An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia
Abstract
:1. Maternal Risk Factors of PE
2. Obesity and Systemic Inflammation in Pregnancy
3. Maternal Obesity and Metabolic Abnormalities
4. Mechanistic Insights from Human Pregnancy Studies
5. Mechanistic Insights from Animal Models of PE
6. Insights from Pharmacological and Lifestyle Interventions in Pregnant Women and Rodents
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huda, S.S.; Jordan, F.; Bray, J.; Love, G.; Payne, R.; Sattar, N.; Freeman, D.J. Visceral adipose tissue activated macrophage content and inflammatory adipokine secretion is higher in pre-eclampsia than in healthy pregnancys. Clin. Sci. 2017, 131, 1529–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- Portelli, M.; Baron, B. Clinical presentation of preeclampsia and the diagnostic value of proteins and their methylation products as biomarkers in pregnant women with preeclampsia and their newborns. J. Pregnancy 2018, 2018, 2632637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grill, S.; Rusterholz, C.; Zanetti-Dällenbach, R.; Tercanli, S.; Holzgreve, W.; Hahn, S.; Lapaire, O. Potential markers of preeclampsia–a review. Reprod. Biol. Endocrinol. 2009, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herraiz, I.; Llurba, E.; Verlohren, S.; Galindo, A.; Spanish Group for the Study of Angiogenic Markers in Preeclampsia. Update on the Diagnosis and Prognosis of Preeclampsia with the Aid of the SFlt-1/ PlGF Ratio in Singleton Pregnancies. Fetal Diagn. Ther. 2018, 43, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10 (Suppl. 1), S4–S9. [Google Scholar] [CrossRef]
- Subramanian, S.; Han, C.Y.; Chiba, T.; McMillen, T.S.; Wang, S.A.; Haw, A.; Kirk, E.A.; O’Brien, K.D.; Chait, A. Dietary Cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor–deficient mice. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 685–691. [Google Scholar] [CrossRef]
- Sutton, E.F.; Lob, H.E.; Song, J.; Xia, Y.; Butler, S.; Liu, C.-C.; Redman, L.M.; Sones, J.L. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: A characterization of the BPH/5 mouse in postnatal life. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R485–R491. [Google Scholar] [CrossRef]
- Naruse, K.; Akasaka, J.; Shigemitsu, A.; Tsunemi, T.; Koike, N.; Yoshimoto, C.; Kobayashi, H. Involvement of Visceral Adipose Tissue in Immunological Modulation of Inflammatory Cascade in Preeclampsia. Mediat. Inflamm. 2015, 2015, 325932. [Google Scholar] [CrossRef]
- Denison, F.C.; Roberts, K.A.; Barr, S.M.; Norman, J.E. Obesity, pregnancy, inflammation, and vascular function. Reproduction 2010, 140, 373–385. [Google Scholar] [CrossRef]
- Lash, G.E. Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb. Perspect. Med. 2015, 5, a023010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spradley, F.T.; Palei, A.C.; Granger, J.P. Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules 2015, 5, 3142–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spradley, F.T. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R5–R12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism 2015, 64, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, A.; Toro, A.; Vilariño-García, T.; Maymó, J.; Guadix, P.; Dueñas, J.L.; Fernández-Sánchez, M.; Varone, C.; Sánchez-Margalet, V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med. 2018, 22, 716–727. [Google Scholar] [CrossRef]
- La Cava, A. leptin in inflammation and autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef]
- Trapani, L.; Segatto, M.; Pallottini, V. Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic “power station”. World J. Hepatol. 2012, 4, 184–190. [Google Scholar] [CrossRef]
- Chung, S.; Parks, J.S. Dietary cholesterol effects on adipose tissue inflammation. Curr. Opin. Lipidol. 2016, 27, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Craig, M.; Yarrarapu, S.N.S.; Dimri, M. Biochemistry, Cholesterol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, Inflammation and Innate Immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Cantin, C.; Arenas, G.; San Martin, S.; Leiva, A. Effects of lipoproteins on endothelial cells and macrophages function and its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy. Placenta 2021, 106, 79–87. [Google Scholar] [CrossRef]
- Cantin, C.; Fuenzalida, B.; Leiva, A. Maternal hypercholesterolemia during pregnancy: Potential modulation of cholesterol transport through the human placenta and lipoprotein profile in maternal and neonatal circulation. Placenta 2020, 94, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Manten, G.T.R.; van der Hoek, Y.Y.; Marko Sikkema, J.; Voorbij, H.A.M.; Hameeteman, T.M.; Visser, G.H.A.; Franx, A. The role of lipoprotein (a) in pregnancies complicated by pre-eclampsia. Med. Hypotheses 2005, 64, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Contini, C.; Jansen, M.; König, B.; Markfeld-Erol, F.; Kunze, M.; Zschiedrich, S.; Massing, U.; Merfort, I.; Prömpeler, H.; Pecks, U.; et al. Lipoprotein turnover and possible remnant accumulation in preeclampsia: Insights from the Freiburg Preeclampsia H.E.L.P.-Apheresis Study. Lipids Health Dis. 2018, 17, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal Hyperlipidemia and the Risk of Preeclampsia: A Meta-Analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Pawłowicz, P.; Wilczyński, J.; Stachowiak, G.; Hincz, P. Administration of natural anthocyanins derived from chokeberry retardation of idiopathic and preeclamptic origin. Influence on metabolism of plasma oxidized lipoproteins: The role of autoantibodies to oxidized low density lipoproteins. Ginekol. Pol. 2000, 71, 848–853. [Google Scholar]
- Ziaei, S.; Hantoshzadeh, S.; Rezasoltani, P.; Lamyian, M. The effect of garlic tablet on plasma lipids and platelet aggregation in nulliparous pregnants at high risk of preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 99, 201–206. [Google Scholar] [CrossRef]
- Williams, M.A.; Woelk, G.B.; King, I.B.; Jenkins, L.; Mahomed, K. Plasma Carotenoids, Retinol, Tocopherols, and Lipoproteins in Preeclamptic and Normotensive Pregnant Zimbabwean Women. Am. J. Hypertens. 2003, 16, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.; Meinhardt, G.; Saleh, L.; Kunihs, V.; Gamperl, M.; Kaindl, U.; Ellinger, A.; Burkard, T.R.; Fiala, C.; Pollheimer, J.; et al. Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Rep. 2018, 1, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Reijnders, D.; Olson, K.N.; Liu, C.-C.; Beckers, K.F.; Ghosh, S.; Redman, L.M.; Sones, J.L. Dyslipidemia and the role of adipose tissue in early pregnancy in the bph/5 mouse model for preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R49–R58. [Google Scholar] [CrossRef]
- Crews, J.K.; Herrington, J.N.; Granger, J.P.; Khalil, R.A. Decreased Endothelium-Dependent Vascular Relaxation during Reduction of Uterine Perfusion Pressure in Pregnant Rat. Hypertension 2000, 35 Pt 2, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.C.; Tremble, S.M.; Chan, S.-L.; Moseley, J.; LaMarca, B.; Nagle, K.J.; Cipolla, M.J. Magnesium Sulfate Treatment Reverses Seizure Susceptibility and Decreases Neuroinflammation in a Rat Model of Severe Preeclampsia. PLoS ONE 2014, 9, e113670. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, M.P.H.; Cipolla, M.J. Pregnancy Enhances the Effects of Hypercholesterolemia on Posterior Cerebral Arteries. Reprod. Sci. 2013, 20, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyakova, E.A.; Mikhaylov, E.N.; Galagudza, M.M.; Shlyakhto, E.V. Hyperleptinemia results in systemic inflammation and the exacerbation of ischemia-reperfusion myocardial injury. Heliyon 2021, 7, e08491. [Google Scholar] [CrossRef]
- Sáez, T.; Spaans, F.; Kirschenman, R.; Sawamura, T.; Davidge, S.T. High-Cholesterol Diet during Pregnancy Induces Maternal Vascular Dysfunction in Mice: Potential Role for Oxidized LDL-Induced LOX-1 and AT1 Receptor Activation. Clin. Sci. (Lond.) 2020, 134, 2295–2313. [Google Scholar] [CrossRef]
- Yan, M.; Mehta, J.L.; Hu, C. LOX-1 and Obesity. Cardiovasc. Drugs Ther. 2011, 25, 469–476. [Google Scholar] [CrossRef]
- Zhao, H.; Wong, R.J.; Kalish, F.S.; Nayak, N.R.; Stevenson, D.K. Effect of Heme Oxygenase-1 Deficiency on Placental Development. Placenta 2009, 30, 861–868. [Google Scholar] [CrossRef] [Green Version]
- ACOG Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018, 132, e44–e52. [CrossRef]
- Li, C.; Raikwar, N.S.; Santillan, M.K.; Santillan, D.A.; Thomas, C.P. Aspirin inhibits expression of sflt1 from human cytotrophoblasts induced by hypoxia, via cyclo-oxygenase 1. Placenta 2015, 36, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Short, V.L.; Hoffman, M.; Metgud, M.; Kavi, A.; Goudar, S.S.; Okitawutshu, J.; Tshefu, A.; Bose, C.L.; Mwenechanya, M.; Chomba, E.; et al. Safety of daily low-dose aspirin use during pregnancy in low-income and middle-income countries. AJOG Glob. Rep. 2021, 1, 100003. [Google Scholar] [CrossRef]
- He, G.; Chen, Y.; Chen, M.; He, G.; Liu, X. Efficacy and Safety of Low Dose Aspirin and Magnesium Sulfate in the Treatment of Pregnancy Induced Hypertension: A Protocol for Systematic Review and Meta-Analysis. Medicine 2020, 99, e22801. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Nicolaides, K.H.; Poon, L.C. Prevention of preeclampsia with aspirin. Am. J. Obstet. Gynecol. 2022, 226, S1108–S1119. [Google Scholar] [CrossRef]
- Reijnders, D.; Liu, C.-C.; Xu, X.; Zhao, A.M.; Olson, K.N.; Butler, S.D.; Douglas, N.C.; Sones, J.L. Celecoxib Restores Angiogenic Factor Expression at the Maternal-Fetal Interface in the BPH/5 Mouse Model of Preeclampsia. Physiol. Genom. 2018, 50, 385–392. [Google Scholar] [CrossRef]
- Risser, A.; Donovan, D.; Heintzman, J.; Page, T. NSAID Prescribing Precautions. Am. Fam. Physician 2009, 80, 1371–1378. [Google Scholar] [PubMed]
- Ohtsuki, M.; Chigusa, Y.; Mogami, H.; Ueda, A.; Kawasaki, K.; Yamaguchi, K.; Mandai, M.; Kondoh, E. The Effect of celecoxib for treatment of preterm labor on fetuses during the second trimester of pregnancy: A Pilot Case Series. Taiwan J. Obstet. Gynecol. 2022, 61, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Ma’ayeh, M.; Rood, K.M.; Kniss, D.; Costantine, M.M. Novel Interventions for the Prevention of Preeclampsia. Curr. Hypertens. Rep. 2020, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Costantine, M.M.; Ananth, C.V. The early developments of preeclampsia drugs. Expert Opin. Investig. Drugs 2016, 25, 867–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefkou, E.; Mamopoulos, A.; Fragakis, N.; Dagklis, T.; Vosnakis, C.; Nounopoulos, E.; Rousso, D.; Girardi, G. Clinical Improvement and Successful Pregnancy in a Preeclamptic Patient with Antiphospholipid Syndrome Treated with Pravastatin. Hypertension 2014, 63, e118–e119. [Google Scholar] [CrossRef] [Green Version]
- Karalis, D.G.; Hill, A.N.; Clifton, S.; Wild, R.A. The Risks of Statin Use in Pregnancy: A Systematic Review. J. Clin. Lipidol. 2016, 10, 1081–1090. [Google Scholar] [CrossRef]
- Sekimoto, A.; Tanaka, K.; Hashizume, Y.; Sato, E.; Sato, H.; Ikeda, T.; Takahashi, N. Tadalafil alleviates preeclampsia and fetal growth restriction in RUPP model of preeclampsia in mice. Biochem. Biophys. Res. Commun. 2020, 521, 769–774. [Google Scholar] [CrossRef]
- Tanaka, K.; Tanaka, H.; Maki, S.; Kubo, M.; Nii, M.; Magawa, S.; Hatano, F.; Tsuji, M.; Osato, K.; Kamimoto, Y.; et al. Cardiac function and tadalafil used for treating fetal growth restriction in pregnant women without cardiovascular disease. J. Matern. Fetal Neonatal Med. 2019, 32, 2460–2462. [Google Scholar] [CrossRef]
- Kubo, M.; Tanaka, H.; Maki, S.; Nii, M.; Murabayashi, N.; Osato, K.; Kamimoto, Y.; Umekawa, T.; Kondo, E.; Ikeda, T. Safety and Dose-Finding Trial of Tadalafil Administered for Fetal Growth Restriction: A Phase-1 Clinical Study. J. Obstet. Gynaecol. Res. 2017, 43, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, S.; Pellicer, B.; Serra, V.; Cauli, O.; Cortijo, J.; Felipo, V.; Pellicer, A. Sildenafil citrate improves perinatal outcome in fetuses from pre-eclamptic rats. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1394–1402. [Google Scholar] [CrossRef] [Green Version]
- Dunn, L.; Greer, R.; Flenady, V.; Kumar, S. Sildenafil in Pregnancy: A Systematic Review of Maternal Tolerance and Obstetric and Perinatal Outcomes. Fetal Diagn. Ther. 2017, 41, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yang, C.-R.; Wei, Y.-P.; Ge, Z.-J.; Zhao, Z.-A.; Zhang, B.; Hou, Y.; Schatten, H.; Sun, Q.-Y. Enriched Environment-Induced Maternal Weight Loss Reprograms Metabolic Gene Expression in Mouse Offspring. J. Biol. Chem. 2015, 290, 4604–4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyerlein, A.; Schiessl, B.; Lack, N.; von Kries, R. Associations of gestational weight loss with birth-related outcome: A retrospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 55–61. [Google Scholar] [CrossRef] [PubMed]
Subjects | Gestational Age | Measures | Relationship to PE | Treatments/ Nutrients | Citation |
---|---|---|---|---|---|
six with early onset PE (pilot study, no control) | 24–27 weeks | Cholesterol LDL Apo B | Lipoprotein remnants = endothelial dysfunction | Apheresis (reduced ApoB) | Contini et al., 2018 [24] |
7369–1975 with PE and 5394 healthy (meta-analysis) | first and second trimesters third trimester | Cholesterol LDL TG Cholesterol TG HDL | Elevated in PE Elevated in PE Elevated in PE Elevated in PE Elevated in PE Low in PE | -- | Spracklen et al., 2014 [25] |
105 PW- 50 treatment, 55 placebo 60 healthy controls | second trimester | Oxidized low density lipoproteins (oLAB) | oLABs contribute to intrauterine growth retardation | Chokeberry Anthocyanins (controls oxidative stress) | Pawlowicz et al., 2000 [26] |
100 PW–50 treated, 50 placebo | third trimester | Cholesterol LDL HDL TG | -- | Garlic Tablet (reduces hypertension) | Ziaei et al., 2001 [27] |
173 with PE 186 healthy controls | Post-partum | HDL Triglycerides | Higher levels, decreased risk of PE Higher levels, increased risk of PE | -- | Williams et al., 2003 [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alston, M.C.; Redman, L.M.; Sones, J.L. An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients 2022, 14, 2087. https://doi.org/10.3390/nu14102087
Alston MC, Redman LM, Sones JL. An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients. 2022; 14(10):2087. https://doi.org/10.3390/nu14102087
Chicago/Turabian StyleAlston, Morgan C., Leanne M. Redman, and Jennifer L. Sones. 2022. "An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia" Nutrients 14, no. 10: 2087. https://doi.org/10.3390/nu14102087
APA StyleAlston, M. C., Redman, L. M., & Sones, J. L. (2022). An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients, 14(10), 2087. https://doi.org/10.3390/nu14102087