Vitamin D, the Vitamin D Receptor, Calcitriol Analogues and Their Link with Ocular Diseases
Abstract
:1. Introduction
2. Vitamin D—Sources, Metabolism and VDR
3. Calcitriol Analogues
4. Vitamin D, VDR and Calcitriol Analogues in Ocular Diseases
4.1. Age-Related Macular Degeneration (AMD)
4.2. Diabetic Retinopathy (DR)
4.3. Optic Neuritis (ON)
4.4. Retinal Vein Occlusion (RVO)
4.5. Myopia
4.6. Retinoblastoma
4.7. Uveal Melanoma (UM)
4.8. Non-Infectious Uveitis
4.9. Vogt-Koyanagi-Harada Disease (VKHD)
4.10. Glaucoma
4.11. Cataract
4.12. Scleritis
4.13. Dry Eye Syndrome (DES)
4.14. Vernal Keratoconjunctivitis (VKC)
4.15. Keratoconus
4.16. Pterygium
4.17. Thyroid Eye Disease (TED)
4.18. Benign Essential Blepharospasm (BEB)
5. Potential Mechanisms of the Vitamin D Action against Ocular Diseases
6. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bourne, R.R.A.; Flaxman, S.R.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.; Leasher, J.; Limburg, H.; et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e888–e897. [Google Scholar] [CrossRef] [Green Version]
- Köberlein, J.; Beifus, K.; Schaffert, C.; Finger, R.P. The economic burden of visual impairment and blindness: A systematic review. BMJ Open 2013, 3, e003471. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, B.; Hong, T.; Gilles, M.C.; Chang, A. Anti-VEGF therapy for diabetic eye diseases. Asia-Pacific J. Ophthalmol. 2017, 6, 535–545. [Google Scholar] [CrossRef]
- Moore, N.A.; Bracha, P.; Hussain, R.M.; Morral, N.; Ciulla, T.A. Gene therapy for age-related macular degeneration. Expert Opin. Biol. Ther. 2017, 17, 1235–1244. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, T.; Li, W.; Sun, X. Inhibiting effects of dietary polyphenols on chronic eye diseases. J. Funct. Foods 2017, 39, 186–197. [Google Scholar] [CrossRef]
- Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef]
- Ikonne, E.U.; Ikpeazu, V.O.; Ugbogu, E.A. The potential health benefits of dietary natural plant products in age related eye diseases. Heliyon 2020, 6, e04408. [Google Scholar] [CrossRef]
- Plum, L.A.; Deluca, H.F. Vitamin D, disease and therapeutic opportunities. Nat. Rev. Drug Discov. 2010, 9, 941–955. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef]
- Bizzaro, G.; Antico, A.; Fortunato, A.; Bizzaro, N. Vitamin D and autoimmune diseases: Is vitamin D receptor (VDR) polymorphism the culprit? Isr. Med. Assoc. J. 2017, 19, 438–443. [Google Scholar] [PubMed]
- Reins, R.Y.; McDermott, A.M. Vitamin D: Implications for ocular disease and therapeutic potential. Exp. Eye Res. 2015, 134, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Alsalem, J.A.; Patel, D.; Susarla, R.; Coca-Prados, M.; Bland, R.; Walker, E.A.; Rauz, S.; Wallace, G.R. Characterization of vitamin D production by human ocular barrier cells. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2140–2147. [Google Scholar] [CrossRef] [Green Version]
- Rullo, J.; Pennimpede, T.; Mehraban Far, P.; Strube, Y.N.; Irrcher, I.; Urton, T.; Bona, M.; Gonder, T.; Campbell, R.J.; ten Hove, M.; et al. Intraocular calcidiol: Uncovering a role for vitamin D in the eye. J. Steroid Biochem. Mol. Biol. 2020, 197, 105536. [Google Scholar] [CrossRef]
- Romagnoli, E.; Mascia, M.L.; Cipriani, C.; Fassino, V.; Mazzei, F.; D’Erasmo, E.; Carnevale, V.; Scillitani, A.; Minisola, S. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J. Clin. Endocrinol. Metab. 2008, 93, 3015–3020. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D. Nonclassic actions of vitamin D. J. Clin. Endocrinol. Metab. 2009, 94, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Haussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.C.; Jurutka, P.W. Molecular mechanisms of vitamin D action. Calcif. Tissue Int. 2013, 92, 77–98. [Google Scholar] [CrossRef]
- Yin, Z.; Pintea, V.; Lin, Y.; Hammock, B.D.; Watsky, M.A. Vitamin D enhances corneal epithelial barrier function. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7359–7364. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.J.; Kang, E.S.; Ji, M.J.; Choi, H.J.; Oh, T.; Koong, S.S.; Jeon, H.J. Association between Bsm1 polymorphism in vitamin D receptor gene and diabetic retinopathy of type 2 diabetes in Korean population. Endocrinol. Metab. 2015, 30, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallak, J.A.; Tibrewal, S.; Mohindra, N.; Gao, X.; Jain, S. Single nucleotide polymorphisms in the BDNF, VDR, and DNASE 1 genes in dry eye disease patients: A case-control study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5990–5996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obiol, D.J.; Martínez, A.; Ferronato, M.J.; Quevedo, M.A.; Grioli, S.M.; Alonso, E.N.; Gómez, G.; Fall, Y.; Facchinetti, M.M.; Curino, A.C. Novel calcitriol analogue with an oxolane group: In vitro, in vivo, and in silico studies. Arch. Pharm. 2019, 352, e1800315. [Google Scholar] [CrossRef] [PubMed]
- Cardús, A.; Panizo, S.; Parisi, E.; Fernandez, E.; Valdivielso, J.M. Differential effects of vitamin D analogs on vascular calcification. J. Bone Miner. Res. 2007, 22, 860–866. [Google Scholar] [CrossRef]
- Kutuzova, G.D.; Gabelt, B.T.; Kiland, J.A.; Hennes-Beann, E.A.; Kaufman, P.L.; Deluca, H.F. 1α,25-Dihydroxyvitamin D 3 and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D 3 (2MD), suppress intraocular pressure in non-human primates. Arch. Biochem. Biophys. 2012, 518, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Merrigan, S.L.; Park, B.; Ali, Z.; Jensen, L.D.; Corson, T.W.; Kennedy, B.N. Calcitriol and non-calcemic Vitamin D analogue, 22-oxacalcitriol, attenuate developmental and pathological choroidal vasculature angiogenesis ex vivo and in vivo. Oncotarget 2020, 11, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Al-Zamil, W.M.; Yassin, S.A. Recent developments in age-related macular degeneration: A review. Clin. Interv. Aging 2017, 12, 1313–1330. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Pawlowska, E.; Szczepanska, J.; Jablkowska, A.; Blasiak, J. Can vitamin D protect against age-related macular degeneration or slow its progression? Acta Biochim. Pol. 2019, 66, 147–158. [Google Scholar] [CrossRef]
- Uro, M.; Beauchet, O.; Cherif, M.; Graffe, A.; Milea, D.; Annweiler, C. Age-related Vitamin D deficiency is associated with reduced macular ganglion cell complex: A cross-sectional high-definition optical coherence tomography study. PLoS ONE 2015, 10, e0130879. [Google Scholar] [CrossRef] [Green Version]
- Millen, A.E.; Meyers, K.J.; Liu, Z.; Engelman, C.D.; Wallace, R.B.; LeBlanc, E.S.; Tinker, L.F.; Iyengar, S.K.; Robinson, J.G.; Sarto, G.E.; et al. Association between vitamin D status and age-related macular degeneration by genetic risk. JAMA Ophthalmol. 2015, 133, 1171–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, A.; Inoue, M.; Nguyen, E.; Obata, R.; Kadonosono, K.; Shinkai, S.; Hashimoto, H.; Sasaki, S.; Yanagi, Y. Dietary n-3 Fatty Acid, α-Tocopherol, Zinc, Vitamin D, Vitamin C, and β-carotene are Associated with Age-Related Macular Degeneration in Japan. Sci. Rep. 2016, 6, 20723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.L.; Park, S.P. Association between serum vitamin D deficiency and age-related macular degeneration in Koreans: Clinical case-control pilot study. Medicine 2018, 97, e11908. [Google Scholar] [CrossRef] [PubMed]
- Kan, E.; Kan, E.K.; Yücel, Ö.E. The possible link between vitamin D levels and exudative age-related macular degeneration. Oman Med. J. 2020, 35, e83. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.C.; Han, K.; Jee, D. Inverse relationship between high blood 25-hydroxyvitamin D and late stage of age-related macular degeneration in a representative Korean population. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4823–4831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millen, A.E.; Nie, J.; Mares, J.A.; Lutsey, P.L.; Lamonte, M.J.; Meuer, S.M.; Sahli, M.W.; Andrews, C.A.; Klein, B.E.K.; Klein, R. Serum 25-hydroxyvitamin D concentrations and incidence of age-related macular degeneration: The atherosclerosis risk in communities study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1362–1371. [Google Scholar] [CrossRef] [Green Version]
- Golan, S.; Shalev, V.; Treister, G.; Chodick, G.; Loewenstein, A. Reconsidering the connection between vitamin D levels and age-related macular degeneration. Eye 2011, 25, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Cougnard-Grégoire, A.; Merle, B.M.J.; Korobelnik, J.F.; Rougier, M.B.; Delyfer, M.N.; Féart, C.; Le Goff, M.; Dartigues, J.F.; Barberger-Gateau, P.; Delcourt, C. Vitamin D deficiency in community-dwelling elderly is not associated with age-related macular degeneration. J. Nutr. 2015, 145, 1865–1872. [Google Scholar] [CrossRef]
- Wu, W.; Weng, Y.; Guo, X.; Feng, L.; Xia, H.; Jiang, Z.; Lou, J. The association between serum vitamin D levels and agerelated macular degeneration: A systematic meta-analytic review. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2168–2177. [Google Scholar] [CrossRef] [Green Version]
- McKay, G.J.; Young, I.S.; McGinty, A.; Bentham, G.C.G.; Chakravarthy, U.; Rahu, M.; Seland, J.; Soubrane, G.; Tomazzoli, L.; Topouzis, F.; et al. Associations between Serum Vitamin D and Genetic Variants in Vitamin D Pathways and Age-Related Macular Degeneration in the European Eye Study. Ophthalmology 2017, 124, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Millen, A.E.; Nie, J.; Sahli, M.W.; Mares, J.A.; Meyers, K.J.; Klein, B.E.K.; Lamonte, M.J.; Lutsey, P.L.; Andrews, C.A.; Klein, R. Vitamin D status and prevalent early age-related macular degeneration in African Americans and Caucasians: The Atherosclerosis Risk in Communities (ARIC) Study. J. Nutr. Health Aging 2017, 21, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, R.; Bandarian, M.; Abedi-Taleb, E.; Khojasteh, H.; Khedmat, L.; Asadollahi, E.; Beytollahi, M.; Jelodar, A.M. The association between blood vitamins D and e with age-related macular degeneration: A pilot study. Interv. Med. Appl. Sci. 2018, 10, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Silva, N.; Furtado, M.J.; Carneiro, Â.; Lume, M.; Andrade, J.P. Serum vitamin D and age-related macular degeneration: Systematic review and meta-analysis. Surv. Ophthalmol. 2021, 66, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Christen, W.G.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Chasman, D.I.; Lee, I.M.; Bubes, V.; Li, C.; Haubourg, M.; Schaumberg, D.A. Effect of Vitamin D and ω-3 Fatty Acid Supplementation on Risk of Age-Related Macular Degeneration: An Ancillary Study of the VITAL Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 1280–1289. [Google Scholar] [CrossRef]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Lechner, J.; O’Leary, O.E.; Stitt, A.W. The pathology associated with diabetic retinopathy. Vision Res. 2017, 139, 7–14. [Google Scholar] [CrossRef]
- Afarid, M.; Ghattavi, N.; Johari, M. Serum Levels of Vitamin D in Diabetic Patients with and without Retinopathy. J. Ophthalmic Vis. Res. 2020, 15, 172–177. [Google Scholar] [CrossRef]
- Patrick, P.A.; Visintainer, P.F.; Shi, Q.; Weiss, I.A.; Brand, D.A. Vitamin D and retinopathy in adults with diabetes mellitus. Arch. Ophthalmol. 2012, 130, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Jee, D.; Do Han, K.; Kim, E.C. Inverse association between high blood 25-hydroxyvitamin D levels and diabetic retinopathy in a representative Korean population. PLoS ONE 2014, 9, e115199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Upala, S.; Sanguankeo, A. Relationship between vitamin D deficiency and diabetic retinopathy: A meta-analysis. Can. J. Ophthalmol. 2017, 52, S39–S44. [Google Scholar] [CrossRef] [Green Version]
- Ashinne, B.; Rajalakshmi, R.; Anjana, R.M.; Venkat Narayan, K.M.; Jayashri, R.; Mohan, V.; Hendrick, A.M. Association of serum vitamin D levels and diabetic retinopathy in Asian Indians with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 139, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Eliaçik, M.; Cincik, H.; Öztürk, M.; Defronzo, R.A.; Abdul-Ghani, M. The Impact of Vitamin D Deficiency on Retinopathy and Hearing Loss among Type 2 Diabetic Patients. Biomed Res. Int. 2018, 2018, 2714590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, H.; Wang, Y.; Zhang, K.; Chen, Y.; Fang, S.; Zhang, W.; Wang, C.; Li, Q.; Xia, F.; Wang, N.; et al. Associations between Vitamin D and microvascular complications in middle-aged and elderly diabetic patients. Endocr. Pract. 2019, 25, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.F.; Ray, R.; Watson, D.G.; Delille, C.; Rimler, E.; Cleveland, J.; Lynn, M.J.; Tangpricha, V.; Srivastava, S.K. Vitamin D insufficiency in diabetic retinopathy. Endocr. Pract. 2012, 18, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Zhou, J.B.; Zhao, W.; Zhang, R.H.; Cai, Y.H.; Shu, L.P.; Qi, L.; Yang, J.K. Could Vitamin D be Associated with Proliferative Diabetic Retinopathy? Evidence from Pooling Studies. Horm. Metab. Res. 2019, 51, 729–734. [Google Scholar] [CrossRef]
- Kaur, H.; Donaghue, K.C.; Chan, A.K.; Benitez-Aguirre, P.; Hing, S.; Lloyd, M.; Cusumano, J.; Pryke, A.; Craig, M.E. Vitamin D deficiency is associated with retinopathy in children and adolescents with type 1 diabetes. Diabetes Care 2011, 34, 1400–1402. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.A.; Gao, F.; Qin, L.L. The association between vitamin D deficiency and diabetic retinopathy in type 2 diabetes: A meta-analysis of observational studies. Nutrients 2017, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.; Laiginhas, R.; Madeira, C.; Neves, J.S.; Barbosa, M.; Rosas, V.; Carvalho, D.; Falcão-Reis, F.; Falcão, M. Association between serum Vitamin D and diabetic retinopathy in Portuguese patients with type 1 diabetes. Acta Med. Port. 2020, 33, 459–465. [Google Scholar] [CrossRef]
- Nadri, G.; Saxena, S.; Mahdi, A.A.; Kaur, A.; Ahmad, M.K.; Garg, P.; Meyer, C.H. Serum vitamin D is a biomolecular biomarker for proliferative diabetic retinopathy. Int. J. Retin. Vitr. 2019, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, L.H.M.; Butler, A.E.; Dargham, S.R.; Latif, A.; Ahmed, E.A.; Hassan, A.; Atkin, S.L. Relationship between total vitamin d metabolites and complications in patients with type 2 diabetes. Biomed. Rep. 2020, 14, 18. [Google Scholar] [CrossRef]
- Gungor, A.; Ates, O.; Bilen, H.; Kocer, I. Retinal nerve fiber layer thickness in early-stage diabetic retinopathy with vitamin D deficiency. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6433–6437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Li, W.; Zhao, Q.; Ma, L.; Zhu, J. The impact of 1,25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor-β1 in the retinas of rats with diabetes. Diabetes Res. Clin. Pract. 2012, 98, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Sun, J.; Li, L.; Wei, Q.; Qian, Y.; Chen, X.; Ma, L. 1,25-dihydroxyvitamin D3 deficiency is involved in the pathogenesis of diabetic retinopathy in the uygur population of China. IUBMB Life 2016, 68, 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Závorková, M.; Vetvicka, V.; Richter, J.; Kral, V.; Liehnova, I.; Rajnohova, D.L. Effects of Glucan and Vitamin D Supplementation on Obesity and Lipid Metabolism in Diabetic Retinopathy. Open Biochem. J. 2018, 12, 36–45. [Google Scholar] [CrossRef]
- Lu, L.; Lu, Q.; Chen, W.; Li, J.; Li, C.; Zheng, Z. Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J. Diabetes Res. 2018, 2018, 8193523. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, W.; Lu, P.; Yuan, H. The Association between VDR Gene Polymorphisms and Diabetic Retinopathy Susceptibility: A Systematic Review and Meta-Analysis. Biomed Res. Int. 2016, 2016, 5305282. [Google Scholar] [CrossRef] [Green Version]
- Song, N.; Yang, S.; Wang, Y.Y.; Tang, S.Q.; Zhu, Y.Q.; Dai, Q.; Zhang, H. The Impact of Vitamin D Receptor Gene Polymorphisms on the Susceptibility of Diabetic Vascular Complications: A Meta-Analysis. Genet. Test. Mol. Biomarkers 2019, 23, 533–556. [Google Scholar] [CrossRef]
- Bennett, B.J.L. Optic Neuritis. Continuum 2019, 25, 1236–1264. [Google Scholar] [CrossRef]
- Burton, J.M.; Eliasziw, M.; Trufyn, J.; Tung, C.; Carter, G.; Costello, F. A prospective cohort study of vitamin D in optic neuritis recovery. Mult. Scler. 2017, 23, 82–93. [Google Scholar] [CrossRef]
- Salari, M.; Janghorbani, M.; Etemadifar, M.; Dehghani, A.; Razmjoo, H.; Naderian, G. Effects of vitamin D on retinal nerve fiber layer in vitamin D deficient patients with optic neuritis: Preliminary findings of a randomized, placebo-controlled trial. J. Res. Med. Sci. 2015, 20, 372–378. [Google Scholar]
- Pihl-Jensen, G.; Frederiksen, J.L. 25-Hydroxyvitamin D levels in acute monosymptomatic optic neuritis: Relation to clinical severity, paraclinical findings and risk of multiple sclerosis. J. Neurol. 2015, 262, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Derakhshandi, H.; Etemadifar, M.; Feizi, A.; Abtahi, S.H.; Minagar, A.; Abtahi, M.A.; Abtahi, Z.A.; Dehghani, A.; Sajjadi, S.; Tabrizi, N. Preventive effect of vitamin D3 supplementation on conversion of optic neuritis to clinically definite multiple sclerosis: A double blind, randomized, placebo-controlled pilot clinical trial. Acta Neurol. Belg. 2013, 113, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Fjeldstad, C.; Fjeldstad, A.S.; Weir, J.P.; Pardo, G. Association of vitamin D deficiency with RNFL thickness in MS individuals without history of optic neuritis. Mult. Scler. Relat. Disord. 2014, 3, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Rehak, J.; Rehak, M. Branch retinal vein occlusion: Pathogenesis, visual prognosis, and treatment modalities. Curr. Eye Res. 2008, 33, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Li, J.; Zhang, B.; Lu, P. Association of glaucoma with risk of retinal vein occlusion: A meta-analysis. Acta Ophthalmol. 2019, 97, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Latic, N.; Erben, R.G. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef]
- Oli, A.; Joshi, D. Serum vitamin D levels in Indian patients with retinal venous occlusions. Saudi J. Ophthalmol. 2017, 31, 76–79. [Google Scholar] [CrossRef]
- Epstein, D.; Kvanta, A.; Lindqvist, P.G. Vitamin D Deficiency in Patients with Central Retinal Vein Occlusion: A Case Control Study. Curr. Eye Res. 2017, 42, 448–451. [Google Scholar] [CrossRef]
- Cooper, J.; Tkatchenko, A.V. A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye Contact Lens 2018, 44, 231–247. [Google Scholar] [CrossRef]
- Baird, P.N.; Saw, S.M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L.; Zhou, X.; Matsui, K.O.; Wu, P.C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Prim. 2020, 6, 99. [Google Scholar] [CrossRef]
- Choi, J.A.; Han, K.; Park, Y.M.; La, T.Y. Low serum 25-hydroxyvitamin D is associated with myopia in Korean adolescents. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2041–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazar, S.; Hewitt, A.W.; Black, L.J.; McKnight, C.M.; Mountain, J.A.; Sherwin, J.C.; Oddy, W.H.; Coroneo, M.T.; Lucas, R.M.; Mackey, D.A. Myopia is associated with lower vitamin D status in young adults. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4552–4559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.W.; Choi, J.A.; La, T.Y. Serum 25-hydroxyvitamin D level is associated with myopia in the Korea national health and nutrition examination survey. Medicine 2016, 95, e5012. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.W.L.; Polling, J.R.; Voortman, T.; Jaddoe, V.W.V.; Uitterlinden, A.G.; Hofman, A.; Vingerling, J.R.; Franco, O.H.; Klaver, C.C.W. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur. J. Epidemiol. 2016, 31, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.M.; Lau, T.; Rong, S.S.; Yazar, S.; Chen, L.J.; Mackey, D.A.; Lucas, R.M.; Pang, C.P.; Yam, J.C. Vitamin D and its pathway genes in myopia: Systematic review and meta-analysis. Br. J. Ophthalmol. 2019, 103, 8–17. [Google Scholar] [CrossRef]
- Jung, B.J.; Jee, D. Association between serum 25-hydroxyvitamin D levels and myopia in general Korean adults. Indian J. Ophthalmol. 2020, 68, 15–22. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Williams, C.; Northstone, K.; Howe, L.D.; Tilling, K.; Pourcain, B.S.; McMahon, G.; Lawlor, D.A. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8550–8558. [Google Scholar] [CrossRef] [Green Version]
- Cuellar-Partida, G.; Williams, K.M.; Yazar, S.; Guggenheim, J.A.; Hewitt, A.W.; Williams, C.; JinWang, J.; Kho, P.F.; Saw, S.M.; Cheng, C.Y.; et al. Genetically low vitamin D concentrations and myopic refractive error: A Mendelian randomization study. Int. J. Epidemiol. 2017, 46, 1882–1890. [Google Scholar] [CrossRef] [Green Version]
- Lingham, G.; Yazar, S.; Lucas, R.M.; Walsh, J.P.; Zhu, K.; Hunter, M.; Lim, E.M.; Cooke, B.R.; Mackey, D.A. Low 25-hydroxyvitamin D concentration is not associated with refractive error in middle-aged and older Western Australian adults. Transl. Vis. Sci. Technol. 2019, 8, 13. [Google Scholar] [CrossRef]
- Da Chou, H.; Yao, T.C.; Huang, Y.S.; Huang, C.Y.; Yang, M.L.; Sun, M.H.; Chen, H.C.; Liu, C.H.; Chu, S.M.; Hsu, J.F.; et al. Myopia in school-Aged children with preterm birth: The roles of time spent outdoors and serum vitamin D. Br. J. Ophthalmol. 2021, 105, 468–472. [Google Scholar] [CrossRef]
- Specht, I.O.; Jacobsen, N.; Frederiksen, P.; Heitmann, B.L. Neonatal vitamin D status and myopia in young adult men. Acta Ophthalmol. 2020, 98, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.M.; Bentham, G.C.G.; Young, I.S.; McGinty, A.; McKay, G.J.; Hogg, R.; Hammond, C.J.; Chakravarthy, U.; Rahu, M.; Seland, J.; et al. Association between myopia, ultraviolet b radiation exposure, serum Vitamin D concentrations, and genetic polymorphisms in Vitamin Dmetabolic pathways in a multicountry european study. JAMA Ophthalmol. 2017, 135, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caban, M.; Lewandowska, U. Polyphenols and Posterior Segment Eye Diseases: Effects on Angiogenesis, Invasion, Migration and Epithelial-Mesenchymal Transition. Food Rev. Int. 2021, 00, 1–29. [Google Scholar] [CrossRef]
- Albert, D.M.; Nickells, R.W.; Gamm, D.M.; Zimbric, M.L.; Schlamp, C.L.; Lindstrom, M.J.; Audo, I. Vitamin D analogs, a new treatment for retinoblastoma: The first Ellsworth Lecture. Ophthalmic Genet. 2002, 23, 137–156. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.D.; Schley, G.; Badiali, L.; Theres, H.; Scholz, H. 1,25-Dihydroxyvitamin D3-induced apoptosis of retinoblastoma cells is associated with reciprocal changes of Bcl-2 and bax. Exp. Eye Res. 2003, 77, 1–9. [Google Scholar] [CrossRef]
- Shokravi, M.T.; Marcus, D.M.; Alroy, J.; Egan, K.; Saornil, M.A.; Albert, D.M. Vitamin D inhibits angiogenesis in transgenic murine retinoblastoma. Investig. Ophthalmol. Vis. Sci. 1995, 36, 83–87. [Google Scholar]
- Audo, I.; Darjatmoko, S.R.; Schlamp, C.L.; Lokken, J.M.; Lindstrom, M.J.; Albert, D.M.; Nickells, R.W. Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4192–4199. [Google Scholar] [CrossRef] [Green Version]
- Sabet, S.J.; Darjatmoko, S.R.; Lindstrom, M.J.; Albert, D.M. Antineoplastic effect and toxicity of 1,25-dihydroxy-16-ene-23-yne-vitamin D3 in athymic mice with Y-79 human retinoblastoma tumors. Arch. Ophthalmol. 1999, 117, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Albert, D.M.; Kumar, A.; Strugnell, S.A.; Darjatmoko, S.R.; Lokken, J.M.; Lindstrom, M.J.; Patel, S. Effectiveness of vitamin D analogues in treating large tumors and during prolonged use in murine retinoblastoma models. Arch. Ophthalmol. 2004, 122, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Albert, D.M.; Plum, L.A.; Yang, W.; Marcet, M.; Lindstrom, M.J.; Clagett-Dame, M.; DeLuca, H.F. Responsiveness of human retinoblastoma and neuroblastoma models to a non-calcemic 19-nor Vitamin D analog. J. Steroid Biochem. Mol. Biol. 2005, 97, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.D.; Van Ginkel, P.R.; Darjatmoko, S.R.; Lindstrom, M.J.; Albert, D.M. Use of combination therapy with cisplatin and calcitriol in the treatment of Y-79 human retinoblastoma xenograft model. Br. J. Ophthalmol. 2009, 93, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Augsburger, J.J.; Corrêa, Z.M.; Shaikh, A.H. Effectiveness of Treatments for Metastatic Uveal Melanoma. Am. J. Ophthalmol. 2009, 148, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Amirouchene-Angelozzi, N.; Nemati, F.; Gentien, D.; Nicolas, A.; Dumont, A.; Carita, G.; Camonis, J.; Desjardins, L.; Cassoux, N.; Piperno-Neumann, S.; et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 2014, 8, 1508–1520. [Google Scholar] [CrossRef]
- Chang, C.W.; Hsieh, Y.H.; Yang, W.E.; Yang, S.F.; Chen, Y.; Hu, D.N. Epigallocatechingallate inhibits migration of human uveal melanoma cells via downregulation of matrix metalloproteinase-2 activity and ERK1/2 pathway. Biomed Res. Int. 2014, 2014, 141582. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Manson, D.K.; Marr, B.P.; Carvajal, R.D. Treatment of uveal melanoma: Where are we now? Ther. Adv. Med. Oncol. 2018, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, Z.H.; Fu, L.; Song, J.; Xie, D.D.; Yu, D.X.; Xu, D.X.; Sun, G.P. Calcitriol inhibits migration and invasion of renal cell carcinoma cells by suppressing Smad2/3-, STAT3- and β-catenin-mediated epithelial-mesenchymal transition. Cancer Sci. 2020, 111, 59–71. [Google Scholar] [CrossRef]
- Markiewicz, A.; Brożyna, A.A.; Podgórska, E.; Elas, M.; Urbańska, K.; Jetten, A.M.; Slominski, A.T.; Jóźwicki, W.; Orłowska-Heitzman, J.; Dyduch, G.; et al. Vitamin D receptors (VDR), hydroxylases CYP27B1 and CYP24A1 and retinoid-related orphan receptors (ROR) level in human uveal tract and ocular melanoma with different melanization levels. Sci. Rep. 2019, 9, 9142. [Google Scholar] [CrossRef]
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Moan, J.; Cicarma, E.; Setlow, R.; Porojnicu, A.C.; Grant, W.B.; Juzeniene, A. Time trends and latitude dependence of uveal and cutaneous malignant melanoma induced by solar radiation. Dermatoendocrinology 2010, 2, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Podgorska, E.; Drzal, A.; Matuszak, Z.; Swakon, J.; Slominski, A.; Elas, M.; Urbanska, K. Calcitriol and calcidiol can sensitize melanoma cells to low–LET proton beam irradiation. Int. J. Mol. Sci. 2018, 19, 2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, J.T.; Bodaghi, B.; Couto, C.; Zierhut, M.; Acharya, N.; Pavesio, C.; Tay-Kearney, M.L.; Neri, P.; Douglas, K.; Pathai, S.; et al. New observations and emerging ideas in diagnosis and management of non-infectious uveitis: A review. Semin. Arthritis Rheum. 2019, 49, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Sengler, C.; Zink, J.; Klotsche, J.; Niewerth, M.; Liedmann, I.; Horneff, G.; Kessel, C.; Ganser, G.; Thon, A.; Haas, J.P.; et al. Vitamin D deficiency is associated with higher disease activity and the risk for uveitis in juvenile idiopathic arthritis—Data from a German inception cohort. Arthritis Res. Ther. 2018, 20, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrin, L.; Stanwyck, L.K.; Pan, W.; Hubbard, R.A.; Kempen, J.H.; VanderBeek, B.L. Association of hypovitaminosis d with increased risk of uveitis in a large health care claims database. JAMA Ophthalmol. 2018, 136, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Grotting, L.A.; Davoudi, S.; Palenzuela, D.; Papaliodis, G.N.; Sobrin, L. Association of lowvitamin d levels with noninfectious anterior uveitis. JAMA Ophthalmol. 2017, 135, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Dadaci, Z.; Cetinkaya, S.; Oncel Acir, N.; Oncel, M.; Borazan, M. Serum Vitamin D Levels in Patients with Acute Anterior Uveitis. Ocul. Immunol. Inflamm. 2017, 25, 492–496. [Google Scholar] [CrossRef]
- Chiu, Z.K.; Lim, L.L.; Rogers, S.L.; Hall, A.J. Patterns of Vitamin D Levels and Exposures in Active and Inactive Noninfectious Uveitis Patients. Ophthalmology 2020, 127, 230–237. [Google Scholar] [CrossRef]
- Llop, S.M.; Davoudi, S.; Stanwyck, L.K.; Sathe, S.; Tom, L.; Ahmadi, T.; Grotting, L.; Papaliodis, G.N.; Sobrin, L. Association of Low Vitamin D Levels with Noninfectious Uveitis and Scleritis. Ocul. Immunol. Inflamm. 2019, 27, 602–609. [Google Scholar] [CrossRef]
- Rohmer, J.; Hadjadj, J.; Bouzerara, A.; Salah, S.; Paule, R.; Groh, M.; Blanche, P.; Mouthon, L.; Monnet, D.; Le Jeunne, C.; et al. Serum 1,25(OH)2 Vitamin D and 25(OH) Vitamin D Ratio for the Diagnosis of Sarcoidosis-Related Uveitis. Ocul. Immunol. Inflamm. 2020, 28, 341–347. [Google Scholar] [CrossRef]
- Lavezzo, M.M.; Sakata, V.M.; Morita, C.; Rodriguez, E.E.C.; Abdallah, S.F.; Da Silva, F.T.G.; Hirata, C.E.; Yamamoto, J.H. Vogt-Koyanagi-Harada disease: Review of a rare autoimmune disease targeting antigens of melanocytes. Orphanet J. Rare Dis. 2016, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Illescas-Montes, R.; Melguizo-Rodríguez, L.; Ruiz, C.; Costela-Ruiz, V.J. Vitamin D and autoimmune diseases. Life Sci. 2019, 233, 116744. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Yang, P.; Sun, M.; Yang, Y.; Li, F. Decreased 1,25-dihydroxyvitamin D3 level is involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease. Mol. Vis. 2011, 17, 673–679. [Google Scholar] [PubMed]
- Al-Barry, M.A.; Albalawi, A.M.; Sayf, M.A.; Badawi, A.; Afzal, S.; Latif, M.; Samman, M.I.; Basit, S. Sequence analysis of four Vitamin D family genes (VDR, CYP24A1, CYP27B1 and CYP2R1) in Vogt-Koyanagi-Harada (VKH) patients: Identification of a potentially pathogenic variant in CYP2R. BMC Ophthalmol. 2016, 16, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Han, X.; Yao, Q.; Zhang, K.; Zheng, L.; Hong, W.; Xing, X. 1α,25-dihydroxyvitamin D3 attenuates oxidative stress-induced damage in human trabecular meshwork cells by inhibiting TGFβ-SMAD3-VDR pathway. Biochem. Biophys. Res. Commun. 2019, 516, 75–81. [Google Scholar] [CrossRef]
- Huynh, B.; Shah, P.; Sii, F.; Hunter, D.; Carnt, N.; White, A. Low systemic vitamin D as a potential risk factor in primary open-angle glaucoma: A review of current evidence. Br. J. Ophthalmol. 2021, 105, 595–601. [Google Scholar] [CrossRef]
- Krefting, E.A.; Jorde, R.; Christoffersen, T.; Grimnes, G. Vitamin D and intraocular pressure—Results from a case -control and an intervention study. Acta Ophthalmol. 2014, 92, 345–349. [Google Scholar] [CrossRef]
- Yoo, T.K.; Oh, E.; Hong, S. Is vitamin D status associated with open-angle glaucoma? A cross-sectional study from South Korea. Public Health Nutr. 2014, 17, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, A.; Milea, D.; Gohier, P.; Jallet, G.; Leruez, S.; Baskaran, M.; Aung, T.; Annweiler, C. Serum Vitamin D status is associated with the presence but not the severity of primary open angle glaucoma. Maturitas 2015, 81, 470–474. [Google Scholar] [CrossRef] [Green Version]
- Arar, Ž.V.; Praveček, M.K.; Miškić, B.; Vatavuk, Z.; Rodriguez, J.V.; Sekelj, S. Association between serum vitamin D level and glaucoma in women. Acta Clin. Croat. 2016, 55, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Yao, Q.; Ma, W.; Liu, H.; Ji, J.; Li, X. Associations of Vitamin D deficiency and Vitamin D receptor (Cdx-2, Fok I, Bsm i and Taq I) polymorphisms with the risk of primary open-angle glaucoma. BMC Ophthalmol. 2016, 16, 116. [Google Scholar] [CrossRef] [Green Version]
- Ayyagari, R.; der I Chen, Y.; Zangwill, L.M.; Holman, M.; Dirkes, K.; Hai, Y.; Arzumanyan, Z.; Slight, R.; Hammel, N.; Girkin, C.A.; et al. Association of severity of primary open-angle glaucoma with serum vitamin D levels in patients of African descent. Mol. Vis. 2019, 25, 438–445. [Google Scholar] [PubMed]
- Thompson, J.; Lakhani, N. Cataracts. Prim. Care Clin. Off. Pract. 2015, 42, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Seminar Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef]
- Abdellah, M.M.; Mohamed Mostafa, E.; Salama, E.H.; Roshdy Mohamed, E. Association of Serum 25-Hydroxyl Vitamin D Deficiency and Age-Related Cataract: A Case-Control Study. J. Ophthalmol. 2019, 2019, 9312929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jee, D.; Kim, E.C. Association between serum 25-hydroxyvitamin D levels and age-related cataracts. J. Cataract Refract. Surg. 2015, 41, 1705–1715. [Google Scholar] [CrossRef]
- Öktem, C.; Aslan, F. Vitamin D Levels in Young Adult Cataract Patients: A Case-Control Study. Ophthalmic Res. 2021, 64, 116–120. [Google Scholar] [CrossRef]
- Rao, P.; Millen, A.E.; Meyers, K.J.; Liu, Z.; Voland, R.; Sondel, S.; Tinker, L.; Wallace, R.B.; Blodi, B.A.; Binkley, N.; et al. The relationship between serum 25-hydroxyvitamin D levels and nuclear cataract in the carotenoid age-related eye study (CAREDS), an ancillary study of the women’s health initiative. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4221–4230. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Choi, N.K. Serum 25-hydroxyvitamin D and Age-Related Cataract. Ophthalmic Epidemiol. 2017, 24, 281–286. [Google Scholar] [CrossRef]
- Brown, C.J.; Akaichi, F. Vitamin D deficiency and posterior subcapsular cataract. Clin. Ophthalmol. 2015, 9, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Atalay, K.; Savur, F.G.; Kirgiz, A.; Kaldirim, H.E.; Zengi, O. Serum vitamin d levels in different morphologic forms of age related cataract. Acta Endocrinol. 2020, 16, 178–182. [Google Scholar] [CrossRef]
- Cho, M.C.; Kim, R.B.; Ahn, J.Y.; Yoo, W.S.; Kim, S.J. Aqueous humor and serum 25-Hydroxyvitamin D levels in patients with cataracts. BMC Ophthalmol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergouwen, D.P.C.; Rothova, A.; Berge, J.C.T.; Verdijk, R.M.; van Laar, J.A.M.; Vingerling, J.R.; Schreurs, M.W.J. Current insights in the pathogenesis of scleritis. Exp. Eye Res. 2020, 197, 108078. [Google Scholar] [CrossRef] [PubMed]
- Caban, M.; Owczarek, K.; Chojnacka, K.; Lewandowska, U. Overview of Polyphenols and Polyphenol-rich Extracts as Modulators of Inflammatory Response in Dry Eye Syndrome. Food Rev. Int. 2021, 1–28. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, J.; Xiang, J.; Li, Y.; Wu, D.; Xu, J. Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 2019, 21, 101093. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, Y.; Wu, D.; Xu, J. Calcitriol, the Active Metabolite of Vitamin D3, Inhibits Dry Eye Related Corneal Inflammation In Vivo and In Vitro. Ocul. Immunol. Inflamm. 2019, 27, 257–265. [Google Scholar] [CrossRef]
- Lyu, N.; Zhang, J.; Dai, Y.; Xiang, J.; Li, Y.; Xu, J. Calcitriol inhibits apoptosis via activation of autophagy in hyperosmotic stress stimulated corneal epithelial cells in vivo and in vitro. Exp. Eye Res. 2020, 200, 108210. [Google Scholar] [CrossRef]
- Askari, G.; Rafie, N.; Miraghajani, M.; Heidari, Z.; Arab, A. Association between vitamin D and dry eye disease: A systematic review and meta-analysis of observational studies. Contact Lens Anterior Eye 2020, 43, 418–425. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Huang, Y.C.; Lin, K.J.; Tsai, T.Y. Vitamin d deficiency is associated with severity of dry eye symptoms and primary sjögren’s syndrome: A systematic review and meta-analysis. J. Nutr. Sci. Vitaminol. 2020, 66, 386–388. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Y.; Wang, Y. Vitamin D deficiency is associated with dry eye syndrome: A systematic review and meta-analysis. Acta Ophthalmol. 2020, 98, 749–754. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Bae, S.H.; Shin, Y.J.; Park, S.G.; Hwang, S.H.; Hyon, J.Y.; Wee, W.R. Low serum 25-hydroxyvitamin D levels are associated with dry eye syndrome. PLoS ONE 2016, 11, e0147847. [Google Scholar] [CrossRef] [Green Version]
- Khamar, P.; Nair, A.P.; Shetty, R.; Vaidya, T.; Subramani, M.; Ponnalagu, M.; Dhamodaran, K.; D’Souza, S.; Ghosh, A.; Pahuja, N.; et al. Dysregulated tear fluid nociception-associated factors, corneal dendritic cell density, and vitamin D levels in evaporative dry eye. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2532–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtul, B.E.; Özer, P.A.; Aydinli, M.S. The association of Vitamin D deficiency with tear break-up time and Schirmer testing in non-Sjögren dry eye. Eye 2015, 29, 1081–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirci, G.; Erdur, S.K.; Ozsutcu, M.; Eliacik, M.; Olmuscelik, O.; Aydin, R.; Kocabora, M.S. Dry eye assessment in patients with Vitamin D deficiency. Eye Contact Lens 2016, 44, S62–S65. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.W.; Ro, J.W.; Shin, Y.J.; Hyon, J.Y.; Wee, W.R.; Park, S.G. Correlation of vitamin D levels with tear film stability and secretion in patients with dry eye syndrome. Acta Ophthalmol. 2017, 95, e230–e235. [Google Scholar] [CrossRef]
- Jee, D.; Kang, S.; Yuan, C.; Cho, E.; Arroyo, J.G.; Kang, S.W.; Baek, S.H.; Kim, C.Y.; Kim, S.D.; Kim, S.H.; et al. Serum 25-hydroxyVitamin D levels and dry eye syndrome: Differential effects of Vitamin D on ocular diseases. PLoS ONE 2016, 11, e0149294. [Google Scholar] [CrossRef]
- Jeon, D.H.; Yeom, H.; Yang, J.; Song, J.S.; Lee, H.K.; Kim, H.C. Are serum vitamin D levels associated with dry eye disease? Results from the study group for environmental eye disease. J. Prev. Med. Public Health 2017, 50, 369–376. [Google Scholar] [CrossRef]
- Bae, S.H.; Shin, Y.J.; Kim, H.K.; Hyon, J.Y.; Wee, W.R.; Park, S.G. Vitamin D Supplementation for Patients with Dry Eye Syndrome Refractory to Conventional Treatment. Sci. Rep. 2016, 6, 33083. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.S.; Lee, Y.P.; Shin, Y.J. Vitamin D enhances the efficacy of topical artificial tears in patients with dry eye disease. Cornea 2019, 38, 304–310. [Google Scholar] [CrossRef]
- Di Zazzo, A.; Bonini, S.; Fernandes, M. Adult vernal keratoconjunctivitis. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 501–506. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, K.W.; Kim, M.J.; Sol, I.S.; Yoon, S.H.; Ahn, H.S.; Kim, H.J.; Sohn, M.H.; Kim, K.E. Vitamin D levels in allergic rhinitis: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2016, 27, 580–590. [Google Scholar] [CrossRef]
- Zicari, A.M.; Cafarotti, A.; Occasi, F.; Lollobrigida, V.; Nebbioso, M.; Pecorella, I.; De Castro, G.; Spalice, A.; Loffredo, L.; Villa, M.P.; et al. Vitamin D levels in children affected by vernal keratoconjunctivitis. Curr. Med. Res. Opin. 2017, 33, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, R.; Ahoor, M.H.; Ghorbanihaghjo, A.; Jafari, S. Serum vitamin D levels in patients with vernal keratoconjunctivitis and its relationship with disease severity. Eur. J. Ophthalmol. 2021, 31, 3259–3264. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Artac, H.; Ozdemir, H.; Ünlü, A.; Bozkurt, M.K.; Irkec, M. Serum Vitamin D Levels in Children with Vernal Keratoconjunctivitis. Ocul. Immunol. Inflamm. 2018, 26, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Pucci, N.; Caputo, R.; di Grande, L.; de Libero, C.; Mori, F.; Barni, S.; di Simone, L.; Calvani, A.; Rusconi, F.; Novembre, E. Tacrolimus vs. cyclosporine eyedrops in severe cyclosporine-resistant vernal keratoconjunctivitis: A randomized, comparative, double-blind, crossover study. Pediatr. Allergy Immunol. 2015, 26, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Ghiglioni, D.G.; Bruschi, G.; Gandini, S.; Osnaghi, S.; Peroni, D.; Marchisio, P. Vitamin d serum levels in children with vernal keratoconjunctivitis and disease control. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419833468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, A.E.; Hayes, S.; Hardcastle, A.J.; Tuft, S.J. The pathogenesis of keratoconus. Eye 2014, 28, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon-Shaag, A.; Millodot, M.; Shneor, E.; Liu, Y. The genetic and environmental factors for keratoconus. Biomed Res. Int. 2015, 2015, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Claessens, J.L.J.; Godefrooij, D.A.; Vink, G.; Frank, L.E.; Wisse, R.P.L. Nationwide epidemiological approach to identify associations between keratoconus and immune-mediated diseases. Br. J. Ophthalmol. 2021, 1–5, online ahead of print. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’amelio, P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [Green Version]
- Akkaya, S.; Ulusoy, D.M. Serum Vitamin D Levels in Patients with Keratoconus. Ocul. Immunol. Inflamm. 2020, 28, 348–353. [Google Scholar] [CrossRef]
- Zarei-Ghanavati, S.; Yahaghi, B.; Hassanzadeh, S.; Mobarhan, M.G.; Hakimi, H.R.; Eghbali, P. Serum 25-hydroxyvitamin D, selenium, zinc and copper in patients with keratoconus. J. Curr. Ophthalmol. 2020, 32, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.G.; Fındık, H.; Okutucu, M.; Aydın, E.; Oruҫ, Y.; Arpa, M.; Uzun, F. Serum 25-Hydroxy Vitamin D, Vitamin B12, and Folic Acid Levels in Progressive and Nonprogressive Keratoconus. Cornea 2021, 40, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Koç, M.; Yavrum, F.; Uzel, M.M.; Aydemir, E.; Özülken, K.; Yılmazbaş, P. The Effect of Pterygium and Pterygium Surgery on Corneal Biomechanics. Semin. Ophthalmol. 2018, 33, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Caban, M.; Lewandowska, U. Inhibiting effects of polyphenols on angiogenesis and epithelial-mesenchymal transition in anterior segment eye diseases. J. Funct. Foods 2021, 87, 104761. [Google Scholar] [CrossRef]
- Shiroma, H.; Higa, A.; Sawaguchi, S.; Iwase, A.; Tomidokoro, A.; Amano, S.; Araie, M. Prevalence and Risk Factors of Pterygium in a Southwestern Island of Japan: The Kumejima Study. Am. J. Ophthalmol. 2009, 148, 766–771.e1. [Google Scholar] [CrossRef]
- Liu, L.; Wu, J.; Geng, J.; Yuan, Z.; Huang, D. Geographical prevalence and risk factors for pterygium: A systematic review and meta-analysis. BMJ Open 2013, 3, e003787. [Google Scholar] [CrossRef]
- Song, P.; Chang, X.; Wang, M.; An, L. Variations of pterygium prevalence by age, gender and geographic characteristics in China: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0174587. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.H.; Paik, J.S.; Oh, J.H.; Kim, H.S.; Na, K.S. Association between pterygium, sun exposure, and serum 25-hydroxyvitamin in a nationally representative sample of Korean adults 11 Medical and Health Sciences 1117 Public Health and Health Services. Lipids Health Dis. 2018, 17, 260. [Google Scholar] [CrossRef] [Green Version]
- Jee, D.; Kim, E.C.; Cho, E.; Arroyo, J.G. Positive association between blood 25-hydroxyvitamin D levels and pterygium after control for sunlight exposure. PLoS ONE 2016, 11, e0157501. [Google Scholar] [CrossRef]
- Kara, N.; Ceri, S. Vitamin D level in patients with pterygium. Arq. Bras. Oftalmol. 2017, 80, 229–233. [Google Scholar] [CrossRef]
- Örnek, N.; Oğurel, T.; Kısa, Ü. Tear Fluid and Serum Vitamin D Concentrations in Unilateral Pterygium. Optom. Vis. Sci. 2021, 98, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Bilak, Ş.; Çevik, M.Ö.; Erdoğdu, G.İ.H.; Bağış, H. Expression of Vitamin D Receptor and Vitamin D Receptor Gene Polymorphisms (BsmI, FokI, and TaqI) in Patients with Pterygium. Arq. Bras. Oftalmol. 2021, 84, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Maxia, C.; Murtas, D.; Corrias, M.; Zucca, I.; Minerba, L.; Piras, F.; Marinelli, C.; Perra, M.T. Vitamin D and vitamin D receptor in patients with ophthalmic pterygium. Eur. J. Histochem. 2017, 61, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Means, J.H.; Littlefield, J. Graves’ disease. Am. Pract. Dig. Treat. 1948, 2, 488–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, N.; Ye, X.; Hu, X.; Song, S.; Xu, H.; Niu, M.; Wang, H.; Wang, J. Simultaneous induction of Graves’ hyperthyroidism and Graves’ ophthalmopathy by TSHR genetic immunization in BALB/c mice. PLoS ONE 2017, 12, e0174260. [Google Scholar] [CrossRef] [PubMed]
- Vieira, I.H.; Rodrigues, D.; Paiva, I. Vitamin d and autoimmune thyroid disease—Cause, consequence, or a vicious cycle? Nutrients 2020, 12, 2791. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lv, S.; Chen, G.; Gao, C.; He, J.; Zhong, H.; Xu, Y. Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients 2015, 7, 2485–2498. [Google Scholar] [CrossRef] [Green Version]
- Sadaka, A.; Nguyen, K.; Malik, A.; Brito, R.; Berry, S.; Lee, A.G. Vitamin D and Selenium in a Thyroid Eye Disease Population in Texas. Neuro-Ophthalmology 2019, 43, 291–294. [Google Scholar] [CrossRef]
- Heisel, C.J.; Riddering, A.L.; Andrews, C.A.; Kahana, A. Serum Vitamin D Deficiency Is an Independent Risk Factor for Thyroid Eye Disease. Ophthal. Plast. Reconstr. Surg. 2020, 36, 17–20. [Google Scholar] [CrossRef]
- Maciejewski, A.; Kowalczyk, M.J.; Gasińska, T.; Szeliga, A.; Prendecki, M.; Dorszewska, J.; Żaba, R.; Łącka, K. The Role of Vitamin D Receptor Gene Polymorphisms in Thyroid-Associated Orbitopathy. Ocul. Immunol. Inflamm. 2020, 28, 354–361. [Google Scholar] [CrossRef]
- Defazio, G.; Hallett, M.; Jinnah, H.A.; Conte, A.; Berardelli, A. Blepharospasm 40 years later. Mov. Disord. 2017, 32, 498–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, C.J.; Eftekhari, K. Benign Essential Blepharospasm: What We Know and What We Don’t. Int. Ophthalmol. Clin. 2018, 58, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.T. Developments in the treatment of benign essential blepharospasm. Curr. Opin. Ophthalmol. 2018, 29, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Serefoglu Cabuk, K.; Tunc, U.; Ozturk Karabulut, G.; Fazil, K.; Karaagac Gunaydin, Z.; Asik Nacaroglu, S.; Taskapili, M. Serum calcium, magnesium, phosphorus, and vitamin D in benign essential blepharospasm. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1293–1297. [Google Scholar] [CrossRef]
- Bouillon, R.; Suda, T. Vitamin D: Calcium and bone homeostasis during evolution. Bonekey Rep. 2014, 3, 480. [Google Scholar] [CrossRef]
- Eroğul, Ö.; Beysel, S.; Doğan, M.; Gobeka, H.H.; Kaşikci, M.; Eryiği Eroğul, L. Biochemical analysis of serum mineral and vitamin levels in benign essential blepharospasm. J. Surg. Med. 2021, 5, 495–499. [Google Scholar] [CrossRef]
- El-Sharkawy, A.; Malki, A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020, 25, 3219. [Google Scholar] [CrossRef]
- Fernandez-Robredo, P.; González-Zamora, J.; Recalde, S.; Bilbao-Malavé, V.; Bezunartea, J.; Hernandez, M.; Garcia-Layana, A. Vitamin D Protects against Oxidative Stress and Inflammation in Human Retinal Cells. Antioxidants 2020, 9, 838. [Google Scholar] [CrossRef]
- Tohari, A.M.; Alhasani, R.H.; Biswas, L.; Patnaik, S.R.; Reilly, J.; Zeng, Z.; Shu, X. Vitamin D Attenuates Oxidative Damage and Inflammation in Retinal Pigment Epithelial Cells. Antioxidants 2019, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.-J.; Xu, L.-Y.; Yang, Y.-Q.; Bing, Y.-W.; Zhao, Y.-X. Vitamin D receptor regulates high-level glucose induced retinal ganglion cell damage through STAT3 pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7509–7516. [Google Scholar] [CrossRef]
- Caban, M.; Omulecki, W.; Latecka-Krajewska, B. Dry eye in Sjögren’s syndrome—Characteristics and therapy. Eur. J. Ophthalmol. 2022, 11206721221091375, online ahead of print. [Google Scholar] [CrossRef]
Type of Study/ClinicalTrials.gov Identifier/Phase (If Specified) | Participants/Enrollment/DeMographics of Population | Method | Findings | Ref |
---|---|---|---|---|
Age-related macular degeneration | ||||
Case-control study | 161 neovascular AMD cases from two university hospitals and 369 population-based control subjects from a cohort study | Brief-type self-administered questionnaire on diet history, which required respondent recall of the usual intake of 58 foods during the preceding month | Logistic regression analysis showed that low intake of vitamin D was associated with neovascular AMD (Trend p < 0.002) | [32] |
Clinical case–control pilot study | 96 Korean patients: 30 with late AMD, 32 with early AMD, and 34 normal controls | Measurement and comparison serum 25(OH)D levels | Serum vitamin D deficiency may elevate the risk of early (OR = 3.59; 95%CI 0.95–13.58; p = 0.06) and late AMD (OR = 3.61; 95%CI 1.04–12.51; p = 0.043) and may also be associated with subretinal fibrosis | [33] |
Cross-sectional study | 95 patients with exudative AMD and 95 healthy age- and sex-matched controls | Measurement and comparison serum 25(OH)D levels | Significant lower 25(OH)D levels in patients with AMD compared to the control subjects (p = 0.042) | [34] |
Population-based, cross-sectional study | 17,045 Korean subjects older than 40 years | Standardized interviews, evaluation of blood 25-(OH)D levels and comprehensive ophthalmic examinations | Inverse association between high level of blood 25(OH)D with late AMD in men but not women | [35] |
Population-based, prospective analysis | 1225 (196 African American; 1029 Caucasian) | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Logistic regression showed that high 25(OH)D concentrations (>70 nM) may be associated with reduced odds of incident early AMD | [36] |
Cross-sectional study | 1045 members with AMD and 8124 without AMD | Comparison of serum 25(OH)D levels between the two groups | No association was detected between 25(OH)D levels and the presence of AMD | [37] |
Population-based study | 697 (264 men, 433 women) | Assessment of associations between AMD and plasma 25(OH)D status using generalized estimating equation logistic regressions | Lack of specific role of vitamin D in AMD | [38] |
Meta-analysis | Literature database | Identification of the association between serum vitamin D levels and AMD risk | Lack of evidences to inverse association between serum vitamin D levels and any stages and subtypes of AMD risk | [39] |
Population-based, cross-sectional study | 2137 without AMD, 2209 with early AMD, 150 with late AMD, of whom 104 with neovascular AMD | Comparison of serum 25(OH)D levels | No linear association between 25(OH)D and early or late AMD or neovascular AMD | [40] |
Cross-sectional study | 9734 (7779 Caucasians, 1955 African American | Secondary data analysis of already existing data from the AtherosclerosisRisk in Communities Study | Lack of association between vitamin D status and early AMD | [41] |
Pilot study | Treatment group with 15 subjects and control, group with 15 subjects | Measurement and comparison serum 25(OH)D levels | Lack of association between vitamin D status and AMD | [42] |
Systematic review and meta-analysis | Literature database | Identification of the association between serum vitamin D levels and AMD risk | Lack of a definitive association between serum 25(OH)D and AMD risk | [43] |
Nationwide, double-blind, placebo controlled randomized clinical trial | 25,871 | Supplementation of 2000 IU/day for a median 5.3 years | Lack of vitamin D supplementation on AMD incidence and progression | [45] |
Diabetic retinopathy | ||||
Cross-sectional study | 30 subjects with DR and 30 subjects without DR | Measurement and comparison serum 25(OH)D levels | Lower levels of serum 25(OH)D in DR | [47] |
Cross-sectional study | 1790 | Measurement and comparison serum 25(OH)D levels | Association between DR and prevalence of vitamin D deficiency | [48] |
Population-based cross-sectional study | 2113 participants aged ≤ 40 years | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Inverse association of blood 25(OH)D levels with any DR and proliferative DR only in men | [49] |
Meta-analysis | Literature database | Identification of the association between serum vitamin D levels and DR | Statistically significant association between vitamin D deficiency and DR | [50] |
Retrospective study | 3054 Asian Indians with type 2 diabetes mellitus | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Association between lower serum 25(OH)D and increased severity of DR. Association between vitamin D deficiency and two-fold increased risk for proliferative DR | [51] |
Cross-sectional study | 638 patients with type 2 diabetes mellitus | Evaluation of blood 25-(OH)D levels and clinical examinations | Vitamin D deficiency is considered as a risk factor for DR | [52] |
Cross-sectional study | 4767 diabetic patients | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Association between lower serum 25(OH)D and higher prevalence of DR in middle-aged and elderly diabetic adults | [53] |
Clinic-based, cross-sectional study | 221subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Diabetic subjects, especially those with PDR, have lower 25(OH)D levels than those without diabetes | [54] |
Hospital-based cross-sectional study | 889 type 2 diabetic patients with or without DR | Evaluation of blood 25-(OH)D levels and clinical examinations | Vitamin D deficiency is significantly associated with risk of proliferative DR | [55] |
Cross-sectional study | 517 subjects aged 8–20 years with type 1 diabetes mellitus | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Association between the vitamin D deficiency and increased prevalence of DR in young people with type 1 diabetes mellitus | [56] |
Meta-analysis | Literature database | Identification of the association between serum vitamin D levels and DR | Association between the vitamin D deficiency and increased risk of DR patients with type 2 diabetes mellitus | [57] |
Retrospective study | 182 with type 1 diabetes mellitus | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Association between the vitamin D deficiency and increased prevalence of DR in patients with type 1 diabetes mellitus | [58] |
Cross-sectional study | 460 patients with type 2 diabetes mellitus (median age 55.2 years; age range, 30–90 years; 227 male and 233 female) and 290 non-diabetic control subjects (median age 46.1 years; age range, 30–85 years; 151 male and 139 female) | Evaluation of blood 25-(OH)D, 1,25(OH)2D, 24,25(OH)2D levels and ophthalmic examinations | Association between vitamin D3 metabolites and DR, whereas lack of these dependence for total vitamin D levels | [60] |
Tertiary care center based cross-sectional study | Diabetes mellitus without DR (24), non-proliferative DR (24), proliferative DR (24) and controls (24) | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Serum vitamin D levels of ≤ 18.6 ng/mL is marker for proliferative DR | [59] |
Systematic review and meta-analysis | Literature database | Identification of the association between VDR gene polymorphisms and DR susceptibility | The VDR FokI gene variant is associated with DR | [66] |
Meta-analysis | Literature database | Identification of the association between VDR gene polymorphisms and DR susceptibility | The VDR BsmI, ApaI and FokI gene variants are associated with DR susceptibility | [4] |
Optic neuritis | ||||
Placebo-controlled randomized clinical trial | 52 patients with confirmed unilateral ON aged 15–38 years and low serum 25(OH)D levels | Supplementation of 50,000 IU/week vitamin D3 or placebo for 6 months | Adding vitamin D to routine disease therapy had no significant effect on the thickness of RNFL or macula in patients with ON | [70] |
Cross-sectional study | 164 patients with monosymptomatic ON and 948 patients with MS | Evaluation of blood 25-(OH)D levels and clinical examinations | Lack of correlation between levels of vitamin D and ON severity | [71] |
Doubleblind, randomized, placebo-controlled pilot clinical trial | 30 patients with ON | Supplementation of 50,000 IU/week vitamin D3 or placebo for 12 months | Administration of vitamin D3 by patients with ON and low serum 25-(OH)D levels may delay the onset of a second clinical attack and the subsequent conversion to MS | [72] |
Cross-sectional study | 74 patients with MS | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Lack of association between vitamin D deficiency and thinning of RNFL or macular volume in MS eyes unaffected by ON | [73] |
Retinal vein occlusion | ||||
Pilot study | 40 patients with RVO and 40 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Significant lower levels of serum 25(OH)D in RVO as compared to age matched controls | [77] |
Case control study (NCT01793181) | 79 patents with CRVO and 144 control subjects | Evaluation of blood 25-(OH)D levels and clinical examinations | Patients under 75 years with CRVO had significantly lower 25(OH)D levels compared to the control | [78] |
Myopia | ||||
Study based on Korea National Health and Nutrition Examination Survey | 2038 Korean adolescent aged 13 to 18 years | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Decreased serum 25(OH)D level was associated with myopia prevalence in Korean adolescents | [81] |
Study based on the Western Australian Pregnancy Cohort (Raine) Study | 221 patients with myopia, 725 nonmyopic subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Decreased serum 25(OH)D level was associated with myopia | [82] |
Study based on Korea National Health and Nutrition Examination Survey | 15,126 Korean aged 20 years or older | Evaluation of blood 25-(OH)D levels, daily sun exposure time and ophthalmic examinations | Low serum 25(OH)D levels and shorter daily sun exposure time is independently associated with a high prevalence of myopia | [83] |
Population-based prospective cohort study | 2666 children aged 6 years | Evaluation of blood 25-(OH)D levels, daily sun exposure time and ophthalmic examinations | Low serum 25(OH)D is associated with axial length and risk of myopia in young children | [84] |
Systematic review and meta-analysis | Literature database | Identification of the association between serum vitamin D levels and myopia | Lower 25(OH)D is associated withincreased risk of myopia | [85] |
Study based on Korea National Health and Nutrition Examination Survey | 25,199 subjects aged ≥ 20 years | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Serum 25(OH)D level was inversely associated with myopia in adults | [86] |
Study based on the Avon Longitudinal Study of Parents and Children (ALSPAC) population-based birth cohort | Children participating in ALSPAC | Evaluation of total vitamin D, vitamin D3, vitamin D2 levels, time outdoors and ophthalmic examinations | Vitamin D may serve as biomarker for time spent outdoors without association with myopia | [87] |
Mendelian randomization study based on meta-analysis of refractive error genome-wide association study | 37,382 and 8376 adult participants of European and Asian ancestry, respectively | Identification of the association between serum vitamin D levels and myopia | Contribution of vitamin D levels to degree of myopia is very small and indistinguishable from zero | [88] |
Study based on the Busselton Healthy Ageing Study | Community-based cohort of adults aged 46 to 69 years | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | There was no substantial association between 25(OH)D levels and spherical equivalent or odds of myopia | [89] |
Prospective, cross-sectional study | Children born prematurely between January 2010 and December 2011 when they reached school age between April 2017 and June 2018 | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | More time spent outdoors is associated with lower odds of myopia. The serum 25(OH)D concentration is not associated with myopia | [90] |
Case-control study | 457 myopic male cases and 1280 emmetropic male controls | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | The myopia is not related to neonatal vitamin D status | [91] |
Cross-sectional, population-based random study | 4166 participants 65 years and older | Evaluation of vitamin D3 levels, time outdoors and ophthalmic examinations | Increased UVB exposure is associated with reduced myopia | [92] |
Systematic review and meta-analysis | Literature database | Identification of the association between time spent outdoor and myopia | Increased time outdoors is effective in preventing the onset of myopia as well as in slowing the myopic shift in refractive error. Outdoor time is not effective in slowing progression in eyes that were already myopic. | [93] |
Non-infectious uveitis | ||||
Prospective, multicenter, observational cohort study | 360 Patients ≤ 16 years of age with recently diagnosed JIA (< 12 months) | Evaluation of blood 25-(OH)D levels and clinical examinations | Vitamin D deficiency is associated with the risk for uveitis in juvenile idiopathic arthritis | [113] |
Case-control study | 558 patients with non-infectious uveitis and 2790 control subjects | Evaluation of blood vitamin D levels and clinical examinations | Association between hypovitaminosis D and non-infectious uveitis | [114] |
Case-control study | 100 patients with non-infectious anterior uveitis and 100 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Lower vitamin D levels are associated with an increased risk of non-infectious anterior uveitis | [115] |
Observational case–control study | 20 patients with acute anterior uveitis and 100 consecutive, age and sex matched healthy subjects without any ocular or systemic diseases | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | The patients with acute anterior uveitis have decreased 25(OH)D level | [116] |
Prospective case-control study | 74 patients with active uveitis and 77 patients with inactive uveitis | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Active uveitis is associated with significantly lower serum 25(OH)D levels than inactive uveitis | [117] |
Retrospective case-control study | 333 patients with uveitis and 329 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Hypovitaminosis D is associated with increased risk of non-infectious uveitis | [118] |
Monocentric retrospective cohort study | 59 patients with uveitis | Evaluation of blood 25-(OH)D, 1,25,(OH)D levels and ophthalmic examinations | High 1,25(OH)2D/25(OH)D ratio is useful for the diagnosis of sarcoidosis-related uveitis | [119] |
Vogt-Koyanagi-Harada disease | ||||
Case-control study | 25 patients with VKHD and 16 health subjects | Evaluation of blood 1,25(OH)2D levels and clinical examinations | Reduced expression of 1,25(OH)2D may be involved in the development of VKHD | [122] |
Case-control study | 39 patients with VKHD and 50 control subjects | Sequencing analysis of the VDR, CYP24A1, CYP27B1 and CYP2R1 genes (involved in the metabolism of vitamin D) | Detection of potentially pathogenic sequence variant in CYP2R1 may cause VKH in a subset of patients | [123] |
Glaucoma | ||||
Case-control and an intervention study | 39 received vitamin D supplements, 39 received placebo and 42 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations; Supplementation of 40000 IU/week vitamin D3 or placebo for 6 months for participants with low vitamin D level | No difference between IOP and low/high serum 25(OH)D levels. No significant difference between experimental and control groups | [126] |
Cross-sectional study | 6094 | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Vitamin D deficiency Seems to be independent risk factor for open-angle glaucoma | [127] |
Case-control study | 150 patients with glaucoma and 164 health subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Serum vitamin D status is associated with the presence but not the severity of primary open angle glaucoma | [128] |
Cross-sectional and observational study | 20 patients with glaucoma and 20 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Serum Vitamin D level is statistically significantly lower in glaucoma | [129] |
Case-control study | 73 with glaucoma and 71 age-matched control subjects | Evaluation of blood calcitriol levels and ophthalmic examinations | Decreased calcitriol levels in glaucoma | [130] |
Case-control study | 357 patients with glaucoma and 178 control subjects of African descent | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Association between the level of 25-(OH)D and glaucoma severity | [131] |
Cataract | ||||
Case-control study | 325 patients with cataract and 385 control subjects | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Association of Serum 25(OH)D deficiency and age-related cataract | [134] |
Observational cross-sectional study based on Korea National Health and Nutrition Examination Survey | 18804 | Evaluation of blood 25(OH)D levels and ophthalmic examinations | The age-related cataract risk is decreased in men with higher serum 25(OH)D levels | [135] |
Case control study | 37 patients with cataract and 53 health subjects under the age of 60 years | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Vitamin D deficiency is associated with early age-related cataract | [136] |
Study based on the Carotenoid Age-Related Eye Study | 1278 | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Inverse association between serum 25(OH)D and nuclear cataract in women younger than 70 years | [137] |
Study based on Korea National Health and Nutrition Examination Survey | 16,086 (7093 males and 8993 females) adults aged 40 years or older | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Serum 25(OH)D levels are inversely associated with the risk of nuclear cataract | [138] |
Retrospective chart review study | 195 | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Vitamin D deficiency is associated with posterior subcapsular cataract | [139] |
Prospective hospital-based cross-sectional study | 79 patients with posterior subcapsular cataract or age-related cataract without posterior subcapsular cataract component | Evaluation of blood vitamin D levels and ophthalmic examinations | Posterior subcapsular cataract is not associated with vitamin D insufficiency | [140] |
Prospective study | 87 patients with senile cataract and 49 patients with diabetic cataract | Evaluation of blood and aqueous humor 25(OH)D levels and ophthalmic examinations | Higher 25(OH)D level in aqueous humor is associated with diabetic cataract | [141] |
Scleritis | ||||
Retrospective case-control study | 103 patients with scleritis and 329 control subjects | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Hypovitaminosis D is associated with increased risk of scleritis | [118] |
Dry eye syndrome | ||||
Systematic review and meta-analysis | Literature database | Identification of the association between vitamin D level and DES | Significantly lowered serum level of 25(OH)D in DES | [147] |
Systematic review and meta-analysis | Literature database | Identification of the association between vitamin D level and DES | Vitamin D deficiency is associated with severity of DES | [148] |
Systematic review and meta-analysis | Literature database | Identification of the association between vitamin D level and DES | Vitamin D deficiency may be a risk factor for DES | [149] |
Study based on Korea National Health and Nutrition Examination Survey | 17,542 adults (7434 men and 10,108 women) aged 19 years | Evaluation of blood 25(OH) levels and clinical examinations | Decreased serum 25(OH)D levels and inadequate sunlight exposure are associated with DES. The vitamin D supplementation may be useful in DES treatment | [150] |
Cross-sectional study | 47 patients with evaporative DES and 33 control subjects | Evaluation of blood/tear 25(OH) levels and clinical examinations | Significantly lowered tear level of 25(OH)D in DES | [151] |
Observational study | 34 patients with vitamin D deficiency and 21 control subjects with normal level of vitamin D | Evaluation of blood/tear 25(OH) levels and ophthalmic examinations | Vitamin D deficiency results in the TBUT and Schirmer’s test values | [152] |
Single-center, cross-sectional observational study | 30 patients with vitamin D deficiency and 30 control subjects with normal level of vitamin D | Evaluation of blood/tear 25(OH) levels and ophthalmic examinations | Vitamin D deficiency is associated with tear hyperosmolarity and tear film dysfunction | [153] |
Retrospective observational study | 79 patients (22 male and 57 female) | Evaluation of blood 25(OH)D levels and ophthalmic examinations | Tear break-up time and tear secretion were correlated with serum vitamin D levels | [154] |
Study based on Korea National Health and Nutrition Examination Survey | 16,396 participants aged >19 years | Evaluation of blood 25(OH)D levels and ophthalmic examinations | There is no association between 25(OH)D levels and DES | [155] |
Study based on Study Group for Environmental Eye Disease | 740 subjects (253 men and 487 women) | Evaluation of blood 25(OH)D levels and ophthalmic examinations | There is no association between 25(OH)D levels and DES | [156] |
Observational study | 105 (21 men and 84 women) with mean serum 25(OH)D level of 10.52 ± 4.61 ng/mL | Evaluation of blood 25-(OH)D levels and ophthalmic examinations; Intramuscular injection of 200,000 IU cholecalciferol for participants with deficient or insufficient vitamin D level | The supplementation of vitamin D is effective and useful in the treatment of patients with DES | [157] |
Retrospective, observational study | 116 patients with DES | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | The effect of topical artificial tears and hyaluronate in the therapy of DES is dependent on serum 25(OH)D levels. The cholecalciferol supplementation enhanced the efficacy of topical DES treatment | [158] |
Case-control study | 64 patients with DES and 51 control subjects | Identification of the association between VDR gene polymorphisms and DES susceptibility | Two polymorphisms (Foklrs2228570 and Apal-rs7975232) in the VDR gene are 1.72 and 1.66 times more likely in DES-patients than in control, respectively | [22] |
Vernal keratoconjunctivitis | ||||
Case-control study | 47 patients with VKC, aged between 5 and 12 years, and 63 healthy children | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Children affected by VKC have lower vitamin D levels. Significant correlation between the disease severity and the level of vitamin D | [161] |
Prospective, observational, caseـcontrol study | 39 patients with VKC (21 men and 18 women) and 32 health subjects (19 men and 13 women) with the mean age of 18.38 ± 8.83 and 21.6 ± 9.43, respectively | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Patients with VKC have lower vitamin D levels; No significant reverse correlation between the disease severity and the level of vitamin D | [162] |
Prospective, single-centered, observational, case–control study | 29 children with VKC and 62 health children | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Children with VKC should be evaluated for vitamin D deficiency, which might occur secondary to sun avoidance | [163] |
Observational study | 242 children with VKC | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Ocular treatment using immunomodulatory eye drops results in an improvement in 25OHD serum levels | [165] |
Keratoconus | ||||
Prospective, single-centered, observational case-control study | 100 patients with keratoconus and 100 health control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Patients with KC had reduced serum vitamin D levels compared to age- and sex-matched healthy controls | [170] |
Cross-sectional study | 100 patients with keratoconus and 100 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Lower serum 25(OH)D was found in patients with keratoconus compared to the control group | [171] |
55 patients with keratoconus (28 progressive and 27 non-progressive) and 30 age- and sex-matched control subjects | Evaluation of blood vitamin D levels and ophthalmic examinations | Serum vitamin D evaluation in patients with keratocnous at onset and follow-up examinations may help to predict the course of the disease | [172] | |
Pterygium | ||||
Study based on Korea National Health and Nutrition Examination Survey | 19,178 participants aged 30 years | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Positive association between blood 25(OH)D levels and pterygium | [179] |
Prospective study | 63 patients with pterygium and 58 control subjects | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Increased level of blood 25(OH)D in only male subjects with pterygium and in those with more outdoor activity | [180] |
Population-based, cross-sectional study based on Korea National Health and Nutrition Examination Survey | 12,258 adults (aged ≥ 19 years) | Evaluation of blood 25-(OH)D levels and ophthalmic examinations | Association of daily sun exposure and serum 25(OH)D levels in pterygium | [178] |
Case-control study | 35 (21 male, 14 female) patients with unilateral pterygium and 25 (18 male, 7 female) healthy controls | Evaluation of blood/tear vitamin D levels and ophthalmic examinations | Tear fluid and serum vitamin D concentrations do not have a role in pterygium pathogenesis | [181] |
Cross-sectional study | 50 patients with pterygium and 50 control subjects | Identification of the VDR gene expression in pterygium; Identification of the VDR gene polymorphisms and DES susceptibility | VDR expression is increased in thepterygium tissue compared to the adjacent healthy tissue. No significant difference in BsmI, FokI and TaqI polymorphisms in comparison to the control | [182] |
Thyroid eye disease | ||||
Retrospective chart review | 35 patients with TED | Evaluation of blood 25-(OH)D levels and clinical examinations | 20% prevalence of vitamin D deficiency in TED | [188] |
Retrospective case-control study | 89 TED patients and 89 Graves disease patients without TED, and 2 healthy control groups matched 4:1 to the cases; 356 health control patients matched to the TED group and 356 health control patients matched to the Graves disease | Evaluation of blood 25-(OH)D levels and clinical examinations | Low serum vitamin D is associated with TED diagnosis | [189] |
Case-control study | 108 patients with thyroid-associated orbitopathy and 130 health control subjects (Caucasian Polish origin) | Identification of the VDR gene polymorphisms and thyroid-associated orbitopathy susceptibility | C allele of rs2228570 VDR gene polymorphism may contribute to the development of thyroid-associated orbitopathy | [190] |
Benign essential blepharospasm | ||||
Prospective study | 50 patients with BEB and 22 health subjects | Evaluation of blood 25-(OH)D levels and clinical examinations | Serum vitamin D levels showed a moderate negative correlation with disease severity | [194] |
Retrospective case-control study | 20 patients with BEB and 20 age- and gender-matched health subjects | Evaluation of blood 25-(OH)D levels and clinical examinations | Strong negative correlation between disease severity and reduced 25(OH) vitamin D in patients with BEB | [196] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caban, M.; Lewandowska, U. Vitamin D, the Vitamin D Receptor, Calcitriol Analogues and Their Link with Ocular Diseases. Nutrients 2022, 14, 2353. https://doi.org/10.3390/nu14112353
Caban M, Lewandowska U. Vitamin D, the Vitamin D Receptor, Calcitriol Analogues and Their Link with Ocular Diseases. Nutrients. 2022; 14(11):2353. https://doi.org/10.3390/nu14112353
Chicago/Turabian StyleCaban, Miłosz, and Urszula Lewandowska. 2022. "Vitamin D, the Vitamin D Receptor, Calcitriol Analogues and Their Link with Ocular Diseases" Nutrients 14, no. 11: 2353. https://doi.org/10.3390/nu14112353
APA StyleCaban, M., & Lewandowska, U. (2022). Vitamin D, the Vitamin D Receptor, Calcitriol Analogues and Their Link with Ocular Diseases. Nutrients, 14(11), 2353. https://doi.org/10.3390/nu14112353