat | 14.8 g | 10.4 g | - |
Saturated Fat | - | 5.2 g | - |
Fruit and Veg * | - | - | 0.85 portions |
Female Parent (n = 14) | Male Parent (n = 12) | Average Child (n = 23) | Family | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Food | Drink | Total | Food | Drink | Total | Food | Drink | Total | Total | |
Breakfast | 7.7 (1.9) | 7.2 (1.8) | 14.9 | 6.8 (1.3) | 7.3 (2.2) | 14.1 | 8 (1.1) | 4.6 (1.2) | 12.6 | 41.6 |
Lunch | 4.9 (1.2) | 6.4 (1.5) | 11.1 | 5.7 (2) | 4.4 (1.4) | 10.1 | 5 (1.1) | 4.7 (1.3) | 9.7 | 30.9 |
Evening Meal | 4 (0.8) | 4.6 (1.7) | 8.6 | 3.5 (0.9) | 3.4 (1.5) | 6.9 | 4.9 (1.1) | 3.3 (1.1) | 8.2 | 23.7 |
Snacks | 10.6 (2) | 6.1 (2.5) | 16.7 | 6.4 (1.9) | 4.8 (1.7) | 11.2 | 13.2 (1.8) | 5 (1.6) | 18.2 | 46.1 |
Total | 27.3 (3.3) | 24.3 (6.3) | 51.6 | 22.3 (5) | 19.8 (5.7) | 42.1 | 31.1 (3.1) | 17.6 (4.2) | 48.7 | 142.4 |
Mean/day | 1.9 | 1.7 | 3.7 | 1.6 | 1.4 | 3 | 2.2 | 1.3 | 3.5 | 10.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamport, D.J.; Wu, S.-Y.; Drever-Heaps, J.; Hugueniot, O.; Jones, D.J.W.; Kennedy, O.B.; Williams, C.M.; Butler, L.T. Can Public Health Interventions Change Immediate and Long-Term Dietary Behaviours? Encouraging Evidence from a Pilot Study of the U.K. Change4Life Sugar Swaps Campaign. Nutrients 2022, 14, 68. https://doi.org/10.3390/nu14010068
Lamport DJ, Wu S-Y, Drever-Heaps J, Hugueniot O, Jones DJW, Kennedy OB, Williams CM, Butler LT. Can Public Health Interventions Change Immediate and Long-Term Dietary Behaviours? Encouraging Evidence from a Pilot Study of the U.K. Change4Life Sugar Swaps Campaign. Nutrients. 2022; 14(1):68. https://doi.org/10.3390/nu14010068
Chicago/Turabian StyleLamport, Daniel J., Szu-Yun Wu, Jenni Drever-Heaps, Orla Hugueniot, Daniel J. W. Jones, Orla B. Kennedy, Claire M. Williams, and Laurie T. Butler. 2022. "Can Public Health Interventions Change Immediate and Long-Term Dietary Behaviours? Encouraging Evidence from a Pilot Study of the U.K. Change4Life Sugar Swaps Campaign" Nutrients 14, no. 1: 68. https://doi.org/10.3390/nu14010068
APA StyleLamport, D. J., Wu, S. -Y., Drever-Heaps, J., Hugueniot, O., Jones, D. J. W., Kennedy, O. B., Williams, C. M., & Butler, L. T. (2022). Can Public Health Interventions Change Immediate and Long-Term Dietary Behaviours? Encouraging Evidence from a Pilot Study of the U.K. Change4Life Sugar Swaps Campaign. Nutrients, 14(1), 68. https://doi.org/10.3390/nu14010068