The Relationship between Fat Mass Percentage and Glucose Metabolism in Children and Adolescents: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Extraction (Selection and Coding)
2.2. Risk of Bias (Quality) Assessment
2.3. Strategy for Data Synthesis
2.4. Analysis of Subgroups or Subsets
2.5. Analysis of Publication Bias
3. Results
3.1. Identification and Selection of Studies
3.2. Study Characteristics
3.3. Relationship between FMP and FPG
3.4. Relationship between FMP and INS
3.5. Relationship between FMP and HOMA-IR
3.6. Publication Bias Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetic Federation. Diabetes Atlas, 10th Edition. 2021. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html (accessed on 22 May 2022).
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Valaiyapathi, B.; Gower, B.; Ashraf, A.P. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr. Diabetes Rev. 2020, 16, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, C.M.; Rudnicka, A.R.; Owen, C.G.; Wells, J.C.; Sattar, N.; Cook, D.G.; Whincup, P.H. Influence of adiposity on insulin resistance and glycemia markers among U.K. Children of South Asian, black African-Caribbean, and white European origin: Child heart and health study in England. Diabetes Care 2013, 36, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- Brufani, C.; Ciampalini, P.; Grossi, A.; Fiori, R.; Fintini, D.; Tozzi, A.; Cappa, M.; Barbetti, F. Glucose tolerance status in 510 children and adolescents attending an obesity clinic in Central Italy. Pediatr. Diabetes 2010, 11, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yu, X.; Li, Y.; Li, G.; Cheng, H.; Xiao, X.; Mi, J.; Gao, S.; Willi, S.; Li, M. Adipose tissue mediates associations of birth weight with glucose metabolism disorders in children. Obesity 2019, 27, 746–755. [Google Scholar] [CrossRef]
- Alissa, E.M.; Sutaih, R.H.; Kamfar, H.Z.; Alagha, A.E.; Marzouki, Z.M. Relationship between pediatric adiposity and cardiovascular risk factors in Saudi children and adolescents. Arch. Pediatr. 2020, 27, 135–139. [Google Scholar] [CrossRef]
- Al Amiri, E.; Abdullatif, M.; Abdulle, A.; Al Bitar, N.; Afandi, E.Z.; Parish, M.; Darwiche, G. The prevalence, risk factors, and screening measure for prediabetes and diabetes among Emirati overweight/obese children and adolescents. BMC Public Health 2015, 15, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.B.; Cheng, H.; Hou, D.Q.; Gao, A.Y.; Zhu, Z.X.; Yu, Z.C.; Wang, H.J.; Zhao, X.Y.; Xiao, P.; Huang, G.M.; et al. Value of body fat mass measured by bioelectrical impedance analysis in predicting abnormal blood pressure and abnormal glucose metabolism in children. Chin. J. Contemp. Pediatrics 2020, 22, 17–23. [Google Scholar]
- Calcaterra, V.; Verduci, E.; De Silvestri, A.; Magenes, V.C.; Siccardo, F.; Schneider, L.; Vizzuso, S.; Bosetti, A.; Zuccotti, G. Predictive ability of the estimate of fat mass to detect early-onset metabolic syndrome in prepubertal children with obesity. Children 2021, 8, 966. [Google Scholar] [CrossRef]
- Krekoukia, M.; Nassis, G.P.; Psarra, G.; Skenderi, K.; Chrousos, G.P.; Sidossis, L.S. Elevated total and central adiposity and low physical activity are associated with insulin resistance in children. Metabolism 2007, 56, 206–213. [Google Scholar] [CrossRef]
- Kindler, J.M.; Lobene, A.J.; A Vogel, K.; Martin, B.R.; McCabe, L.D.; Peacock, M.; Warden, S.J.; McCabe, G.P.; Weaver, C.M. Adiposity, insulin resistance, and bone mass in children and adolescents. J. Clin. Endocrinol. Metab. 2019, 104, 892–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagi, V.M.; Chiarelli, F. Obesity and insulin resistance in children. Curr. Opin. Pediatr. 2020, 32, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhao, X.; He, H.; Mao, X.; Sheng, J.; Zou, J.; Tang, Q.; Cai, W. The effect of different adiposity factors on insulin resistance in obese children and adolescents. Clin. Endocrinol. 2021, 94, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Cerjak, D.; Kent, J.W.; James, R.; Blangero, J.; Zhang, Y. Obesity, central adiposity and cardiometabolic risk factors in children and adolescents: A family-based study. Pediatr. Obes. 2014, 9, e58–e62. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Parrett, A.L.; Valentine, R.J.; Arngrímsson, S.A.; Castelli, D.M.; Evans, E.M. Adiposity and aerobic fitness are associated with metabolic disease risk in children. Appl. Physiol. Nutr. Metab. 2011, 36, 72–79. [Google Scholar] [CrossRef]
- Zheng, X.F.; Tang, Q.Y.; Tao, Y.X.; Lu, W.; Cai, W. Clinical value of methods for analyzing the abdominal fat levels of obese children and adolescents. Obes. Metab. 2010, 6, 105–110. [Google Scholar]
- Aucouturier, J.; Meyer, M.; Thivel, D.; Taillardat, M.; Duché, P. Effect of android to gynoid fat ratio on insulin resistance in obese youth. Arch. Pediatr. Adolesc. Med. 2009, 163, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Zeelie, A.; Moss, S.J.; Kruger, H.S. The relationship between body composition and selected metabolic syndrome markers in black adolescents in South Africa: The PLAY study. Nutrition 2010, 26, 1059–1064. [Google Scholar] [CrossRef]
- Hetherington-Rauth, M.; Bea, J.W.; Lee, V.R.; Blew, R.M.; Funk, J.L.; Lohman, T.G.; Going, S.B. Relationship between fat distribution and cardiometabolic risk in Hispanic girls. Am. J. Hum. Biol. 2018, 30, e23149. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Hua, S.; Perreira, K.M.; Cai, J.; van Horn, L.; Schneiderman, N.; Thyagarajan, B.; Delamater, A.M.; Kaplan, R.C.; Isasi, C.R. Sex differences in associations of adiposity measures and insulin resistance in US Hispanic/Latino Youth: The Hispanic Community Children’s Health Study/Study of Latino Youth (SOL Youth). J. Clin. Endocrinol. Metab. 2017, 102, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Redondo, O.; Villamor, E.; Valdés, J.; Bilal, U.; Caballero, B.; Roche, D.; Kroker, F.; Ramírez-Zea, M.; Franco, M. Validation of a BMI cut-off point to predict an adverse cardiometabolic profile with adiposity measurements by dual-energy X-ray absorptiometry in Guatemalan children. Public Health Nutr. 2015, 18, 951–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, P.R.; Leite, N.; Lopes, W.A.; Da Silva, L.R.; Consentino, C.M.; Araújo, C.T.; Moraes, F.B., Jr.; De Jesus, I.C.; Cavaglieri, C.R.; Radominski, R.B. Association between adiposity indicators, metabolic parameters and inflammatory markers in a sample of female adolescents. Arch. Endocrinol. Metab. 2015, 59, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Faria, F.R.; Faria, E.R.; Cecon, R.S.; Júnior, D.A.B.; Franceschini, S.D.C.C.; Peluzio, M.D.C.G.; Ribeiro, A.Q.; Lira, P.I.C.; Cecon, P.R.; Priore, S.E. Body fat equations and electrical bioimpedance values in prediction of cardiovascular risk factors in eutrophic and overweight adolescents. Int. J. Endocrinol. 2013, 2013, 501638. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Yan, Y.; Mi, J.; on behalf of the China Child and Adolescent Cardiovascular Health (CCACH) Study Group. Abnormal metabolic phenotypes among urban Chinese children: Epidemiology and the impact of DXA-measured body composition. Obesity 2019, 27, 837–844. [Google Scholar] [CrossRef]
- Steinberger, J.; Jacobs, D.R.; Raatz, S.; Moran, A.; Hong, C.P.; Sinaiko, A.R. Comparison of body fatness measurements by BMI and skinfolds vs dual energy X-ray absorptiometry and their relation to cardiovascular risk factors in adolescents. Int. J. Obes. 2005, 29, 1346–1352. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, F.; Christoffel, K.K.; Brickman, W.J.; Zimmerman, N.; Wang, B.; Xing, H.; Zhang, S.; Arguelles, L.M.; Wang, G.; Liu, R.; et al. Adiposity is inversely related to insulin sensitivity in relatively lean Chinese adolescents: A population-based twin study. Am. J. Clin. Nutr. 2010, 91, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.C.; Mohamed, M.N.; Jalaludin, M.Y.; Rampal, S.; Zaharan, N.L.; Mohamed, Z. Determinants of high fasting insulin and insulin resistance among overweight/obese adolescents. Sci. Rep. 2016, 6, 36270. [Google Scholar] [CrossRef] [Green Version]
- González-Álvarez, C.; Ramos-Ibáñez, N.; Azprioz-Leehan, J.; Ortiz-Hernández, L. Intra-abdominal and subcutaneous abdominal fat as predictors of cardiometabolic risk in a sample of Mexican children. Eur. J. Clin. Nutr. 2017, 71, 1068–1073. [Google Scholar] [CrossRef]
- Roemmich, J.N.; Clark, P.A.; Lusk, M.; Friel, A.; Weltman, A.; Epstein, L.H.; Rogol, A.D. Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: Relation to adiposity, body fat distribution and hormone release. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobato, A.O.; Vasques, A.C.; Zambon, M.P.; Barros Filho Ade, A.; Hessel, G. Metabolic syndrome and insulin resistance in obese adolescents. Rev. Paul. Pediatr. 2014, 32, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Cortes, L.; Villasis-Keever, M.A.; Del Prado-Manriquez, M.; Lopez-Alarcon, M. Adiposity and insulin resistance in children from a rural community in Mexico. Arch. Med. Res. 2015, 46, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; Cintra Ide, P.; Fisberg, M.; Martini, L.A. Body trunk fat and insulin resistance in post-pubertal obese adolescents. Sao Paulo Med. J. 2008, 126, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Gastaldelli, A.; Agosti, F.; De Col, A.; Marazzi, N.; Mazzilli, G.; Saezza, A.; Sartorio, A. Impact of percent body fat on oral glucose tolerance testing: A cross-sectional study in 1512 obese children. J. Endocrinol. Invest. 2012, 35, 893–896. [Google Scholar]
- Smith, A.G.; Muscat, G.E. Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. Int. J. Biochem. Cell Biol. 2005, 37, 2047–2063. [Google Scholar] [CrossRef]
- Khwanchuea, R.; Punsawad, C. Sex differences in the relationship between body composition and biomarkers of bone and fat metabolism in obese boys and girls. Bone Rep. 2021, 14, 101087. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32, S157–S163. [Google Scholar] [CrossRef] [Green Version]
- Maltais, A.; Alméras, N.; Lemieux, I.; Tremblay, A.; Bergeron, J.; Poirier, P.; Després, J.P. Trunk muscle quality assessed by computed tomography: Association with adiposity indices and glucose tolerance in men. Metabolism 2018, 85, 205–212. [Google Scholar] [CrossRef]
- Granados, A.; Gebremariam, A.; Gidding, S.; Terry, J.G.; Carr, J.J.; Steffen, L.M.; Jacobs, D.R.; Lee, J.M. Association of abdominal muscle composition with prediabetes and diabetes: The CARDIA study. Diabetes Obes. Metab. 2019, 21, 267–275. [Google Scholar] [CrossRef]
- Srikanthan, P.; Karlamangla, A.S. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borschmann, K.N.; Ekinci, E.I.; Iuliano, S.; Churilov, L.; Pang, M.Y.; Bernhardt, J. Reducing sedentary time and fat mass may improve glucose tolerance and insulin sensitivity in adults surviving 6 months after stroke: A phase I pilot study. Eur. Stroke J. 2017, 2, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Lin, C.; Wang, S.; Zheng, Y.; Gao, X. Genetically predicted body composition in relation to cardiometabolic traits: A Mendelian randomization study. Eur. J. Epidemiol. 2021, 36, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kwon, K.Y.; Kim, J.H.; Choi, H.H.; Han, K.H.; Han, J.H. Association between appendicular fat mass and metabolic risk factors. Korean J. Fam. Med. 2014, 35, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.J.; Lagerpusch, M.; Enderle, J.; Schautz, B.; Heller, M.; Bosy-Westphal, A. Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes. Rev. 2012, 13 (Suppl. S2), 6–13. [Google Scholar] [CrossRef]
- Yajnik, C.S.; Yudkin, J.S. The Y-Y paradox. Lancet 2004, 363, 163. [Google Scholar] [CrossRef]
- Wells, J.C.K. Toward body composition reference data for infants, children, and adolescents. Adv. Nutr. 2014, 5, 320S–329S. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.; Jumean, M.; Murad, M.H.; Okorodudu, D.; Kumar, S.; Somers, V.K.; Sochor, O.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: A systematic review and meta-analysis. Pediatr. Obes. 2015, 10, 234–244. [Google Scholar] [CrossRef]
- Xu, Y.; Cao, W.; Shen, Y.; Tang, J.; Wang, Y.; Ma, X.; Bao, Y. The relationship between sex hormones and glycated hemoglobin in a non-diabetic middle-aged and elderly population. BMC Endocr. Disord. 2022, 22, 91. [Google Scholar] [CrossRef]
- Kim, C.; Kong, S.; Krauss, R.M.; Stanczyk, F.Z.; Reddy, S.T.; Needham, B.; Kanaya, A.M. Endogenous sex steroid hormones, lipid subfractions, and ectopic adiposity in Asian Indians. Metab. Syndr. Relat. Disord. 2015, 13, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.W.; Tse, M.A.; Lam, T.H.; Leung, G.M.; Schooling, C.M. Adolescent testosterone, muscle mass and glucose metabolism: Evidence from the ‘Children of 1997’ birth cohort in Hong Kong. Diabet. Med. 2015, 32, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Gascón, F.; Valle, M.; Martos, R.; Ruz, F.J.; Ríos, R.; Montilla, P.; Canete, R. Sex hormone-binding globulin as a marker for hyperinsulinemia and/or insulin resistance in obese children. Eur. J. Endocrinol. 2000, 143, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, L.; Garcia-Anguita, A.; Riestra, P.; Ortega, H.; Soriano-Guillén, L.; Lasunción, M.A.; de Oya, M.; Garces, C. Plasma non-esterified fatty acid levels in children and their relationship with sex steroids. Steroids 2014, 88, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peng, X.; Wang, Y.; Cao, R.; Zhang, Z.; Fu, L. What is the relationship between body mass index, sex hormones, leptin, and Irisin in children and adolescents? A path analysis. Front. Pediatr. 2022, 10, 823424. [Google Scholar] [CrossRef]
- Agirbasli, M.; Agaoglu, N.B.; Orak, N.; Caglioz, H.; Ocek, T.; Karabag, T.; Baykan, O.A. Sex hormones, insulin resistance and high-density lipoprotein cholesterol levels in children. Horm. Res. Paediatr. 2010, 73, 166–174. [Google Scholar] [CrossRef]
- Robinson, G.A.; Peng, J.; Peckham, H.; Radziszewska, A.; Butler, G.; Pineda-Torra, I.; Jury, E.C.; Ciurtin, C. Sex hormones drive changes in lipoprotein metabolism. iScience 2021, 24, 103257. [Google Scholar] [CrossRef]
- Garcés, C.; de Oya, I.; Lasunción, M.A.; López-Simón, L.; Cano, B.; de Oya, M. Sex hormone-binding globulin and lipid profile in pubertal children. Metabolism 2010, 59, 166–171. [Google Scholar] [CrossRef]
- Nokoff, N.; Thurston, J.; Hilkin, A.; Pyle, L.; Zeitler, P.S.; Nadeau, K.J.; Santoro, N.; Kelsey, M.M. Sex differences in effects of obesity on reproductive hormones and glucose metabolism in early puberty. J. Clin. Endocrinol. Metab. 2019, 104, 4390–4397. [Google Scholar] [CrossRef]
- Birkebæk, N.H.; Lange, A.; Holland-Fischer, P.; Kristensen, K.; Rittig, S.; Vilstrup, H.; Handberg, A.; Gronbaek, H. Effect of weight reduction on insulin sensitivity, sex hormone-binding globulin, sex hormones and gonadotrophins in obese children. Eur. J. Endocrinol. 2010, 163, 895–900. [Google Scholar] [CrossRef] [Green Version]
Study ID | Reference ID | Study | Study Year | Study Location (s) | Study Design | Sample Size (Total, M/F) | Age (Years) | Body Composition Assessment | Which Bio-Marker Related with FMP Were Reported | Indices of Correlation * |
---|---|---|---|---|---|---|---|---|---|---|
1 | [18] | Parrett AL, et al. 2011 | not clear | USA | cross sectional study | 46, 24/22 | 7–12 | DXA | FPG, INS, HOMA-IR | r |
2 | [19] | Zheng XF, et al.2010 | 2007–2009 | not clear | cross-sectional study | 103, 70/33 | 7–18 | BIA | FPG, INS, HOMA-IR | r, β |
3 | [20] | Aucouturier J, et al. 2009 | 2005–2007 | France | cross-sectional study | 66, 35/31 | children and adolescents | DXA | FPG, INS, HOMA-IR | r |
4 | [21] | Zeelie A, et al. 2010 | 2003 | a low socio-economic area in the North-WestProvince of South Africa | cross-sectional study | 232, 99/133 | 15–19 | ADP | FPG, INS, HOMA-IR | r |
5 | [22] | Hetherington-Rauth M, et al. 2018 | not clear | Tucson, Arizona, USA. Hispanic | cross-sectional study | 239, F | 9–12 | DXA | FPG, INS, HOMA-IR | r |
6 | [23] | Qi Q, et al. 2017 | 2011 | USA | cross-sectional study | 1223, 602/621 | 8–16 | BIA | FPG, INS, HOMA-IR | r |
7 | [24] | Redondo O, et al. 2015 | not clear | Guatemala | cross-sectional study | 93, 46/47 | 7–12 | DXA | FPG, INS, HOMA-IR | r |
8 | [25] | Coutinho PR, et al. 2015 | 2013 | Curitiba Paraná, Brazil | cross-sectional study | 53, F | 13–17 | DXA | FPG, INS, HOMA-IR | β |
9 | [26] | Faria FR, et al. 2013 | 2010 | Vicosa, Minas Gerais, Brazil | cross-sectional study | 210, 100/110 | 15–18 | BIA | FPG, INS, HOMA-IR | β |
10 | [4] | Nightingale CM, et al. 2013 | August 2004–February 2007 | England | cross-sectional study | 4633, 2237/2396 | 9–10 | BIA | FPG, HOMA-IR, HbA1c | β |
11 | [27] | Chen F, et al. 2019 | 2013–2015 | Beijing, China | cross sectional study | 7926, 4036/3890 | 6–17 | DXA | FPG | OR § |
12 | [28] | Steinberger J, et al. 2005 | not clear | Minnesota, USA | cross-sectional study | 130, 72/58 | 11–17 | DXA | INS | r |
13 | [29] | Ouyang F, et al. 2010 | 1998–2000 | Anqingregion, Anhui Province, China | cohort study; use the follow up data | 1613, 888/725 # | 13–20 | DXA | INS | β |
14 | [30] | Ling JC, et al. 2016 | 2012 | Kuala Lumpur, Malaysia | cross-sectional study | 173, 53/120 | 12.9 ± 0.4 | BIA | INS, HOMA-IR | r |
15 | [31] | González-Álvarez C, et al. 2017 | not clear | Mexican | cross-sectional study | 94, 44/50 | 5–11 | DXA | INS, HOMA-IR | r |
16 | [32] | Roemmich JN, et al. 2002 | not clear | USA | cross-sectional study | 61, 30/31 | prepuberty to late puberty | the four-compartment (4C) model of body composition | INS, HOMA-IR | r |
17 | [33] | Gobato AO, et al. 2014 | 2008–2009 | Brazil | cross-sectional study | 79, 40/39 | 10–18 | DXA | HOMA-IR | r |
18 | [34] | Barbosa-Cortes L, et al. 2015 | not clear | San Mateo Capulhuac, Mexico City | cohort study; use the follow up data | 41, 15/26 | <12 | the isotopic dilutionmethod | HOMA-IR | β |
19 | [35] | Santos LC, et al. 2008 | 2004 | São Paulo, Brazil | cross-sectional study | 49, 12/37 | 16.6 ± 1.4 | DXA | HOMA-IR | β |
20 | [36] | Bedogni G, et al. 2012 | 2004–2009 | Piancavallo, Verbania, Italy | cross-sectional study | 1512, 628/884 | 6–18 | BIA | HOMA-IR | β |
Study ID | Reference ID | Inclusion Research | AHRQ 11-Item Checklist | Total Score | Total Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D # | E | F | G | H | I | J | K | |||||
1 | [18] | Parrett AL, et al. 2011 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | moderate quality |
2 | [19] | Zheng XF, et al. 2010 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | moderate quality |
3 | [20] | Aucouturier J, et al. 2009 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | low quality |
4 | [21] | Zeelie A, et al. 2010 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | moderate quality |
5 | [22] | Hetherington-Rauth M, et al. 2018 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 7 | moderate quality |
6 | [23] | Qi Q, et al. 2017 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 7 | moderate quality |
7 | [24] | Redondo O, et al. 2015 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | moderate quality |
8 | [25] | Coutinho PR, et al. 2015 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 | high quality |
9 | [26] | Faria FR, et al. 2013 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 6 | moderate quality |
10 | [4] | Nightingale CM, et al. 2013 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 7 | moderate quality |
11 | [27] | Chen F, et al. 2019 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 8 | high quality |
12 | [28] | Steinberger J, et al. 2005 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | moderate quality |
13 | [29] | Ouyang F, et al. 2010 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 10 | high quality |
14 | [30] | Ling JC, et al. 2016 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | moderate quality |
15 | [31] | González-Álvarez C, et al. 2017 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | moderate quality |
16 | [32] | Roemmich JN, et al. 2002 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | moderate quality |
17 | [33] | Gobato AO, et al. 2014 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 | moderate quality |
18 | [34] | Barbosa-Cortes L, et al. 2015 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 6 | moderate quality |
19 | [35] | Santos LC, et al. 2008 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 6 | moderate quality |
20 | [36] | Bedogni G, et al. 2012 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 6 | moderate quality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Liu, J.; Hou, D.; Li, T.; Chen, Y.; Liao, Z.; Wu, L. The Relationship between Fat Mass Percentage and Glucose Metabolism in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2272. https://doi.org/10.3390/nu14112272
Chen F, Liu J, Hou D, Li T, Chen Y, Liao Z, Wu L. The Relationship between Fat Mass Percentage and Glucose Metabolism in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(11):2272. https://doi.org/10.3390/nu14112272
Chicago/Turabian StyleChen, Fangfang, Junting Liu, Dongqing Hou, Tao Li, Yiren Chen, Zijun Liao, and Lijun Wu. 2022. "The Relationship between Fat Mass Percentage and Glucose Metabolism in Children and Adolescents: A Systematic Review and Meta-Analysis" Nutrients 14, no. 11: 2272. https://doi.org/10.3390/nu14112272
APA StyleChen, F., Liu, J., Hou, D., Li, T., Chen, Y., Liao, Z., & Wu, L. (2022). The Relationship between Fat Mass Percentage and Glucose Metabolism in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients, 14(11), 2272. https://doi.org/10.3390/nu14112272