The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Evaluation of Sugar-Sweetened Beverage Consumption
2.3. Selection of T2D Risk SNPs and Ancestry
2.4. Genotyping
2.5. Bioinformatic Analysis
2.6. Ancestry Inference
2.7. Polygenic Risk Score Calculation
2.8. Statistical Analysis
3. Results
3.1. General Characteristic of the Study Population
3.2. General Characteristics by SSB Consumption
3.3. Fasting Glucose and SNPs: Association and Interaction Effect
3.4. Fasting Glucose and GRSw: Association and Interaction Effect
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, V.S.; Hu, F.B. Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence. Nutrients 2019, 11, 1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Hawkes, C. Sweetening of the Global Diet, Particularly Beverages: Patterns, Trends, and Policy Responses. Lancet Diabetes Endocrinol. 2016, 4, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Taillie, L.S.; Reyes, M.; Colchero, M.A.; Popkin, B.; Corvalán, C. An Evaluation of Chile’s Law of Food Labeling and Advertising on Sugar-Sweetened Beverage Purchases from 2015 to 2017: A before-and-after Study. PLoS Med. 2020, 17, e1003015. [Google Scholar] [CrossRef] [PubMed]
- Eyheramendy, S.; Martinez, F.I.; Manevy, F.; Vial, C.; Repetto, G.M. Genetic Structure Characterization of Chileans Reflects Historical Immigration Patterns. Nat. Commun. 2015, 6, 6472. [Google Scholar] [CrossRef]
- Verdugo, R.A.; Di Genova, A.; Herrera, L.; Moraga, M.; Acuña, M.; Berríos, S.; Llop, E.; Valenzuela, C.Y.; Bustamante, M.L.; Digman, D.; et al. Development of a Small Panel of SNPs to Infer Ancestry in Chileans That Distinguishes Aymara and Mapuche Components. Biol. Res. 2020, 53, 15. [Google Scholar] [CrossRef] [Green Version]
- Barozet, E.; Valenzuela, C.Y.; Cifuentes, L.; Verdugo, R.A.; Herrera, L.; Acuña, M.; Llop, E.; Moraga, M.; Berríos, S.; Di Genova, A.; et al. The Chilean Socio-Ethno-Genomic Cline. Biodemogr. Soc. Biol. 2021, 66, 156–171. [Google Scholar] [CrossRef]
- Dhingra, R.; Sullivan, L.; Jacques, P.F.; Wang, T.J.; Fox, C.S.; Meigs, J.B.; D’Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Soft Drink Consumption and Risk of Developing Cardiometabolic Risk Factors and the Metabolic Syndrome in Middle-Aged Adults in the Community. Circulation 2007, 116, 480–488. [Google Scholar] [CrossRef] [Green Version]
- McKeown, N.M.; Dashti, H.S.; Ma, J.; Haslam, D.E.; Kiefte-de Jong, J.C.; Smith, C.E.; Tanaka, T.; Graff, M.; Lemaitre, R.N.; Rybin, D.; et al. Sugar-Sweetened Beverage Intake Associations with Fasting Glucose and Insulin Concentrations Are Not Modified by Selected Genetic Variants in a ChREBP-FGF21 Pathway: A Meta-Analysis. Diabetologia 2018, 61, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Jacques, P.F.; Meigs, J.B.; Fox, C.S.; Rogers, G.T.; Smith, C.E.; Hruby, A.; Saltzman, E.; McKeown, N.M. Sugar-Sweetened Beverage but Not Diet Soda Consumption Is Positively Associated with Progression of Insulin Resistance and Prediabetes. J. Nutr. 2016, 146, 2544–2550. [Google Scholar] [CrossRef] [Green Version]
- Kondaki, K.; Grammatikaki, E.; Jiménez-Pavón, D.; De Henauw, S.; González-Gross, M.; Sjöstrom, M.; Gottrand, F.; Molnar, D.; Moreno, L.A.; Kafatos, A.; et al. Daily Sugar-Sweetened Beverage Consumption and Insulin Resistance in European Adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2013, 16, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-T.; Chan, T.-F.; Huang, H.-L.; Lee, C.-Y.; Tsai, S.; Wu, P.-W.; Yang, Y.-C.; Wang, T.-N.; Lee, C.-H. Fructose-Rich Beverage Intake and Central Adiposity, Uric Acid, and Pediatric Insulin Resistance. J. Pediatr. 2016, 171, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of Sugar Sweetened Beverages, Artificially Sweetened Beverages, and Fruit Juice and Incidence of Type 2 Diabetes: Systematic Review, Meta-Analysis, and Estimation of Population Attributable Fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.; Mazariegos, M.; Ortiz-Panozo, E.; Campos, H.; Malik, V.S.; Lajous, M.; López-Ridaura, R. Sugar-Sweetened Soda Consumption Increases Diabetes Risk Among Mexican Women. J. Nutr. 2019, 149, 795–803. [Google Scholar] [CrossRef]
- Hu, F.B.; Malik, V.S. Sugar-Sweetened Beverages and Risk of Obesity and Type 2 Diabetes: Epidemiologic Evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Muller, D.C.; Nathan, D.M.; Blake, D.R.; Andres, R. The Natural History of Progression From Normal Glucose Tolerance to Type 2 Diabetes in the Baltimore Longitudinal Study of Aging. Diabetes 2003, 52, 1475–1484. [Google Scholar] [CrossRef]
- Meigs, J.B.; Nathan, D.M.; D’Agostino, R.B.; Wilson, P.W.F. Fasting and Postchallenge Glycemia and Cardiovascular Disease Risk: The Framingham Offspring Study. Diabetes Care 2002, 25, 1845–1850. [Google Scholar] [CrossRef] [Green Version]
- DellaValle, D.M.; Roe, L.S.; Rolls, B.J. Does the Consumption of Caloric and Non-Caloric Beverages with a Meal Affect Energy Intake? Appetite 2005, 44, 187–193. [Google Scholar] [CrossRef]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages and Weight Gain in Children and Adults: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [Green Version]
- DiMeglio, D.; Mattes, R. Liquid versus Solid Carbohydrate: Effects on Food Intake and Body Weight. Int. J. Obes. 2000, 24, 794–800. [Google Scholar] [CrossRef] [Green Version]
- eQTLGen Consortium; Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; et al. Genome-Wide Association Analyses Identify 143 Risk Variants and Putative Regulatory Mechanisms for Type 2 Diabetes. Nat. Commun. 2018, 9, 2941. [Google Scholar] [CrossRef] [Green Version]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Flannick, J.; Florez, J.C. Type 2 Diabetes: Genetic Data Sharing to Advance Complex Disease Research. Nat. Rev. Genet. 2016, 17, 535–549. [Google Scholar] [CrossRef]
- Fuchsberger, C.; Flannick, J.; Teslovich, T.M.; Mahajan, A.; Agarwala, V.; Gaulton, K.J.; Ma, C.; Fontanillas, P.; Moutsianas, L.; McCarthy, D.J.; et al. The Genetic Architecture of Type 2 Diabetes. Nature 2016, 536, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Broad Genomics Platform; DiscovEHR Collaboration; CHARGE; LuCamp; ProDiGY; GoT2D; ESP; SIGMA-T2D; T2D-GENES; AMP-T2D-GENES; et al. Exome Sequencing of 20,791 Cases of Type 2 Diabetes and 24,440 Controls. Nature 2019, 570, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Geng, T.; Huang, T. Gene-Environment Interactions and Type 2 Diabetes. Asia Pac. J. Clin. Nutr. 2020, 29, 220–226. [Google Scholar] [CrossRef]
- DIAGRAM Consortium; GIANT Consortium; Global BPgen Consortium; Anders Hamsten on behalf of Procardis Consortium; the MAGIC Investigators; Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; et al. New Genetic Loci Implicated in Fasting Glucose Homeostasis and Their Impact on Type 2 Diabetes Risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- Dietrich, S.; Jacobs, S.; Zheng, J.; Meidtner, K.; Schwingshackl, L.; Schulze, M.B. Gene-lifestyle Interaction on Risk of Type 2 Diabetes: A Systematic Review. Obes. Rev. 2019, 20, 1557–1571. [Google Scholar] [CrossRef]
- Jia, X.; Xuan, L.; Dai, H.; Zhu, W.; Deng, C.; Wang, T.; Li, M.; Zhao, Z.; Xu, Y.; Lu, J.; et al. Fruit Intake, Genetic Risk and Type 2 Diabetes: A Population-Based Gene–Diet Interaction Analysis. Eur. J. Nutr. 2021, 60, 2769–2779. [Google Scholar] [CrossRef]
- Haslam, D.E.; McKeown, N.M.; Herman, M.A.; Lichtenstein, A.H.; Dashti, H.S. Interactions between Genetics and Sugar-Sweetened Beverage Consumption on Health Outcomes: A Review of Gene–Diet Interaction Studies. Front. Endocrinol. 2018, 8, 368. [Google Scholar] [CrossRef] [Green Version]
- Ericson, U.; Hindy, G.; Drake, I.; Schulz, C.-A.; Brunkwall, L.; Hellstrand, S.; Almgren, P.; Orho-Melander, M. Dietary and Genetic Risk Scores and Incidence of Type 2 Diabetes. Genes Nutr. 2018, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Wirström, T.; Hilding, A.; Gu, H.F.; Östenson, C.-G.; Björklund, A. Consumption of Whole Grain Reduces Risk of Deteriorating Glucose Tolerance, Including Progression to Prediabetes. Am. J. Clin. Nutr. 2013, 97, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löfvenborg, J.E.; Ahlqvist, E.; Alfredsson, L.; Andersson, T.; Dorkhan, M.; Groop, L.; Tuomi, T.; Wolk, A.; Carlsson, S. Genotypes of HLA, TCF7L2, and FTO as Potential Modifiers of the Association between Sweetened Beverage Consumption and Risk of LADA and Type 2 Diabetes. Eur. J. Nutr. 2020, 59, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreccio, C.; Roa, J.C.; Bambs, C.; Vives, A.; Corvalán, A.H.; Cortés, S.; Foerster, C.; Acevedo, J.; Huidobro, A.; Passi, A.; et al. Study Protocol for the Maule Cohort (MAUCO) of Chronic Diseases, Chile 2014–2024. BMC Public Health 2015, 16, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, N.R.; Harmon, S.A.; Narum, S.R. Genotyping-in-Thousands by Sequencing (GT-seq): A Cost Effective SNP Genotyping Method Based on Custom Amplicon Sequencing. Mol. Ecol. Resour. 2015, 15, 855–867. [Google Scholar] [CrossRef]
- De la Fuente, C.; Ávila-Arcos, M.C.; Galimany, J.; Carpenter, M.L.; Homburger, J.R.; Blanco, A.; Contreras, P.; Cruz Dávalos, D.; Reyes, O.; San Roman, M.; et al. Genomic Insights into the Origin and Diversification of Late Maritime Hunter-Gatherers from the Chilean Patagonia. Proc. Natl. Acad. Sci. USA 2018, 115, E4006–E4012. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Iqbal, K.; Schwedhelm, C.; Boeing, H. Food Groups and Intermediate Disease Markers: A Systematic Review and Network Meta-Analysis of Randomized Trials. Am. J. Clin. Nutr. 2018, 108, 576–586. [Google Scholar] [CrossRef]
- Qi, Q.; Stilp, A.M.; Sofer, T.; Moon, J.-Y.; Hidalgo, B.; Szpiro, A.A.; Wang, T.; Ng, M.C.Y.; Guo, X.; MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium; et al. Genetics of Type 2 Diabetes in U.S. Hispanic/Latino Individuals: Results From the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes 2017, 66, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium; Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; et al. Large-Scale Association Analyses Identify New Loci Influencing Glycemic Traits and Provide Insight into the Underlying Biological Pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef] [Green Version]
- DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-Generation Sequencing in Muylti-Ethnic Samples (T2D-GENES) Consortium; Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; et al. Genome-Wide Trans-Ancestry Meta-Analysis Provides Insight into the Genetic Architecture of Type 2 Diabetes Susceptibility. Nat. Genet. 2014, 46, 234–244. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Lasserre-Laso, N.; Villagrán, M.; Mardones, L.; Martínez, M.A.; Leiva, A.M.; Ulloa, N.; Celis-Morales, C. Asociación Del Polimorfismo Rs7903146, Del Gen TCF7L2, Con Marcadores de Adiposidad y Metabólicos En Población Chilena—Resultados Del Estudio GENADIO. Rev. Méd. Chile 2019, 147, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Park, S.-Y.; Su, J.; Bailey, K.; Ottosson-Laakso, E.; Shcherbina, L.; Oskolkov, N.; Zhang, E.; Thevenin, T.; Fadista, J.; et al. TCF7L2 Is a Master Regulator of Insulin Production and Processing. Human Mol. Genet. 2014, 23, 6419–6431. [Google Scholar] [CrossRef] [Green Version]
- Jin, T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr. Rev. 2016, 37, 254–277. [Google Scholar] [CrossRef] [Green Version]
- Florez, J.C.; Jablonski, K.A.; Bayley, N.; Pollin, T.I.; De Bakker, P.I.W.; Shuldiner, A.R.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 2006, 355, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.R.; Jonsson, A.; Jackson, A.U.; Wang, N.; Van Leewen, N.; Palmer, N.D.; Kobes, S.; Deelen, J.; Boquete-Vilarino, L.; Paananen, J.; et al. A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes 2017, 66, 2296–2309. [Google Scholar] [CrossRef] [Green Version]
- Grimsby, J.L.; Porneala, B.C.; Vassy, J.L.; Yang, Q.; Florez, J.C.; Dupuis, J.; Liu, T.; Yesupriya, A.; Chang, M.-H.; Ned, R.M.; et al. Race-Ethnic Differences in the Association of Genetic Loci with HbA1c Levels and Mortality in U.S. Adults: The Third National Health and Nutrition Examination Survey (NHANES III). BMC Med. Genet. 2012, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Lai, S.; Yang, Y.; Shi, H.; Cai, Z.; Sorrentino, V.; Du, H.; Chen, H. A Novel Type 2 Diabetes Risk Allele Increases the Promoter Activity of the Muscle-Specific Small Ankyrin 1 Gene. Sci. Rep. 2016, 6, 25105. [Google Scholar] [CrossRef] [Green Version]
- Olsen, N.J.; Ängquist, L.; Larsen, S.C.; Linneberg, A.; Skaaby, T.; Husemoen, L.L.N.; Toft, U.; Tjønneland, A.; Halkjær, J.; Hansen, T.; et al. Interactions between Genetic Variants Associated with Adiposity Traits and Soft Drinks in Relation to Longitudinal Changes in Body Weight and Waist Circumference. Am. J. Clin. Nutr. 2016, 104, 816–826. [Google Scholar] [CrossRef]
- Brunkwall, L.; Chen, Y.; Hindy, G.; Rukh, G.; Ericson, U.; Barroso, I.; Johansson, I.; Franks, P.W.; Orho-Melander, M.; Renström, F. Sugar-Sweetened Beverage Consumption and Genetic Predisposition to Obesity in 2 Swedish Cohorts. Am. J. Clin. Nutr. 2016, 104, 809–815. [Google Scholar] [CrossRef]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Jensen, M.K.; Curhan, G.C.; Pasquale, L.R.; Ridker, P.M.; Hunter, D.J.; Willett, W.C.; Rimm, E.B.; et al. Sugar-Sweetened Beverages and Genetic Risk of Obesity. N. Engl. J. Med. 2012, 367, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Cornelis, M.C.; Zhang, C.; Van Dam, R.M.; Hu, F.B. Genetic Predisposition, Western Dietary Pattern, and the Risk of Type 2 Diabetes in Men. Am. J. Clin. Nutr. 2009, 89, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.F.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B Influence Fasting Glucose Levels. Nat. Genet. 2009, 41, 77–81. [Google Scholar] [CrossRef]
- Dashti, H.S.; Follis, J.L.; Smith, C.E.; Tanaka, T.; Garaulet, M.; Gottlieb, D.J.; Hruby, A.; Jacques, P.F.; Kiefte-de Jong, J.C.; Lamon-Fava, S.; et al. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits. Dia Care 2015, 38, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Minguez, J.; Saxena, R.; Bandín, C.; Scheer, F.A.; Garaulet, M. Late Dinner Impairs Glucose Tolerance in MTNR1B Risk Allele Carriers: A Randomized, Cross-over Study. Clin. Nutr. 2018, 37, 1133–1140. [Google Scholar] [CrossRef]
Overall (n = 2828) | p | Men (n = 971) | p | Women (n = 1857) | p | |
---|---|---|---|---|---|---|
Sex (%) | - | 34.3 | 65.7 | |||
Age (years) | 53.4 (9.5) | 0.0001 | 54.0 (9.6) | 0.003 | 53.1 (9.4) | 0.0001 |
Education (% low/medium/high) | 49.0/39.2/11.8 | 0.14 | 47.4/40.8/11.8 | 0.34 | 49.8/38.4/11.8 | 0.33 |
Socioeconomic (% low/med/high) | 24.3/58.9/16.8 | 0.13 | 16.2/60.8/22.1 | 0.75 | 28.0/57.9/14.1 | 0.81 |
Physical Activity (% active/inactive) | 19.96/80.04 | 0.34 | 20.0/80.0 | 0.90 | 19.97/80.03 | 0.24 |
Smoking (% never/current/former) | 42.8/33.1/24.1 | 0.0001 | 32.9/35.9/31.2 | 0.48 | 47.9/31.7/20.4 | 0.003 |
Amerindian ancestry | 0.35 (0.08) | 0.33 | 0.34 (0.07) | 0.19 | 0.35 (0.08) | 0.46 |
High risk alcohol consumption (%) | 15.3 | 0.35 | 27.6 | 0.57 | 9.0 | 0.37 |
Fruit intake ≥ 1 portions/day (%) | 48.3 | 0.45 | 38.4 | 0.63 | 53.3 | 0.03 |
Vegetable intake ≥ 1 portions/day (%) | 68.7 | 0.33 | 60.0 | 0.07 | 73.1 | 0.25 |
Processed meat ≥ 4 portions/week (%) | 10.1 | 0.72 | 12.3 | 0.35 | 8.6 | 0.48 |
Sugar ≥ 4 teaspoons/day (%) | 38.8 | 0.94 | 47.3 | 0.04 | 34.4 | 0.0001 |
SSB category (%) (n) | ||||||
0 servings/day | 24.3 (686) | 0.0001 | 13.0 (126) | 0.16 | 30.2 (560) | 0.02 |
>0 and <1 servings/day | 37.6 (1064) | 38.0 (369) | 37.4 (695) | |||
≤1 and <2 servings/day | 25.1 (710) | 27.8 (270) | 23.7 (440) | |||
≥2 servings/day | 13.0 (368) | 21.2 (206) | 8.7 (162) | |||
Glycemia ≥ 100 mg/dL (%) (n) | 21.9 (618) | - | 30.0 (291) | - | 17.6 (327) | - |
BMI (kg/m2) | 29.3 (4.8) | 0.0001 | 28.9 (4.1) | 0.0001 | 29.6 (5.0) | 0.0001 |
BMI (normal/overweight/obesity) (%) | 16.7/44.2/39.1 | 0.0001 | 16.6/47.0/36.4 | 0.001 | 16.7/42.9/40.4 | 0.0001 |
WC (cm) | 98.1 (10.8) | 0.0001 | 101.0 (9.4) | 0.0001 | 96.5 (11.0) | 0.0001 |
High WC (%) | 68.9 (1949) | 0.0001 | 45.8 (443) | 0.0001 | 81.0 (1506) | 0.0001 |
Triglycerides (mg/dL) | 162.8 (122.4) | 0.0001 | 181.6 (153.0) | 0.0001 | 153.0 (101.5) | 0.0001 |
Hypertriglyceridemia (%) | 44.2 (1251) | 0.0001 | 50.5 (490) | 0.0001 | 41.0 (761) | 0.0001 |
HDL-c (mg/dL) | 45.8 (11.1) | 0.0001 | 42.3 (10.4) | 0.19 | 47.7 (11.0) | 0.06 |
Low HDL-c (%) | 44.5 (1258) | 0.22 | 56.2 (544) | 0.22 | 38.4 (714) | 0.01 |
rsID | Gen | Genotype | SSB Category 2 | SSB Category 3 | SSB Category 4 | Pi | |||
---|---|---|---|---|---|---|---|---|---|
Β (SE) | Pt | Β (SE) | Pt | Β (SE) | Pt | ||||
rs7903146 | TCF7L2 | 0,1,2 | 0.0004 (0.01) | 0.97 | 0.020 (0.01) | 0.11 | 0.05 (0.01) | 0.001 | 0.002 |
C/C | 4.37 (0.053) | 0.32 | 4.20 (0.06) | 0.44 | 4.33 (0.072) | 0.80 | 0.005 | ||
C/T | −0.006 (0.02) | 0.10 | 0.03 (0.02) | 0.10 | 0.03 (0.02) | 0.09 | |||
T/T | 0.009 (0.03) | 0.77 | 0.02 (0.03) | 0.53 | 0.14 (0.04) | 0.0006 | |||
rs10830963 | MTNR1B | 0,1,2 | 0.005 (0.01) | 0.67 | 0.01 (0.01) | 0.43 | 0.013 (0.01) | 0.47 | 0.83 |
C/C | 4.21 (0.053) | 0.26 | 4.30 (0.058) | 0.61 | 4.28 (0.072) | 0.88 | 0.001 | ||
C/G | 0.01 (0.02) | 0.54 | 0.01 (0.02) | 0.41 | −0.03 (0.02) | 0.16 | |||
G/G | −0.004 (0.04) | 0.91 | 0.01 (0.05) | 0.75 | 0.19 (0.05) | 0.0008 |
Global | Men | Women | ||||
---|---|---|---|---|---|---|
β (SE) | p | β (SE) | p | β (SE) | p | |
GRSw (continuous) | ||||||
GRSw | 0.02 (0.006) | 0.00002 | 0.03 (0.01) | 0.005 | 0.02 (0.007) | 0.003 |
GRSw (categorical) | ||||||
GRSw tertile 2 | 0.001 (0.006) | 0.85 | −0.007 (0.01) | 0.62 | 0.004 (0.008) | 0.60 |
GRSw tertile 3 | 0.02 (0.007) | 0.0003 | 0.02 (0.01) | 0.08 | 0.03 (0.008) | 0.002 |
SSB Category | Global | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|---|
β (SE) | Pt | Pi | β (SE) | Pt | Pi | β (SE) | Pt | Pi | |
SSB and GRSw as continuous | |||||||||
0.02 (0.006) | 0.004 | 0.004 | 0.03 (0.01) | 0.01 | 0.01 | 0.008 (0.006) | 0.25 | 0.25 | |
Categorical SSB and continuous GRSw | |||||||||
2 | 0.01 (0.01) | 0.49 | 0.01 | 0.003 (0.04) | 0.92 | 0.03 | 0.02 (0.02) | 0.26 | 0.46 |
3 | 0.01 (0.02) | 0.41 | 0.02 (0.04) | 0.54 | 0.007 (0.02) | 0.71 | |||
4 | 0.06 (0.02) | 0.001 | 0.08 (0.04) | 0.04 | 0.03 (0.02) | 0.16 | |||
SSB and GRSw as categorical | |||||||||
GRSw Tertile 2 | |||||||||
2 | 0.03 (0.02) | 0.09 | 0.02 | 0.02 (0.04) | 0.62 | 0.009 | 0.04 (0.02) | 0.053 | 0.57 |
3 | 0.03 (0.02) | 0.15 | 0.06 (0.05) | 0.22 | 0.01 (0.02) | 0.50 | |||
4 | 0.0005 (0.02) | 0.98 | 0.03 (0.05) | 0.60 | 0.03 (0.03) | 0.26 | |||
GRSw Tertile 3 | |||||||||
2 | 0.007 (0.02) | 0.70 | −0.01 (0.04) | 0.52 | 0.02 (0.02) | 0.30 | |||
3 | 0.02 (0.02) | 0.41 | 0.04 (0.05) | 0.38 | 0.006 (0.02) | 0.76 | |||
4 | 0.05 (0.02) | 0.02 | 0.07 (0.05) | 0.12 | 0.04 (0.03) | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Portillo, M.L.; Huidobro, A.; Tobar-Calfucoy, E.; Yáñez, C.; Retamales-Ortega, R.; Garrido-Tapia, M.; Acevedo, J.; Paredes, F.; Cid-Ossandon, V.; Ferreccio, C.; et al. The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus. Nutrients 2022, 14, 69. https://doi.org/10.3390/nu14010069
López-Portillo ML, Huidobro A, Tobar-Calfucoy E, Yáñez C, Retamales-Ortega R, Garrido-Tapia M, Acevedo J, Paredes F, Cid-Ossandon V, Ferreccio C, et al. The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus. Nutrients. 2022; 14(1):69. https://doi.org/10.3390/nu14010069
Chicago/Turabian StyleLópez-Portillo, María Lourdes, Andrea Huidobro, Eduardo Tobar-Calfucoy, Cristian Yáñez, Rocío Retamales-Ortega, Macarena Garrido-Tapia, Johanna Acevedo, Fabio Paredes, Vicente Cid-Ossandon, Catterina Ferreccio, and et al. 2022. "The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus" Nutrients 14, no. 1: 69. https://doi.org/10.3390/nu14010069
APA StyleLópez-Portillo, M. L., Huidobro, A., Tobar-Calfucoy, E., Yáñez, C., Retamales-Ortega, R., Garrido-Tapia, M., Acevedo, J., Paredes, F., Cid-Ossandon, V., Ferreccio, C., & Verdugo, R. A. (2022). The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus. Nutrients, 14(1), 69. https://doi.org/10.3390/nu14010069