Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans
Abstract
:1. Introduction
“the gold standard for investigating the effects of supplements on sports performance is the prospective, randomized, controlled scientific trial, in which subjects are randomly allocated to receive either an experimental or placebo treatment (ideally in a double-blind manner) or crossed over to receive both treatments in counterbalanced order, under standardized conditions”[6].
2. Curcumin
2.1. Paralleled Design Studies
2.2. Crossover Design Studies
2.3. Summary
3. Tart Cherry or Tart Cherry Juice
3.1. Paralleled Design Studies
3.2. Crossover Design Studies
3.3. Summary
4. Beetroot Juice
4.1. Paralleled Design Studies
4.2. Crossover Design Studies
Reference (Year) | Population | Supplementation | Exercise | Outcome | |||||
---|---|---|---|---|---|---|---|---|---|
Dose | Duration | Blood Damage Maker | Functional Performance Marker | DOMS, Pain | Inflammatory Marker | Oxidative Stress Marker | |||
Paralleled design studies | |||||||||
Clifford et al. (2016) [62] | Recreationally active males | H-BT: 250 mL of BTJ | 3 d Ex-d (×3 servings), 24 h (×2 servings) and 48 h (×2 servings) post-Ex | Drop jumps | CK: ✕ | MVIC: ✕ | PPT: ◯ (H-and L-BT) | IL-6, TNF-α, IL-8: ✕ | |
L-BT: 125 mL of BTJ | |||||||||
CMJ: ◯ (H-BT) | |||||||||
PLA: 250 mL of placebo | |||||||||
Clifford et al. (2017) [64] | Recreationally active males | BTJ: 250 mL of BTJ | 3 d Ex-d (×3 servings), 24 h (×2 servings) and 48 h (×2 servings) post-Ex | Drop jumps | CK: ✕ | MVIC, CMJ: ✕ | PPT: ◯ (BLJ) | CRP: ✕ | |
SN: 250 mL of sodium nitrate | |||||||||
PLA: 250 mL of placebo | |||||||||
Clifford et al. (2016) [63] | Male team-sports players | 500 mL of BTJ or a placebo | 4 d (Ex-d, 24, and 48 h post-RST1 and 30-min post-RST2) | RST1: (first Ex) | CK: ✕ | MVIC, sprint: ✕ | PPT: ◯ | CRP: ✕ | LOOH, PC, A•−: ✕ |
RST2: (second Ex) | CMJ, reactive strength index: ◯ | ||||||||
Clifford et al. (2017) [61] | Runners, males and females | 250 mL of BTJ or a placebo | 3 d Ex-d (×3 servings), 24 h (×2 servings) and 48 h (×1 serving) post-Ex | Marathon | CK, AST: ✕ | MVIC, CMJ: ✕ | VAS: ✕ | IL-6, TNF-α, IL-8, CRP: ✕ | |
Crossover design studies | |||||||||
Van Hoorebeke et al. (2016) [65] | Competitive male runners | Betalain-rich concentrate capsule or placebo | 7 d (D 1–6: 50 mg, twice/d; D 7: 50 mg pre-Ex | 30 min of treadmill running followed by a 5-km TT | LDH (from baseline): ◯ | HR, RPE, lactate concentration,5-km TT duration: ◯ | VAS: ✕ | ||
CK, LDH: ✕ | Fatigue: ✕ | ||||||||
Montenegro et al. (2017) [66] | Triathletes, males and females | Betalain-rich concentrate capsule or placebo | 7 d (D 1–6: 50 mg, twice/d; D 7: 50 mg pre- Ex | 40 min of cycling followed by a 10-km running TT | CK: ◯ | 10-km TT duration, 5-km TT duration, Fatigue: ◯ | VAS: ✕ | ||
LDH: ✕ | HR average, RPE: ✕ | ||||||||
Daab et al. (2020) [67] | Male soccer players | 150 mL BTJ or placebo, twice/day | 7 d (3 d pre-Ex, Ex-d and 3 d post-Ex) | LIST | CK: ◯ | CMJ, MVIC, sprint: ◯ | VAS: ◯ | CRP: ✕ | |
LDH: ✕ | Squat jump: ✕ | ||||||||
Kozłowska et al. (2020) [68] | Elite fencers, males and females | Dietary recommendations with 26 g/day of freeze-dried BTJ or without BTJ | 4 weeks | Fencing and general training | CK, LDH: ✕ | VO2max: ◯ | IL-6: ✕ | MDA, GPx-1: ◯ | |
GPx-3, AOPP, 8-oxodG: ✕ |
4.3. Summary
5. Quercetin
5.1. Paralleled Design Studies
5.2. Crossover Design Studies
Reference (Year) | Population | Supplementation | Exercise | Outcome | |||||
---|---|---|---|---|---|---|---|---|---|
Dose | Duration | Blood Damage Maker | Functional Performance Marker | DOMS, Pain | Inflammatory Marker | Oxidative Stress Marker | |||
Paralleled design studies | |||||||||
Askari et al. (2012) [79] | Male students | 500 mg/day of quercetin with or without 200 mg/day vitamin C or placebo | 8 weeks | CK: ◯ (quercetin + itamin C) | Time to exhaustion: ✕ | ||||
AST: ✕ | |||||||||
O’Fallon et al. (2012) [81] | Healthy subjects, males and females | 1000 mg/day of quercetin or placebo | 12 d (7 d pre- and 5 d post-Ex) | Eccentric Ex (elbow flexors) | CK: ✕ | Muscle strength, ROM, Swelling: ✕ | VAS: ✕ | IL-6, CRP: ✕ | |
Martin-Rincon et al. (2020) [80] | Physically active students, males and females | 140 mg of quercetin with 140 mg of Zynamite® or placebo | 2 d (Pre-Ex, and every 8 h for 24 h) | Ran a 10-km race followed by 100 drop jumps | Mb: ◯ (males) | CMJ, mechanical impulse: ◯ | VAS: ◯ | CRP: ✕ | |
CK: ✕ | |||||||||
Crossover design studies | |||||||||
Bazzucchi et al. (2019) [82] | Moderately active males | 500 mg of quercetin or placebo, twice/day | 14 d (Pre-Ex) | Eccentric Ex (elbow flexors) | CK, LDH: ◯ | FV, MVIC, MFCV, ROM: ◯ | VAS: ✕ | ||
Circumference: ✕ | |||||||||
Bazzucchi et al. (2020) [83] | Low-to-moderate physically activate males | 500 mg of quercetin or placebo, twice/day | 14 d (Pre-Ex) | Eccentric Ex (elbow flexors) | CK, LDH: ◯ | FV, MVIC, MFCV, ROM: ◯ | VAS: ✕ | ||
Circumference: ✕ |
5.3. Summary
6. Isothiocyanate
7. Conclusions
7.1. Remarks
7.2. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Tiidus, P.M. Radical species in inflammation and overtraining. Can. J. Physiol. Pharmacol. 1998, 76, 533–538. [Google Scholar] [CrossRef]
- Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 2001, 537, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Suzuki, K.; Coombes, J. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 2007, 18, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L.; Gomez-Cabrera, M.C.; Vina, J. Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl. Physiol. Nutr. Metab. 2007, 32, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Tominaga, T.; Ruhee, R.T.; Ma, S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants 2020, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Involvement of neutrophils in exercise-induced muscle damage and its modulation. Gen. Intern. Med. Clin. Innov. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Ashton, T.; McArdle, A.; MacLaren, D.P. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 142, 257–266. [Google Scholar] [CrossRef]
- Australian Institute of Sport. 2021 AIS Supplements and Sports Food in High Performance Sport Framework. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 25 November 2021).
- Nosaka, K.; Newton, M.; Sacco, P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand. J. Med. Sci. Sports 2002, 12, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, K.; Clarkson, P.M. Variability in serum creatine kinase response after eccentric exercise of the elbow flexors. Int. J. Sports Med. 1996, 17, 120–127. [Google Scholar] [CrossRef]
- Chen, T.C.; Chen, H.-L.; Lin, M.-J.; Yu, H.-I.; Nosaka, K. Contralateral Repeated Bout Effect of Eccentric Exercise of the Elbow Flexors. Med. Sci. Sports Exerc. 2016, 48, 2030–2039. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Falvo, M.J.; Schilling, B.K.; Smith, W.A. Prior exercise and antioxidant supplementation: Effect on oxidative stress and muscle injury. J. Int. Soc. Sports Nutr. 2007, 4, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Mohr, M.; Draganidis, D.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Castagna, C.; Douroudos, I.; Avloniti, A.; Margeli, A.; Papassotiriou, I.; Flouris, A.; et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 116, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc. Immunol. Rev. 2002, 8, 6–48. [Google Scholar] [PubMed]
- Suzuki, K. Characterization of Exercise-Induced Cytokine Release, the Impacts on the Body, the Mechanisms and Modulations. Int. J. Sports Exerc. Med. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Newton, M.J.; Morgan, G.T.; Sacco, P.; Chapman, D.; Nosaka, K. Comparison of Responses to Strenuous Eccentric Exercise of the Elbow Flexors Between Resistance-Trained and Untrained Men. J. Strength Cond. Res. 2008, 22, 597–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Russo, L.L.; DE Lillo, A.; Laino, L.; Muzio, L.L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeidinia, A.; Keihanian, F.; Butler, A.E.; Bagheri, R.K.; Atkin, S.L.; Sahebkar, A. Curcumin in heart failure: A choice for complementary therapy? Pharmacol. Res. 2018, 131, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Juszczyk, G.; Mikulska, J.; Kasperek, K.; Pietrzak, D.; Mrozek, W.; Herbet, M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer’s Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants 2021, 10, 1439. [Google Scholar] [CrossRef]
- Marchesi, N.; Govoni, S.; Allegri, M. Non-drug pain relievers active on non-opioid pain mechanisms. Pain Pr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hasriadi; Wasana, P.W.D.; Vajragupta, O.; Rojsitthisak, P.; Towiwat, P. Mechanistic Insight into the Effects of Curcumin on Neuroinflammation-Driven Chronic Pain. Pharmaceuticals 2021, 14, 777. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Pala, R.; Tuzcu, M.; Ozdemir, O.; Orhan, C.; Sahin, N.; Juturu, V. Curcumin prevents muscle damage by regulating NF-kappaB and Nrf2 pathways and improves performance: An in vivo model. J. Inflamm. Res. 2016, 9, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Suzuki, K.; Kim, H.K.; Otsuka, Y.; Imaizumi, A.; Miyashita, M.; Sakamoto, S. Effects of curcumin supplementation on exercise-induced oxidative stress in humans. Int. J. Sports Med. 2014, 35, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilelli, N.C.; Ragazzi, E.; Valentini, R.; Cosma, C.; Ferraresso, S.; Lapolla, A.; Sartore, G. Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients 2016, 8, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delecroix, B.; Abaïdia, A.E.; LeDuc, C.; Dawson, B.; Dupont, G. Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial. J. Sports Sci. Med. 2017, 16, 147–153. [Google Scholar]
- Tanabe, Y.; Maeda, S.; Akazawa, N.; Zempo-Miyaki, A.; Choi, Y.; Ra, S.-G.; Imaizumi, A.; Otsuka, Y.; Nosaka, K. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 115, 1949–1957. [Google Scholar] [CrossRef] [Green Version]
- Ashtary-Larky, D.; Kelishadi, M.R.; Bagheri, R.; Moosavian, S.P.; Wong, A.; Davoodi, S.H.; Khalili, P.; Dutheil, F.; Suzuki, K.; Asbaghi, O. The Effects of Nano-Curcumin Supplementation on Risk Factors for Cardiovascular Disease: A GRADE-Assessed Systematic Review and Meta-Analysis of Clinical Trials. Antioxidants 2021, 10, 1015. [Google Scholar] [CrossRef] [PubMed]
- Drobnic, F.; Riera, J.; Appendino, G.; Togni, S.; Franceschi, F.; Valle, X.; Pons, A.; Tur, J. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): A randomised, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2014, 11, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, Y.; Chino, K.; Sagayama, H.; Lee, H.J.; Ozawa, H.; Maeda, S.; Takahashi, H. Effective Timing of Curcumin Ingestion to Attenuate Eccentric Exercise-Induced Muscle Soreness in Men. J. Nutr. Sci. Vitaminol. 2019, 65, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, F.R.; Gomes, A.C.; Antunes, A.; Rezende, K.; Pimentel, G.D.; Oliveira, C.L.P.; Antunes, B.M.; Lira, F.S.; Aoki, M.S.; Mota, J.F. Effects of turmeric extract supplementation on inflammation and muscle damage after a half-marathon race: A randomized, double-blind, placebo-controlled trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 120, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Nicol, L.M.; Rowlands, D.S.; Fazakerly, R.; Kellett, J. Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 115, 1769–1777. [Google Scholar] [CrossRef]
- Tanabe, Y.; Chino, K.; Ohnishi, T.; Ozawa, H.; Sagayama, H.; Maeda, S.; Takahashi, H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand. J. Med. Sci. Sports 2019, 29, 524–534. [Google Scholar] [CrossRef]
- Drobnic, F. Curcumin reduces pain in DOMS. Pain 2016, 157, 2390–2391. [Google Scholar] [CrossRef]
- Howatson, G.; McHugh, M.P.; Hill, J.A.; Brouner, J.; Jewell, A.P.; van Someren, K.A.; Shave, R.E.; Howatson, S.A. Influence of tart cherry juice on indices of recovery following marathon running. Scand. J. Med. Sci. Sports 2010, 20, 843–852. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Laugero, K.D. A Review of the Health Benefits of Cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Bourquin, L.D.; Nair, M.G. Degradation products of cyanidin glycosides from tart cherries and their bioactivities. J. Agric. Food Chem. 2001, 49, 4924–4929. [Google Scholar] [CrossRef] [PubMed]
- Marzocchella, L.; Fantini, M.; Benvenuto, M.; Masuelli, L.; Tresoldi, I.; Modesti, A.; Bei, R. Dietary Flavonoids: Molecular Mechanisms of Action as Anti- Inflammatory Agents. Recent Pat. Inflamm. Allergy Drug Discov. 2011, 5, 200–220. [Google Scholar] [CrossRef]
- Levers, K.; Dalton, R.; Galvan, E.; O’Connor, A.; Goodenough, C.; Simbo, S.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; Riechman, S.; et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J. Int. Soc. Sports Nutr. 2016, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49, 3–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.C.R.; Oliveira Assumpcao, C.; Prestes, J.; Sergio Denadai, B. Consumption of Cherries as a Strategy to Attenuate Exercise-Induced Muscle Damage and Inflammation in Humans. Nutr. Hosp. 2015, 32, 1885–1893. [Google Scholar] [CrossRef]
- Bell, P.G.; McHugh, M.P.; Stevenson, E.; Howatson, G. The role of cherries in exercise and health. Scand. J. Med. Sci. Sports 2014, 24, 477–490. [Google Scholar] [CrossRef]
- Bell, P.G.; Stevenson, E.; Davison, G.W.; Howatson, G. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise. Nutrients 2016, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, R.; Hill, J.A. The Efficacy of Tart Cherry Juice in Aiding Recovery After Intermittent Exercise. Int. J. Sports Physiol. Perform. 2019, 15, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, K.L.; Ranchordas, M.K.; Johnson, E.; Denning, J.; Downing, F.; Lynn, A. No Effect of Tart Cherry Juice or Pomegranate Juice on Recovery from Exercise-Induced Muscle Damage in Non-Resistance Trained Men. Nutrients 2019, 11, 1593. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.A.; McHugh, M.P.; Padilla-Zakour, O.I.; Carlson, L.; Sayers, S.P. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br. J. Sports Med. 2006, 40, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.L.; Sumners, D.P.; Dyer, A.; Fox, P.; Mileva, K.N. Montmorency Cherry Juice Reduces Muscle Damage Caused by Intensive Strength Exercise. Med. Sci. Sports Exerc. 2011, 43, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Morehen, J.C.; Clarke, J.; Batsford, J.; Barrow, S.; Brown, A.D.; Stewart, C.E.; Morton, J.P.; Close, G.L. Montmorency tart cherry juice does not reduce markers of muscle soreness, function and inflammation following professional male rugby League match-play. Eur. J. Sport Sci. 2020, 21, 1003–1012. [Google Scholar] [CrossRef]
- Abbott, W.; Brashill, C.; Brett, A.; Clifford, T. Tart Cherry Juice: No Effect on Muscle Function Loss or Muscle Soreness in Professional Soccer Players After a Match. Int. J. Sports Physiol. Perform. 2020, 15, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. 2020, 17, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44 (Suppl. 1), S35–S45. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Vanhatalo, A.; Seals, D.R.; Rossman, M.J.; Piknova, B.; Jonvik, K.L. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med. Sci. Sports Exerc. 2021, 53, 280–294. [Google Scholar] [CrossRef]
- Reyes-Izquierdo, T.; Pietrzkowski, Z.; Argumedo, R.; Shu, C.; Nemzer, B.; Wybraniec, S. Betalain-rich red beet concentrate improves reduced knee discomfort and joint function: A double blind, placebo-controlled pilot clinical study. Nutr. Diet. Suppl. 2014, 2014, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Clifford, T.; Allerton, D.M.; Brown, M.A.; Harper, L.; Horsburgh, S.; Keane, K.M.; Stevenson, E.J.; Howatson, G. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl. Physiol. Nutr. Metab. 2017, 42, 263–270. [Google Scholar] [CrossRef]
- Clifford, T.; Bell, O.; West, D.J.; Howatson, G.; Stevenson, E.J. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur. J. Appl. Physiol. 2016, 116, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Berntzen, B.; Davison, G.W.; West, D.J.; Howatson, G.; Stevenson, E.J. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. Beetroot juice is more beneficial than sodium nitrate for attenuating muscle pain after strenuous eccentric-bias exercise. Appl. Physiol. Nutr. Metab. 2017, 42, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Van Hoorebeke, J.S.; Trias, C.O.; Davis, B.A.; Lozada, C.F.; Casazza, G.A. Betalain-Rich Concentrate Supplementation Improves Exercise Performance in Competitive Runners. Sports 2016, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, C.F.; Kwong, D.A.; Minow, Z.A.; Davis, B.A.; Lozada, C.F.; Casazza, G.A. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl. Physiol. Nutr. Metab. 2017, 42, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Saafi, M.A.; Rebai, H. Chronic Beetroot Juice Supplementation Accelerates Recovery Kinetics following Simulated Match Play in Soccer Players. J. Am. Coll. Nutr. 2021, 40, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, L.; Mizera, O.; Gromadzińska, J.; Janasik, B.; Mikołajewska, K.; Mróz, A.; Wąsowicz, W. Changes in Oxidative Stress, Inflammation, and Muscle Damage Markers Following Diet and Beetroot Juice Supplementation in Elite Fencers. Antioxidants 2020, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.D.; Looney, D.P.; Miller, M.J.S.; Dupont, W.H.; Pryor, L.; Creighton, B.C.; Sterczala, A.J.; Szivak, T.K.; Hooper, D.R.; Maresh, C.M.; et al. The Effects of Nitrate-Rich Supplementation on Neuromuscular Efficiency during Heavy Resistance Exercise. J. Am. Coll. Nutr. 2016, 35, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Peng, H.; Wu, X.; Xu, X.; Kuang, T.; Zhang, J.; Du, L.; Fan, G. The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. Oxidative Med. Cell. Longev. 2021, 2021, 6678662. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Meyers, K.J.; Rudolf, J.L.; Mitchell, A.E. Influence of dietary quercetin on glutathione redox status in mice. J. Agric. Food Chem. 2008, 56, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Overman, A.; Chuang, C.C.; McIntosh, M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. Int. J. Obes. 2011, 35, 1165–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAnulty, S.R.; McAnulty, L.S.; Nieman, D.C.; Quindry, J.C.; Hosick, P.A.; Hudson, M.H.; Still, L.; Henson, D.A.; Milne, G.L.; Morrow, J.D.; et al. Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Appl. Physiol. Nutr. Metab. 2008, 33, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; Maxwell, K.R.; Williams, A.S.; McAnulty, S.R.; Jin, F.; Shanely, R.A.; Lines, T.C. Effects of quercetin and EGCG on mitochondrial biogenesis and immunity. Med. Sci. Sports Exerc. 2009, 41, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Konrad, M.; Nieman, D.C.; Henson, D.A.; Kennerly, K.M.; Jin, F.; Wallner-Liebmann, S.J. The acute effect of ingesting a quercetin-based supplement on exercise-induced inflammation and immune changes in runners. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Vitale, J.A.; Belcaro, G.; Hu, S.; Feragalli, B.; Vinciguerra, G.; Cacchio, M.; Bonanni, E.; Giacomelli, L.; Eggenhoffner, R.; et al. Quercetin phytosome(R) in triathlon athletes: A pilot registry study. Minerva Med. 2018, 109, 285–289. [Google Scholar] [CrossRef]
- Askari, G.; Ghiasvand, R.; Karimian, J.; Feizi, A.; Paknahad, Z.; Sharifirad, G.; Hajishafiei, M. Does quercetin and vitamin C improve exercise performance, muscle damage, and body composition in male athletes? J. Res. Med. Sci. 2012, 17, 328–331. [Google Scholar]
- Martin-Rincon, M.; Gelabert-Rebato, M.; Galvan-Alvarez, V.; Gallego-Selles, A.; Martinez-Canton, M.; Lopez-Rios, L.; Wiebe, J.C.; Martin-Rodriguez, S.; Arteaga-Ortiz, R.; Dorado, C.; et al. Supplementation with a Mango Leaf Extract (Zynamite®) in Combination with Quercetin Attenuates Muscle Damage and Pain and Accelerates Recovery after Strenuous Damaging Exercise. Nutrients 2020, 12, 614. [Google Scholar] [CrossRef] [Green Version]
- O’Fallon, K.S.; Kaushik, D.; Michniak-Kohn, B.; Dunne, C.P.; Zambraski, E.J.; Clarkson, P.M. Effects of Quercetin Supplementation on Markers of Muscle Damage and Inflammation after Eccentric Exercise. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Bazzucchi, I.; Patrizio, F.; Ceci, R.; Duranti, G.; Sgrò, P.; Sabatini, S.; Di Luigi, L.; Sacchetti, M.; Felici, F. The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage. Nutrients 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Bazzucchi, I.; Patrizio, F.; Ceci, R.; Duranti, G.; Sabatini, S.; Sgrò, P.; Di Luigi, L.; Sacchetti, M. Quercetin Supplementation Improves Neuromuscular Function Recovery from Muscle Damage. Nutrients 2020, 12, 2850. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; Mcanulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A. Quercetin’s Influence on Exercise Performance and Muscle Mitochondrial Biogenesis. Med. Sci. Sports Exerc. 2010, 42, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.M.; Carlstedt, C.J.; Chen, S.; Carmichael, M.D.; Murphy, E.A. The dietary flavonoid quercetin increases VO2max and endurance capacity. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Moon, Y.J.; Wang, L.; DiCenzo, R.; Morris, M.E. Quercetin pharmacokinetics in humans. Biopharm. Drug Dispos. 2008, 29, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front. Nutr. 2020, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113 (Suppl. 9B), 71S–88S. [Google Scholar] [CrossRef]
- Iciek, M.; Kwiecień, I.; Włodek, L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 2009, 50, 247–265. [Google Scholar] [CrossRef]
- Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Uto, T.; Hou, D.-X.; Morinaga, O.; Shoyama, Y. Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica). Adv. Pharmacol. Sci. 2012, 2012, 614046. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Kume, T.; Muto, C.; Takada-Takatori, Y.; Izumi, Y.; Sugimoto, H.; Akaike, A. Glutathione Biosynthesis via Activation of the Nuclear Factor E2–Related Factor 2 (Nrf2)–Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(Methylsulfinyl) Hexyl Isothiocyanate. J. Pharmacol. Sci. 2011, 115, 320–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.T.; Yeung, S.S.; Allen, D.G.; Qin, L.; Yeung, E.W. Role of the calcium-calpain pathway in cytoskeletal damage after eccentric contractions. J. Appl. Physiol. 2008, 105, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Nabeshima, Y.; Abe, C.; Uto, Y.; Hiramatsu, R. Inhibitor of Muscle Damage or Muscle Fatigue. 11 October 2018. Available online: https://www.freepatentsonline.com/20180289660.pdf (accessed on 24 November 2021).
- Kanzaki, K.; Watanabe, D.; Kuratani, M.; Yamada, T.; Matsunaga, S.; Wada, M. Role of calpain in eccentric contraction-induced proteolysis of Ca(2+)-regulatory proteins and force depression in rat fast-twitch skeletal muscle. J. Appl. Physiol. 2017, 122, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Akazawa, N.; Nishimaki, M.; Shimizu, K.; Fujii, N.; Takahashi, H. Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate Ingestion on Muscle Damage after Eccentric Exercise in Healthy Males: A Pilot Placebo-Controlled Double-Blind Crossover Study. J. Diet. Suppl. 2021, 1–15. [Google Scholar] [CrossRef]
- Suzuki, K. Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition. Nutrients 2021, 13, 4299. [Google Scholar] [CrossRef]
Reference (Year) | Population | Supplementation | Exercise | Outcome | |||||
---|---|---|---|---|---|---|---|---|---|
Dose | Duration | Blood Damage Maker | Functional Performance Marker | DOMS, Pain | Inflammatory Marker | Oxidative Stress Marker | |||
Paralleled Design Studies | |||||||||
Drobnic et al. (2014) [33] | Healthy, moderately active males | 200 mg of curcumin or placebo, twice/day | 4 d (2 d pre- and 2 d post-Ex) | Downhill run | CK: ✕ | VAS: ◯ | IL-8: ◯ | FRAT, CAT, GPx: ✕ | |
CRP, MCP-1: ✕ | |||||||||
Tanabe et al. (2019) [34] | Healthy young males | PRE, POST: 90 mg of curcumin, twice/day | PRE: 7 d pre-Ex | Eccentric Ex (elbow flexors) | CK: ✕ | ROM: ◯ (POST) | VAS: ◯ (POST) | ||
POST: 4 d post-Ex | ROM: ✕ (PRE) | ||||||||
PLA: 90 mg of placebo, twice/day | VAS: ✕ (PRE) | ||||||||
CON: 4 d post-Ex | MVIC: ✕ | ||||||||
Faria et al. (2020) [35] | Healthy normal-weight males | 500 mg of curcumin or placebo, three times/day | 29 d | Half-marathon | Mb: ◯ | IL-10: ◯ | |||
CK, LDH, AST: ✕ | IL-6: ✕ | ||||||||
Crossover Design Studies | |||||||||
Tanabe et al. (2015) [31] | Untrained young males | 150 mg of curcumin or placebo | 1 h pre- and 12 h post-Ex | Eccentric Ex (elbow flexors) | CK: ◯ | MVIC: ◯ | VAS: ✕ | IL-6, TNF-α: ✕ | |
ROM, swelling: ✕ | |||||||||
Nicol et al. (2015) [36] | Physically active males | 2.5 g/day of curcumin or placebo, twice/day | 5 d (2.5 d pre- and 2.5 d post-Ex) | Eccentric Ex (single-leg press) | CK: ◯ | Jump performance: ◯ | VAS: ◯ | IL-6: ◯ TNF-α: ✕ | |
Swelling: ✕ | |||||||||
Delecroix et al. (2017) [30] | Male elite rugby players | 2 g of curcumin + 20 mg of piperine, or placebo, three times/day | 4 d (2 d pre- and 2 d post-Ex) | Single leg jumps on an 8% downhill slope | CK: ✕ | Sprint: ◯ | VAS: ✕ | ||
Tanabe et al. (2019) [37] Experiment 1 | Healthy males | 90 mg of curcumin or placebo, twice/day | 7 d pre-Ex | Eccentric Ex (elbow flexors) | CK: ✕ | MVIC, ROM: ✕ | VAS: ✕ | IL-8: ◯ | d-ROMs, BAP: ✕ |
Swelling: ✕ | TNF-α: ✕ | ||||||||
Tanabe et al. (2019) [37] Experiment 2 | Healthy males | 90 mg of curcumin or placebo, twice/day | 7 d post-Ex | Eccentric Ex (elbow flexors) | CK: ◯ | MVIC, ROM: ◯ | VAS: ◯ | IL-8: ✕ | d-ROMs, BAP: ✕ |
Swelling: ✕ | TNF-α: ✕ |
Reference (Year) | Population | Supplementation | Exercise | Outcome | |||||
---|---|---|---|---|---|---|---|---|---|
Dose | Duration | Blood Damage Maker | Functional Performance Marker | DOMS, Pain | Inflammatory Marker | Oxidative Stress Marker | |||
Paralleled design studies | |||||||||
Howatson et al. (2010) [39] | Recreational marathon runners, males and females | 236 mL TCJ or placebo, twice/day | 8 d (5 d pre-Ex, Ex-d, and 2 d post-Ex) | Marathon | CK, LDH: ✕ | MVIC: ◯ | VAS: ✕ | IL-6, CRP, Uric Acid: ◯ | TAS, TBARS: ◯ |
PC: ✕ | |||||||||
Bell et al. (2016) [48] | Semi-professional male soccer players | 30 mL TCJ or placebo, twice/day | 8 d (4 d pre-Ex, Ex-d, and 3 d post-Ex) | LIST | CK: ✕ | MVIC, CMJ, agility: ◯ | VAS: ◯ | IL-6: ◯ | LOOH: ✕ |
Sprint: ✕ | IL-8, IL-1-β CRP, TNF-α: ✕ | ||||||||
Quinlan et al. (2019) [49] | Team-sport players, males and females | 30 mL TCJ or placebo, twice/day | 8 d (5 d pre- Ex, Ex-d, and 2 d post-Ex). | LIST | CK: ✕ | MVIC, CMJ, sprint: ◯ | VAS: ✕ | CRP: ✕ | |
Lamb et al. (2019) [50] | Non-resistance trained males | TCJ: 30 mL TCJ, twice/day | 9 d (4 d pre-Ex, Ex-d, and 4 d post-Ex) | Eccentric Ex (elbow flexors) | CK: ✕ | MVIC, ROM: ✕ | VAS: ✕ | ||
POM: 250 mL of pomegranate juice, twice/day | |||||||||
PLA: placebo drink, twice/day | |||||||||
Crossover design studies | |||||||||
Connolly et al. (2006) [51] | Male college students | 355 mL TCJ or placebo, twice/day | 8 d (4 d pre-Ex, Ex-d, and 3 d post-Ex) | Eccentric Ex (elbow flexors) | MVIC: ◯ | VAS: ◯ | |||
ROM: ✕ | |||||||||
Bowtell et al. (2011) [52] | Well-trained males | 30 mL TCJ or placebo, twice/day | 10 d (7 d pre-Ex, and 2 d post-Ex) | Single-leg knee extensions at 80% 1RM | CK: ✕ | MVIC: ◯ | PPT: ✕ | CRP: ✕ | Nitrotyrosine, TAS: ✕ |
PC: ◯ | |||||||||
Morehen et al. (2020) [53] | Professional male rugby players | 30 mL TCJ or placebo, twice/day | 8 d (5 d pre-Ex, Ex-d and 2 d post-Ex) | Rugby match | CMJ, drop jump: ✕ | VAS: ✕ | IL-6, IL-8, IL-10: ✕ | ||
Abbott et al. (2020) [54] | Professional male soccer players | 30 mL TCJ or placebo, twice/day | 3 d (pre- and post-Ex and 12 and 36 h post- Ex) | 90-min soccer match | CMJ, reactive strength: ✕ | VAS: ✕ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanabe, Y.; Fujii, N.; Suzuki, K. Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2022, 14, 70. https://doi.org/10.3390/nu14010070
Tanabe Y, Fujii N, Suzuki K. Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients. 2022; 14(1):70. https://doi.org/10.3390/nu14010070
Chicago/Turabian StyleTanabe, Yoko, Naoto Fujii, and Katsuhiko Suzuki. 2022. "Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans" Nutrients 14, no. 1: 70. https://doi.org/10.3390/nu14010070
APA StyleTanabe, Y., Fujii, N., & Suzuki, K. (2022). Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients, 14(1), 70. https://doi.org/10.3390/nu14010070