Impact of Physical Activity Differences Due to COVID-19 Pandemic Lockdown on Non-Alcoholic Fatty Liver Parameters in Adults with Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Subjects
2.3. Intervention Groups
2.4. Description of the Lockdown
2.5. Blood Collection Analysis
2.6. NAFLD Diagnosis
2.7. NAFLD Related Indexes
2.8. Physical Activity Assessment
2.9. Functional Fitness Score
2.10. Other Health Outcomes
2.11. Statistics
3. Results
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Abd El-Kader, S.M.; El-Den Ashmawy, E.M. Non-alcoholic fatty liver disease: The diagnosis and management. World J. Hepatol. 2015, 7, 846–858. [Google Scholar] [CrossRef]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Than, N.N.; Newsome, P.N. Non-alcoholic fatty liver disease: When to intervene and with what. Clin. Med. (Lond.) 2015, 15, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherif, Z.A. The Rise in the Prevalence of Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma. In Nonalcoholic Fatty Liver Disease—An Update; Gad, E.H., Ed.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/68253 (accessed on 4 May 2022).
- Mascaró, C.M.; Bouzas, C.; Tur, J.A. Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients 2021, 14, 49. [Google Scholar] [CrossRef]
- Issa, D.; Patel, V.; Sanyal, A.J. Future therapy for non-alcoholic fatty liver disease. Liver Int. 2018, 38 (Suppl. 1), 56–63. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; Predimed Investigators. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Mascaró, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Llompart, I.; Ugarriza, L.; Borràs, P.-A.; Martínez, J.A.; Tur, J.A. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 1813. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.W.; Beyl, R.A.; Fearnbach, S.N.; Altazan, A.D.; Martin, C.K.; Redman, L.M. The Impact of COVID-19 Stay-At-Home Orders on Health Behaviors in Adults. Obesity (Silver Spring) 2021, 29, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, H.; Di Ciaula, A.; Di Palo, D.M.; Molina-Molina, E.; Garruti, G.; Faienza, M.F.; Vanerpecum, K.; Portincasa, P. Multiplying effects of COVID-19 lockdown on metabolic risk and fatty liver. Eur. J. Clin. Investig. 2021, 51, e13597. [Google Scholar] [CrossRef]
- NNCT04442620. Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN). 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 5 May 2022).
- The International Diabetic Federation (IDF). The IDF Consensus Worldwide Definition of Definition of the Metabolic Syndrome. 2006. Available online: http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf (accessed on 5 May 2022).
- Abbate, M.; Mascaró, C.M.; Montemayor, S.; Barbería-Latasa, M.; Casares, M.; Gómez, C.; Angullo-Martinez, E.; Tejada, S.; Abete, I.; Zulet, M.A.; et al. Energy Expenditure Improved Risk Factors Associated with Renal Function Loss in NAFLD and MetS Patients. Nutrients 2021, 13, 629. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- de la Iglesia, R.; Lopez-Legarrea, P.; Abete, I.; Bondia-Pons, I.; Navas-Carretero, S.; Forga, L.; Alfredo Martinez, J.; Angeles Zulet, M. A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: The MEtabolic Syndrome REduction in NAvarra (RESMENA) project. Br. J. Nutr. 2014, 111, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- BOE.es—BOE-A-2020-3692 Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. 2020. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2020-3692 (accessed on 5 May 2022).
- Sánchez-Sánchez, E.; Ramírez-Vargas, G.; Avellaneda-López, Y.; Orellana-Pecino, J.I.; García-Marín, E.; Díaz-Jimenez, J. Eating Habits and Physical Activity of the Spanish Population during the COVID-19 Pandemic Period. Nutrients 2020, 12, 2826. [Google Scholar] [CrossRef]
- Abbate, M.; Montemayor, S.; Mascaró, C.; Casares, M.; Gómez, C.; Ugarriza, L.; Tejada, S.; Abete, I.; Zulet, M.; Sureda, A.; et al. Albuminuria Is Associated with Hepatic Iron Load in Patients with Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome. J. Clin. Med. 2021, 10, 3187. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Suni, J.; Husu, P.; Rinne, M. Fitness for Health: The ALPHA-FIT Test Battery for Adults Aged 18–69—Tester’s Manual. UUK Inst. 2009. Available online: http://www.ukkinstituutti.fi/en/alpha (accessed on 4 May 2022).
- Bennett, H.; Parfitt, G.; Davison, K.; Eston, R. Validity of Submaximal Step Tests to Estimate Maximal Oxygen Uptake in Healthy Adults. Sports Med. 2016, 46, 737–750. [Google Scholar] [CrossRef]
- Sykes, K.; Cartwrightfitness Health and Fitness Measurement. Chester Step Test Kit (Official). 2016. Available online: https://www.cartwrightfitness.co.uk/product/chester-step-test-kit/ (accessed on 4 May 2022).
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.I.; Marrugat, J. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish Women. Investigators of the MARATDON Group. Med. Sci. Sports Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Mascaró, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Gómez, C.; Ugarriza, L.; Borràs, P.-A.; Martínez, J.A.; Tur, J.A. Association between Physical Activity and Non-Alcoholic Fatty Liver Disease in Adults with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 1063. [Google Scholar] [CrossRef]
- Wunsch, K.; Kienberger, K.; Niessner, C. Changes in Physical Activity Patterns Due to the Covid-19 Pandemic: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 2250. [Google Scholar] [CrossRef]
- Castañeda-Babarro, A.; Arbillaga-Etxarri, A.; Gutiérrez-Santamaría, B.; Coca, A. Physical Activity Change during COVID-19 Confinement. Int. J. Environ. Res. Public Health 2020, 17, 6878. [Google Scholar] [CrossRef]
- Meyer, J.; McDowell, C.; Lansing, J.; Brower, C.; Smith, L.; Tully, M.; Herring, M. Changes in Physical Activity and Sedentary Behavior in Response to COVID-19 and Their Associations with Mental Health in 3052 US Adults. Int. J. Environ. Res. Public Health 2020, 17, 6469. [Google Scholar] [CrossRef]
- Pérez-Rodrigo, C.; Gianzo Citores, M.; Hervás Bárbara, G.; Ruiz-Litago, F.; Casis Sáenz, L.; Arija, V.; López-Sobaler, A.M.; de Victoria, E.M.; Ortega, R.M.; Partearroyo, T.; et al. Patterns of Change in Dietary Habits and Physical Activity during Lockdown in Spain Due to the COVID-19 Pandemic. Nutrients 2021, 13, 300. [Google Scholar] [CrossRef]
- Carvalho, V.O.; Gois, C.O. COVID-19 pandemic and home-based physical activity. J. Allergy Clin. Immunol. Pract. 2020, 8, 2833–2834. [Google Scholar] [CrossRef]
- Lesser, I.A.; Nienhuis, C.P. The Impact of COVID-19 on Physical Activity Behavior and Well-Being of Canadians. Int. J. Environ. Res. Public Health 2020, 17, 3899. [Google Scholar] [CrossRef] [PubMed]
- Maltagliati, S.; Rebar, A.; Fessler, L.; Forestier, C.; Sarrazin, P.; Chalabaev, A.; Sander, D.; Sivaramakrishnan, H.; Orsholits, D.; Boisgontier, M.P.; et al. Evolution of physical activity habits after a context change: The case of COVID-19 lockdown. Br. J. Health Psychol. 2021, 26, 1135–1154. [Google Scholar] [CrossRef]
- Ding, D.; Cheng, M.; Cruz, B.D.P.; Lin, T.; Sun, S.; Zhang, L.; Yang, Q.; Ma, Z.; Wang, J.; Jia, Y.; et al. How COVID-19 lockdown and reopening affected daily steps: Evidence based on 164,630 person-days of prospectively collected data from Shanghai, China. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 40. [Google Scholar] [CrossRef]
- Petrov, M.E.; Pituch, K.A.; Kasraeian, K.; Jiao, N.; Mattingly, J.; Hasanaj, K.; Youngstedt, S.D.; Buman, M.P.; Epstein, D.R. Impact of the COVID-19 pandemic on change in sleep patterns in an exploratory, cross-sectional online sample of 79 countries. Sleep Health 2021, 7, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Targa, A.D.S.; Benítez, I.D.; Moncusí-Moix, A.; Arguimbau, M.; de Batlle, J.; Dalmases, M.; Barbé, F. Decrease in sleep quality during COVID-19 outbreak. Sleep Breath 2021, 25, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de-Quel, Ó.; Suárez-Iglesias, D.; López-Flores, M.; Pérez, C.A. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: A longitudinal study. Appetite 2021, 158, 105019. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Fasoli, L.; De-la-O, A.; Molina-Hidalgo, C.; Migueles, J.H.; Castillo, M.J.; Amaro-Gahete, F.J. Exercise training improves sleep quality: A randomized controlled trial. Eur. J. Clin. Investig. 2020, 50, e13202. [Google Scholar] [CrossRef] [PubMed]
- Nivukoski, U.; Niemelä, M.; Bloigu, A.; Bloigu, R.; Aalto, M.; Laatikainen, T.; Niemelä, O. Impacts of unfavourable lifestyle factors on biomarkers of liver function, inflammation and lipid status. PLoS ONE 2019, 14, e0218463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- González-Gross, M.; Meléndez, A. Sedentarism, active lifestyle and sport: Impact on health and obesity prevention. Nutr. Hosp. 2013, 28 (Suppl. 5), 89–98. [Google Scholar] [PubMed]
- Wong, V.W.; Wong, G.L.; Woo, J.; Abrigo, J.M.; Chan, C.K.; Shu, S.S.; Leung, J.K.-Y.; Chim, A.M.-L.; Kong, A.P.-S.; Lui, G.C.-Y.; et al. Impact of the New Definition of Metabolic Associated Fatty Liver Disease on the Epidemiology of the Disease. Clin. Gastroenterol. Hepatol. 2021, 19, 2161–2171.e5. [Google Scholar] [CrossRef]
- Zhu, Y.; Duan, M.J.; Dijk, H.H.; Freriks, R.D.; Dekker, L.H.; Mierau, J.O.; Lifelines Corona Research Initiative. Association between socioeconomic status and self-reported, tested and diagnosed COVID-19 status during the first wave in the Northern Netherlands: A general population-based cohort from 49 474 adults. BMJ Open 2021, 11, e048020. [Google Scholar] [CrossRef] [PubMed]
- Purba, F.D.; Kumalasari, A.D.; Novianti, L.E.; Kendhawati, L.; Noer, A.H.; Ninin, R.H. Marriage and quality of life during COVID-19 pandemic. PLoS ONE 2021, 16, e0256643. [Google Scholar] [CrossRef] [PubMed]
Low PA (n = 19) | Medium PA (n = 19) | High PA (n = 19) | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | p | ||
Age (years) # | 52.5 (7.7) a | 55.4 (5.7) a, c | 49.9 (6.2) c | <0.001 | |
Education (years) # | 14.3 (8.0) | 14.6 (9.7) | 13.7 (3.5) | 0.454 | |
n (%) | n (%) | n (%) | |||
Gender | <0.001 | ||||
Male | 16 (84.2) | 10 (52.6) | 11 (57.9) | ||
Female | 3 (15.8) | 9 (47.4) | 8 (42.1) | ||
Marital status | 0.031 | ||||
Single | 3 (15.8) | 1 (5.3) | 2 (10.5) | ||
Married/coupled | 14 (73.7) | 13 (68.4) | 12 (63.2) | ||
Divorced/separated/widower | 2 (10.5) | 5 (26.3) | 5 (26.3) | ||
Socioeconomic status | <0.001 | ||||
Low | 16 (84.2) | 14 (73.7) | 10 (52.6) | ||
Medium/high | 3 (15.8) | 5 (26.3) | 9 (47.4) | ||
Smoking habit | 0.014 | ||||
No | 17 (89.5) | 17 (89.5) | 19 (100.0) | ||
≥1 cigarette/day | 2 (10.5) | 2 (10.5) | 0 (0.0) | ||
Alcohol consumption | 0.827 | ||||
No | 6 (31.6) | 5 (26.3) | 5 (26.3) | ||
<7 drinks/week | 11 (57.9) | 11 (57.9) | 11 (57.9) | ||
≥7 drinks/week | 2 (10.5) | 3 (15.8) | 3 (15.8) |
Low PA (n = 19) | Medium PA (n = 19) | High PA (n = 19) | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | T*g† | ||
Motor fitness tests | |||||
One-leg balance (s) | Pre COVID | 44.8 (19.2) | 52.3 (14.2) | 49.4 (17.7) | 0.202 |
Post COVID | 49.7 (16.7) | 52.7 (14.5) | 53.0 (13.3) | ||
Δ | 4.8 (15.6) * | 0.4 (10.9) | 3.6 (7.4) * | ||
Standing hand grip (kg) | Pre COVID | 44.1 (12.6) | 36.8 (12.1) | 37.9 (12.7) | 0.335 |
Post COVID | 44.6 (11.8) | 36.1 (10.8) | 37.9 (12.7) | ||
Δ | 0.5 (5.8) | −0.7 (3.1) * | 0.0 (5.4) | ||
Jump-and-reach (cm) | Pre COVID | 24.2 (13.5) | 23.7 (7.9) | 20.9 (9.1) | 0.002 |
Post COVID | 24.6 (9.7) | 22.9 (8.6) | 23.6 (6.4) | ||
Δ | 0.4 (12.4) b | −0.7 (4.2) c | 2.7 (5.1) * b, c | ||
Modified push-up (reps) | Pre COVID | 9.0 (5.5) | 6.8 (3.7) | 7.9 (4.7) | 0.502 |
Post COVID | 10.9 (6.4) | 7.1 (5.4) | 9.2 (8.1) | ||
Δ | 1.9 (5.3) * | 0.3 (4.3) | 1.3 (7.1) | ||
Fitness score test | Pre COVID | 1.9 (1.3) | 2.3 (0.9) | 2.5 (1.1) | 0.050 |
Post COVID | 2.1 (1.1) | 2.2 (1.0) | 2.5 (1.1) | ||
Δ | 0.2 (0.7) * a | −0.1 (0.9) a | 0.0 (0.7) | ||
Sitting hand grip (kg) | Pre COVID | 40.8 (13.1) | 33.6 (13.2) | 36.4 (11.6) | 0.970 |
Post COVID | 42.1 (12.3) | 34.6 (13.1) | 38.2 (12.5) | ||
Δ | 1.3 (6.5) | 1.0 (4.2) * | 1.8 (5.2) * | ||
Chester-step (ml O2/kg/min) | Pre COVID | 37.4 (8.8) | 34.1 (7.5) | 35.4 (11.3) | 0.584 |
Post COVID | 35.2 (12.0) | 33.7 (8.4) | 38.2 (10.9) | ||
Δ | −2.2 (10.9) | −0.4 (7.1) | 2.7 (9.2) * | ||
Intensity PA (accelerometry) | |||||
Sedentary (min/day) | Pre COVID | 678.7 (66.0) | 669.6 (103.9) | 609.3 (109.7) | <0.001 |
Post COVID | 630.0 (83.9) | 670.9 (107.0) | 632.3 (105.3) | ||
Δ | −48.7 (78.7) * a, b | 1.3 (44.6) a, c | 23.0 (70.4) * b, c | ||
Light (min/day) | Pre COVID | 513.9 (80.9) | 489.4 (86.4) | 535.3 (93.3) | <0.001 |
Post COVID | 534.8 (69.9) | 492.3 (83.2) | 519.8 (93.7) | ||
Δ | 20.9 (53.1) * b | 2.9 (47.7) c | −15.5 (75.8) b, c | ||
Moderate (min/day) | Pre COVID | 166.0 (49.6) | 196.7 (90.0) | 233.6 (107.3) | <0.001 |
Post COVID | 198.3 (51.2) | 200.3 (87.8) | 182.8 (76.1) | ||
Δ | 32.3 (20.1) * a, b | 3.5 (13.5) * a, c | −50.8 (61.1) * b, c | ||
Sleep efficiency (%) | Pre COVID | 91.5 (3.3) | 92.8 (2.8) | 92.5 (3.0) | <0.001 |
Post COVID | 92.0 (3.3) | 92.0 (3.4) | 91.4 (2.4) | ||
Δ | 0.6 (2.6) a, b | −0.8 (2.0) * a | −1.1 (2.3) * b | ||
Steps (steps/day) | Pre COVID | 11,779.6 (3620.6) | 13,099.9 (3314.6) | 15,147.8 (3359.2) | <0.001 |
Post COVID | 14,258.7 (3280.8) | 12,953.2 (3544.5) | 19,436.2 (29785.4) | ||
Δ | 2479.2 (2587.5) * a, b | −146.8 (1221.5) a, c | 4288.4 (29274.4) b, c | ||
Energy expenditure | |||||
Measured accelerometer (MET/day) | Pre COVID | 1.8 (0.2) | 1.9 (0.3) | 2.0 (0.3) | <0.001 |
Post COVID | 1.9 (0.2) | 1.9 (0.3) | 1.8 (0.3) | ||
Δ | 0.1 (0.1) * a, b | 0.0 (0.0) * a, c | −0.2 (0.3) * b, c | ||
Reported Minnesota (MET/day) | Pre COVID | 0.7 (0.6) | 0.5 (0.4) | 0.5 (0.6) | 0.308 |
Post COVID | 0.6 (0.7) | 0.4 (0.5) | 0.4 (0.4) | ||
Δ | −0.1 (0.9) | −0.1 (0.5) | −0.1 (0.3) * | ||
Measured-Reported (MET/day) | Pre COVID | 1.1 (0.6) | 1.4 (0.4) | 1.5 (0.6) | 0.143 |
Low PA (n = 19) | Medium PA (n = 19) | High PA (n = 19) | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | T*g† | ||
Liver profile | |||||
AST (U/L) | Pre COVID | 31.3 (23.60) | 22.3 (6.6) | 22.6 (6.8) | 0.160 |
Post COVID | 25.3 (4.7) | 24.9 (10.5) | 30.0 (25.9) | ||
Δ | −6.0 (21.5) | 2.6 (9.7) * | 7.4 (21.2) * | ||
ALT (U/L) | Pre COVID | 44.6 (53.4) | 27.1 (13.5) | 28.3 (10.1) | 0.514 |
Post COVID | 35.4 (18.4) | 31.1 (19.8) | 37.6 (34.8) | ||
Δ | −9.2 (51.6) | 4.0 (17.3) * | 9.3 (30.2) * | ||
GGT (U/L) | Pre COVID | 56.9 (86.9) | 37.4 (16.6) | 38.7 (23.5) | <0.001 |
Post COVID | 39.9 (28.4) | 49.4 (42.1) | 55.8 (62.0) | ||
Δ | −17.0 (61.4) * a, b | 12.0 (29.6) * a | 17.1 (45.8) * b | ||
FLI | Pre COVID | 83.7 (13.8) | 77.1 (21.7) | 79.1 (21.2) | 0.014 |
Post COVID | 86.2 (9.2) | 82.5 (16.1) | 84.8 (12.1) | ||
Δ | 2.5 (8.3) * a | 5.4 (22.2) * a | 5.7 (15.8) * | ||
HSI | Pre COVID | 45.1 (5.6) | 43.4 (4.9) | 43.3 (5.0) | 0.747 |
Post COVID | 44.2 (3.9) | 43.9 (6.0) | 43.5 (5.6) | ||
Δ | −0.9 (4.8) | 0.5 (3.1) | 0.2 (2.4) | ||
IFC-NMR (%) | Pre COVID | 13.6 (8.5) | 12.7 (7.8) | 12.8 (8.0) | 0.119 |
Post COVID | 12.6 (9.2) | 13.7 (9.0) | 14.7 (8.4) | ||
Δ | −1.0 (4.9) | 1.0 (4.8) | 1.9 (5.8) * | ||
Metabolic syndrome parameters | |||||
Abdominal obesity (WC ≥ 94 cm men; ≥80 cm women) | Pre COVID | 112.9 (9.0) | 107.7 (9.4) | 109.7 (7.2) | 0.203 |
Post COVID | 112.6 (7.7) | 106.4 (8.8) | 110.2 (8.6) | ||
Δ | −0.3 (4.4) | −1.3 (5.3) * | 0.5 (4.6) | ||
High triglyceridemia ≥ 150 mg/dL | Pre COVID | 152.7 (66.3) | 193.1 (118.5) | 177.4 (119.1) | 0.561 |
Post COVID | 165.6 (62.0) | 189.7 (98.9) | 187.8 (121.3) | ||
Δ | 12.9 (55.9) * | −3.4 (78.1) | 10.4 (73.1) | ||
Low HDL-c < 40 mg/dL men; <50 mg/dL women | Pre COVID | 43.1 (9.6) | 44.8 (9.3) | 43.3 (10.3) | 0.014 |
Post COVID | 40.2 (7.7) | 44.4 (11.5) | 41.6 (9.9) | ||
Δ | −2.8 (4.9) * | −0.4 (5.4) c | −1.6 (5.1) * c | ||
Hypertension (systolic pressure ≥ 130 mmHg) | Pre COVID | 130.5 (12.5) | 128.1 (13.0) | 131.4 (10.4) | 0.718 |
Post COVID | 134.5 (12.7) | 132.4 (17.7) | 135.7 (19.1) | ||
Δ | 4.0 (9.5) * | 4.3 (14.5) * | 4.3 (16.5) * | ||
Hypertension (diastolic pressure ≥ 85 mmHg) | Pre COVID | 80.6 (7.3) | 78.9 (9.3) | 79.8 (6.0) | 0.282 |
Post COVID | 80.4 (9.2) | 83.0 (13.0) | 83.2 (10.1) | ||
Δ | −0.2 (7.3) | 4.1 (10.3) * | 3.5 (9.3) * | ||
High fasting glycemia ≥ 100 mg/dL | Pre COVID | 113.3 (36.2) | 104.4 (11.3) | 105.8 (31.1) | 0.712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascaró, C.M.; Bouzas, C.; Montemayor, S.; García, S.; Mateos, D.; Casares, M.; Gómez, C.; Ugarriza, L.; Borràs, P.-A.; Martínez, J.A.; et al. Impact of Physical Activity Differences Due to COVID-19 Pandemic Lockdown on Non-Alcoholic Fatty Liver Parameters in Adults with Metabolic Syndrome. Nutrients 2022, 14, 2370. https://doi.org/10.3390/nu14122370
Mascaró CM, Bouzas C, Montemayor S, García S, Mateos D, Casares M, Gómez C, Ugarriza L, Borràs P-A, Martínez JA, et al. Impact of Physical Activity Differences Due to COVID-19 Pandemic Lockdown on Non-Alcoholic Fatty Liver Parameters in Adults with Metabolic Syndrome. Nutrients. 2022; 14(12):2370. https://doi.org/10.3390/nu14122370
Chicago/Turabian StyleMascaró, Catalina M., Cristina Bouzas, Sofía Montemayor, Silvia García, David Mateos, Miguel Casares, Cristina Gómez, Lucía Ugarriza, Pere-Antoni Borràs, J. Alfredo Martínez, and et al. 2022. "Impact of Physical Activity Differences Due to COVID-19 Pandemic Lockdown on Non-Alcoholic Fatty Liver Parameters in Adults with Metabolic Syndrome" Nutrients 14, no. 12: 2370. https://doi.org/10.3390/nu14122370
APA StyleMascaró, C. M., Bouzas, C., Montemayor, S., García, S., Mateos, D., Casares, M., Gómez, C., Ugarriza, L., Borràs, P. -A., Martínez, J. A., & Tur, J. A. (2022). Impact of Physical Activity Differences Due to COVID-19 Pandemic Lockdown on Non-Alcoholic Fatty Liver Parameters in Adults with Metabolic Syndrome. Nutrients, 14(12), 2370. https://doi.org/10.3390/nu14122370