Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions
Abstract
:1. Introduction
2. Multiple Sclerosis: Cognitive and Nutritional Factors
2.1. The Role of BDNF in MS and the Influence of Dietary Factors on its Regulation
2.2. Tryptophan-Kynurenine Metabolism in MS and the Influence of KD
2.3. Malnutrition in MS
2.4. Role of Adipokines in the Pathogenesis of MS Associated with Obesity
3. Mediterranean Diet
3.1. Anti-Inflammatory Effect of MeDi
3.2. MeDi Foods Suggested for the Protocol to Be Developed
4. Ketogenic Diet
4.1. Anti-Inflammatory Factors in the KD
4.2. KD and Neuroinflammation: The Role of NLRP3 Inflammasome
5. Nutritional Suggestions to Develop a Dietary Protocol for MS Patients
5.1. Macronutrients
5.2. Bowel Dysfunction in MS and Fiber Nutritional Suggestions
5.3. Micronutrients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Esposito, S.; Bonavita, S.; Sparaco, M.; Gallo, A.; Tedeschi, G. The Role of Diet in Multiple Sclerosis: A Review. Nutr. Neurosci. 2018, 21, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95–103. [Google Scholar] [PubMed]
- Bonet, M.L.; Ribot, J.; Galmés, S.; Serra, F.; Palou, A. Carotenoids and Carotenoid Conversion Products in Adipose Tissue Biology and Obesity: Pre-Clinical and Human Studies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158676. [Google Scholar] [CrossRef]
- Giammanco, M.; Aiello, S.; Casuccio, A.; La Guardia, M.; Cicero, L.; Puleio, R.; Vazzana, I.; Tomasello, G.; Cassata, G.; Leto, G.; et al. Effects of 3,5-Diiodo-L-Thyronine on the Liver of High Fat Diet Fed Rats. J. Biol. Res. 2016, 89, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Leweling, H. Multiple Sclerosis and Nutrition. Mult. Scler. 2005, 11, 24–32. [Google Scholar] [CrossRef]
- Russell, R.D.; Langer-Gould, A.; Gonzales, E.G.; Smith, J.B.; Brennan, V.; Pereira, G.; Lucas, R.M.; Begley, A.; Black, L.J. Obesity, Dieting, and Multiple Sclerosis. Mult. Scler. Relat. Disord. 2019, 39, 101889. [Google Scholar] [CrossRef] [PubMed]
- Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol. Ther. 2018, 7, 59–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahls, T.L.; Chenard, C.A.; Snetselaar, L.G. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients 2019, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Sparaco, M.; Maniscalco, G.T.; Signoriello, E.; Lanzillo, R.; Russo, C.; Carmisciano, L.; Cepparulo, S.; Lavorgna, L.; Gallo, A.; et al. Lifestyle and Mediterranean Diet Adherence in a Cohort of Southern Italian Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 47, 102636. [Google Scholar] [CrossRef]
- Vauzour, D. Polyphenols and Brain Health. OCL 2017, 24, A202. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, V.O.; Pereira, R.A.; Amantéa, S.L.; Rhoden, C.R.; Colvero, M.O. Neonatal Diseases and Oxidative Stress in Premature Infants: An Integrative Review. J. Pediatr. 2021, 23. [Google Scholar] [CrossRef] [PubMed]
- Rendeiro, C.; Vauzour, D.; Kean, R.J.; Butler, L.T.; Rattray, M.; Spencer, J.P.E.; Williams, C.M. Blueberry Supplementation Induces Spatial Memory Improvements and Region-Specific Regulation of Hippocampal BDNF mRNA Expression in Young Rats. Psychopharmacology 2012, 223, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Allegra, M.; Sardo, P.; Attanzio, A.; Tesoriere, L.; Livrea, M.A.; Ferraro, G.; Carletti, F. Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin from Administered at Nutritionally-Relevant Amounts. Front. Aging Neurosci. 2018, 10, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monda, V.; Polito, R.; Lovino, A.; Finaldi, A.; Valenzano, A.; Nigro, E.; Corso, G.; Sessa, F.; Asmundo, A.; Nunno, N.D.; et al. Short-Term Physiological Effects of a Very Low-Calorie Ketogenic Diet: Effects on Adiponectin Levels and Inflammatory States. Int. J. Mol. Sci. 2020, 21, 3228. [Google Scholar] [CrossRef]
- Häusser-Kinzel, S.; Weber, M.S. The Role of B Cells and Antibodies in Multiple Sclerosis, Neuromyelitis Optica, and Related Disorders. Front. Immunol. 2019, 10, 201. [Google Scholar] [CrossRef]
- Aharoni, R.; Arnon, R. Linkage between Immunomodulation, Neuroprotection and Neurogenesis. Drug News Perspect. 2009, 22, 301–312. [Google Scholar] [CrossRef]
- Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the Pathophysiology and Treatment of Depression: Activity-Dependent Effects Distinguish Rapid-Acting Antidepressants. Eur. J. Neurosci. 2021, 53, 126–139. [Google Scholar] [CrossRef]
- Martinowich, K.; Manji, H.; Lu, B. New Insights into BDNF Function in Depression and Anxiety. Nat. Neurosci. 2007, 10, 1089–1093. [Google Scholar] [CrossRef]
- Selvam, R.; Yeh, M.L.; Levine, E.S. Endogenous Cannabinoids Mediate the Effect of BDNF at CA1 Inhibitory Synapses in the Hippocampus. Synapse 2018, 73, e22075. [Google Scholar] [CrossRef]
- Gambino, G.; Giglia, G.; Schiera, G.; Di Majo, D.; Epifanio, M.S.; La Grutta, S.; Lo Baido, R.; Ferraro, G.; Sardo, P. Haptic Perception in Extreme Obesity: qEEG Study Focused on Predictive Coding and Body Schema. Brain Sci. 2020, 10, 908. [Google Scholar] [CrossRef]
- Van’t Veer, A.; Du, Y.; Fischer, T.Z.; Boetig, D.R.; Wood, M.R.; Dreyfus, C.F. Brain-Derived Neurotrophic Factor Effects on Oligodendrocyte Progenitors of the Basal Forebrain Are Mediated through trkB and the MAP Kinase Pathway. J. Neurosci. Res. 2009, 87, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-H.; Geyer, E.; Flach, A.-C.; Jung, K.; Gold, R.; Flügel, A.; Linker, R.A.; Lühder, F. Central Nervous System rather than Immune Cell-Derived BDNF Mediates Axonal Protective Effects Early in Autoimmune Demyelination. Acta Neuropathol. 2012, 123, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KhorshidAhmad, T.; Acosta, C.; Cortes, C.; Lakowski, T.M.; Gangadaran, S.; Namaka, M. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): A Novel Mechanism for Re-Myelination And/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS). Mol. Neurobiol. 2016, 53, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Lavanco, G.; Cavallaro, A.; Cannizzaro, E.; Giammanco, M.; Di Majo, D.; Brancato, A. Pharmacological Manipulation of Serotonin Receptors during Brain Embryogenesis Favours Stress Resiliency in Female Rats. J. Biol. Res. 2018, 90. [Google Scholar] [CrossRef] [Green Version]
- De Santi, L.; Annunziata, P.; Sessa, E.; Bramanti, P. Brain-Derived Neurotrophic Factor and TrkB Receptor in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Neurol. Sci. 2009, 287, 17–26. [Google Scholar] [CrossRef]
- Cellerino, A.; Carroll, P.; Thoenen, H.; Barde, Y.A. Reduced Size of Retinal Ganglion Cell Axons and Hypomyelination in Mice Lacking Brain-Derived Neurotrophic Factor. Mol. Cell. Neurosci. 1997, 9, 397–408. [Google Scholar] [CrossRef]
- Vondran, M.W.; Clinton-Luke, P.; Honeywell, J.Z.; Dreyfus, C.F. BDNF+/− Mice Exhibit Deficits in Oligodendrocyte Lineage Cells of the Basal Forebrain. Glia 2010, 58, 848–856. [Google Scholar] [CrossRef] [Green Version]
- McTigue, D.M.; Horner, P.J.; Stokes, B.T.; Gage, F.H. Neurotrophin-3 and Brain-Derived Neurotrophic Factor Induce Oligodendrocyte Proliferation and Myelination of Regenerating Axons in the Contused Adult Rat Spinal Cord. J. Neurosci. 1998, 18, 5354–5365. [Google Scholar] [CrossRef]
- Makar, T.K.; Nimmagadda, V.K.C.; Singh, I.S.; Lam, K.; Mubariz, F.; Judge, S.I.V.; Trisler, D.; Bever, C.T., Jr. TrkB Agonist, 7,8-Dihydroxyflavone, Reduces the Clinical and Pathological Severity of a Murine Model of Multiple Sclerosis. J. Neuroimmunol. 2016, 292, 9–20. [Google Scholar] [CrossRef]
- Caggiula, M.; Batocchi, A.P.; Frisullo, G.; Angelucci, F.; Patanella, A.K.; Sancricca, C.; Nociti, V.; Tonali, P.A.; Mirabella, M. Neurotrophic Factors in Relapsing Remitting and Secondary Progressive Multiple Sclerosis Patients during Interferon Beta Therapy. Clin. Immunol. 2006, 118, 77–82. [Google Scholar] [CrossRef]
- Lalive, P.H.; Neuhaus, O.; Benkhoucha, M.; Burger, D.; Hohlfeld, R.; Zamvil, S.S.; Weber, M.S. Glatiramer Acetate in the Treatment of Multiple Sclerosis: Emerging Concepts Regarding Its Mechanism of Action. CNS Drugs 2011, 25, 401–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islas-Hernandez, A.; Aguilar-Talamantes, H.S.; Bertado-Cortes, B.; de Mejia-delCastillo, G.J.; Carrera-Pineda, R.; Cuevas-Garcia, C.F.; Garcia-delaTorre, P. BDNF and Tau as Biomarkers of Severity in Multiple Sclerosis. Biomark. Med. 2018, 12, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Naegelin, Y.; Saeuberli, K.; Schaedelin, S.; Dingsdale, H.; Magon, S.; Baranzini, S.; Amann, M.; Parmar, K.; Tsagkas, C.; Calabrese, P.; et al. Levels of Brain-Derived Neurotrophic Factor in Patients with Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 2251–2261. [Google Scholar] [CrossRef]
- Pillai, A.; Kale, A.; Joshi, S.; Naphade, N.; Raju, M.S.V.K.; Nasrallah, H.; Mahadik, S.P. Decreased BDNF Levels in CSF of Drug-Naive First-Episode Psychotic Subjects: Correlation with Plasma BDNF and Psychopathology. Int. J. Neuropsychopharmacol. 2010, 13, 535–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, R.R.; Carrasco, A.; Corral, S.; Castillo, R.; Gaspar, P.A.; Bustamante, M.L.; Silva, H. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front. Psychiatry 2021, 12, 662407. [Google Scholar] [CrossRef] [PubMed]
- Thöne, J.; Ellrichmann, G.; Seubert, S.; Peruga, I.; Lee, D.-H.; Conrad, R.; Hayardeny, L.; Comi, G.; Wiese, S.; Linker, R.A.; et al. Modulation of Autoimmune Demyelination by Laquinimod via Induction of Brain-Derived Neurotrophic Factor. Am. J. Pathol. 2012, 180, 267–274. [Google Scholar] [CrossRef]
- Comi, G.; Pulizzi, A.; Rovaris, M.; Abramsky, O.; Arbizu, T.; Boiko, A.; Gold, R.; Havrdova, E.; Komoly, S.; Selmaj, K.; et al. Effect of Laquinimod on MRI-Monitored Disease Activity in Patients with Relapsing-Remitting Multiple Sclerosis: A Multicentre, Randomised, Double-Blind, Placebo-Controlled Phase IIb Study. Lancet 2008, 371, 2085–2092. [Google Scholar] [CrossRef]
- Liguori, M.; Fera, F.; Patitucci, A.; Manna, I.; Condino, F.; Valentino, P.; Telarico, P.; Cerasa, A.; Gioia, M.C.; di Palma, G.; et al. A Longitudinal Observation of Brain-Derived Neurotrophic Factor mRNA Levels in Patients with Relapsing-Remitting Multiple Sclerosis. Brain Res. 2009, 1256, 123–128. [Google Scholar] [CrossRef]
- Zivadinov, R.; Weinstock-Guttman, B.; Benedict, R.; Tamaño-Blanco, M.; Hussein, S.; Abdelrahman, N.; Durfee, J.; Ramanathan, M. Preservation of Gray Matter Volume in Multiple Sclerosis Patients with the Met Allele of the rs6265 (Val66Met) SNP of Brain-Derived Neurotrophic Factor. Hum. Mol. Genet. 2007, 16, 2659–2668. [Google Scholar] [CrossRef] [Green Version]
- Genzer, Y.; Dadon, M.; Burg, C.; Chapnik, N.; Froy, O. Effect of Dietary Fat and the Circadian Clock on the Expression of Brain-Derived Neurotrophic Factor (BDNF). Mol. Cell. Endocrinol. 2016, 430, 49–55. [Google Scholar] [CrossRef]
- Paoli, A.; Cenci, L.; Pompei, P.; Sahin, N.; Bianco, A.; Neri, M.; Caprio, M.; Moro, T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients 2021, 13, 374. [Google Scholar] [CrossRef] [PubMed]
- Kanova, M.; Kohout, P. Tryptophan: A Unique Role in the Critically Ill. Int. J. Mol. Sci. 2021, 22, 11714. [Google Scholar] [CrossRef] [PubMed]
- Stone, T.W.; Forrest, C.M.; Stoy, N.; Darlington, L.G. Involvement of Kynurenines in Huntington’s Disease and Stroke-Induced Brain Damage. J. Neural Transm. 2012, 119, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Schachter, S.C. The NMDA Receptor Complex as a Therapeutic Target in Epilepsy: A Review. Epilepsy Behav. 2011, 22, 617–640. [Google Scholar] [CrossRef]
- Mancuso, R.; Hernis, A.; Agostini, S.; Rovaris, M.; Caputo, D.; Fuchs, D.; Clerici, M. Indoleamine 2,3 Dioxygenase (IDO) Expression and Activity in Relapsing-Remitting Multiple Sclerosis. PLoS ONE 2015, 10, e0130715. [Google Scholar] [CrossRef] [Green Version]
- Heischmann, S.; Gano, L.B.; Quinn, K.; Liang, L.-P.; Klepacki, J.; Christians, U.; Reisdorph, N.; Patel, M. Regulation of Kynurenine Metabolism by a Ketogenic Diet. J. Lipid Res. 2018, 59, 958–966. [Google Scholar] [CrossRef] [Green Version]
- Żarnowska, I.; Wróbel-Dudzińska, D.; Tulidowicz-Bielak, M.; Kocki, T.; Mitosek-Szewczyk, K.; Gasior, M.; Turski, W.A. Changes in Tryptophan and Kynurenine Pathway Metabolites in the Blood of Children Treated with Ketogenic Diet for Refractory Epilepsy. Seizure 2019, 69, 265–272. [Google Scholar] [CrossRef]
- Sorgun, M.H.; Yucesan, C.; Tegin, C. Is Malnutrition a Problem for Multiple Sclerosis Patients? J. Clin. Neurosci. 2014, 21, 1603–1605. [Google Scholar] [CrossRef]
- Pasquinelli, S.; Solaro, C. Nutritional Assessment and Malnutrition in Multiple Sclerosis. Neurol. Sci. 2008, 29, S367–S369. [Google Scholar] [CrossRef]
- Fantelli, F.J.; Mitsumoto, H.; Sebek, B.A. Multiple Sclerosis and Malabsorption. Lancet 1978, 1, 1039–1040. [Google Scholar] [CrossRef]
- Kamalian, N.; Keesey, R.E.; ZuRhein, G.M. Lateral Hypothalamic Demyelination and Cachexia in a Case of “Malignant” Multiple Sclerosis. Neurology 1975, 25, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Giammanco, M.; Di Majo, D.; La Guardia, M.; Aiello, S.; Crescimannno, M.; Flandina, C.; Tumminello, F.M.; Leto, G. Vitamin D in Cancer Chemoprevention. Pharm. Biol. 2015, 53, 1399–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianfrancesco, M.A.; Barcellos, L.F. Obesity and Multiple Sclerosis Susceptibility: A Review. J. Neurol. Neuromed. 2016, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body Size and Risk of MS in Two Cohorts of US Women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascherio, A.; Munger, K.L. Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention-An Update. Semin. Neurol. 2016, 36, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Plow, M.A.; Finlayson, M.; Gunzler, D.; Heinemann, A.W. Correlates of Participation in Meaningful Activities among People with Multiple Sclerosis. J. Rehabil. Med. 2015, 47, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Savas, M.; Wester, V.L.; Staufenbiel, S.M.; Koper, J.W.; van den Akker, E.L.T.; Visser, J.A.; van der Lely, A.J.; Penninx, B.W.J.H.; van Rossum, E.F.C. Systematic Evaluation of Corticosteroid Use in Obese and Non-Obese Individuals: A Multi-Cohort Study. Int. J. Med. Sci. 2017, 14, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Piccio, L.; Naismith, R.T.; Trinkaus, K.; Klein, R.S.; Parks, B.J.; Lyons, J.A.; Cross, A.H. Changes in B- and T-Lymphocyte and Chemokine Levels with Rituximab Treatment in Multiple Sclerosis. Arch. Neurol. 2010, 67, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Mohasseb, H.A.A.; Solliman, M.E.-D.; Al-Mssallem, I.S.; Abdullah, M.M.B.; Alsaqufi, A.S.; Shehata, W.F.; El-Shemy, H.A. Salt-Tolerant Phenomena, Sequencing and Characterization of a Glyoxalase I (Jojo-Gly I) Gene from Jojoba in Comparison with Other Genes. Plants 2020, 9, 1285. [Google Scholar] [CrossRef]
- Soliman, R.H.; Farhan, H.M.; Hegazy, M.; Oraby, M.I.; Kamel, S.H.; Hassan, A. Impact of Insulin Resistance and Metabolic Syndrome on Disability in Patients with Multiple Sclerosis. Egypt. J. Neurol. Psychiatr. Neurosurg. 2020, 56, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Watson, G.S.; Craft, S. Insulin Resistance, Inflammation, and Cognition in Alzheimer’s Disease: Lessons for Multiple Sclerosis. J. Neurol. Sci. 2006, 245, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases. Biomed Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef] [PubMed]
- Frisullo, G.; Angelucci, F.; Mirabella, M.; Caggiula, M.; Patanella, K.; Nociti, V.; Tonali, P.A.; Batocchi, A.P. Leptin Enhances the Release of Cytokines by Peripheral Blood Mononuclear Cells from Relapsing Multiple Sclerosis Patients. J. Clin. Immunol. 2004, 24, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Batocchi, A.P.; Rotondi, M.; Caggiula, M.; Frisullo, G.; Odoardi, F.; Nociti, V.; Carella, C.; Tonali, P.A.; Mirabella, M. Leptin as a Marker of Multiple Sclerosis Activity in Patients Treated with Interferon-Beta. J. Neuroimmunol. 2003, 139, 150–154. [Google Scholar] [CrossRef]
- Kvistad, S.S.; Myhr, K.-M.; Holmøy, T.; Benth, J.Š.; Wergeland, S.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Midgard, R.; Sagen, J.V.; et al. Serum Levels of Leptin and Adiponectin Are Not Associated with Disease Activity or Treatment Response in Multiple Sclerosis. J. Neuroimmunol. 2018, 323, 73–77. [Google Scholar] [CrossRef]
- Ouchi, N.; Walsh, K. A Novel Role for Adiponectin in the Regulation of Inflammation. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1219–1221. [Google Scholar] [CrossRef] [Green Version]
- Meier, U.; Gressner, A.M. Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin. Clin. Chem. 2004, 50, 1511–1525. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R. Adipocytokines: Mediators Linking Adipose Tissue, Inflammation and Immunity. Nat. Rev. Immunol. 2006, 6, 772–783. [Google Scholar] [CrossRef]
- Kraszula, L.; Jasińska, A.; Eusebio, M.-O.; Kuna, P.; Głąbiński, A.; Pietruczuk, M. Evaluation of the Relationship between Leptin, Resistin, Adiponectin and Natural Regulatory T Cells in Relapsing-Remitting Multiple Sclerosis. Neurol. Neurochir. Pol. 2012, 46, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Musabak, U.; Demirkaya, S.; Genç, G.; Ilikci, R.S.; Odabasi, Z. Serum Adiponectin, TNF-α, IL-12p70, and IL-13 Levels in Multiple Sclerosis and the Effects of Different Therapy Regimens. Neuroimmunomodulation 2011, 18, 57–66. [Google Scholar] [CrossRef]
- Villani, A.; Sultana, J.; Doecke, J.; Mantzioris, E. Differences in the Interpretation of a Modernized Mediterranean Diet Prescribed in Intervention Studies for the Management of Type 2 Diabetes: How Closely Does This Align with a Traditional Mediterranean Diet? Eur. J. Nutr. 2019, 58, 1369–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, K.M.B.; Ronca, D.B.; Michels, N.; Huybrechts, I.; Cuenca-Garcia, M.; Marcos, A.; Molnár, D.; Dallongeville, J.; Manios, Y.; Schaan, B.D.; et al. Does the Mediterranean Diet Protect against Stress-Induced Inflammatory Activation in European Adolescents? The HELENA Study. Nutrients 2018, 10, 1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafiei, F.; Salari-Moghaddam, A.; Larijani, B.; Esmaillzadeh, A. Adherence to the Mediterranean Diet and Risk of Depression: A Systematic Review and Updated Meta-Analysis of Observational Studies. Nutr. Rev. 2019, 77, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Mische, L.J.; Mowry, E.M. The Evidence for Dietary Interventions and Nutritional Supplements as Treatment Options in Multiple Sclerosis: A Review. Curr. Treat. Options Neurol. 2018, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Preedy, V.R.; Watson, R.R. The Mediterranean Diet: An Evidence-Based Approach; Elsevier Science: Amsterdam, The Netherlands, 2020; ISBN 9780128186497. [Google Scholar]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Alì, S.; Davinelli, S.; Accardi, G.; Aiello, A.; Caruso, C.; Duro, G.; Ligotti, M.E.; Pojero, F.; Scapagnini, G.; Candore, G. Healthy Ageing and Mediterranean Diet: A Focus on Hormetic Phytochemicals. Mech. Ageing Dev. 2021, 200, 111592. [Google Scholar] [CrossRef]
- Bonaccio, M.; Pounis, G.; Cerletti, C.; Donati, M.B.; Iacoviello, L.; de Gaetano, G.; MOLI-SANI Study Investigators. Mediterranean Diet, Dietary Polyphenols and Low Grade Inflammation: Results from the MOLI-SANI Study. Br. J. Clin. Pharmacol. 2017, 83, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Casas, R.; Sacanella, E.; Estruch, R. The Immune Protective Effect of the Mediterranean Diet against Chronic Low-Grade Inflammatory Diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S.-W.; et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE 2015, 10, e0137429. [Google Scholar] [CrossRef] [Green Version]
- Riccio, P.; Rossano, R. Diet, Gut Microbiota, and Vitamins D + A in Multiple Sclerosis. Neurotherapeutics 2018, 15, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Furusawa, Y.; Obata, Y.; Hase, K. Commensal Microbiota Regulates T Cell Fate Decision in the Gut. Semin. Immunopathol. 2015, 37, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, D.M.; Prasad, C. Functional Foods for Chronic Diseases–Diabetes and Related Diseases: The 6th International Conference Proceedings; D&A Inc.: Scotts Valley, CA, USA, 2009; ISBN 9781449915018. [Google Scholar]
- Almeida, S.; Alves, M.G.; Sousa, M.; Oliveira, P.F.; Silva, B.M. Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration? Neurotox. Res. 2016, 30, 345–366. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, E.; Marletta, L. Tabelle di Composizione Degli Alimenti; Edra: Florida, NY, USA, 1997; ISBN 9788886457217. [Google Scholar]
- Aiello, A.; Guccione, G.D.; Accardi, G.; Caruso, C. What Olive Oil for Healthy Ageing? Maturitas 2015, 80, 117–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambino, C.M.; Accardi, G.; Aiello, A.; Candore, G.; Dara-Guccione, G.; Mirisola, M.; Procopio, A.; Taormina, G.; Caruso, C. Effect of Extra Virgin Olive Oil and Table Olives on the ImmuneInflammatory Responses: Potential Clinical Applications. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Cicerale, S.; Lucas, L.J.; Keast, R.S.J. Antimicrobial, Antioxidant and Anti-Inflammatory Phenolic Activities in Extra Virgin Olive Oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef]
- Accardi, G.; Aiello, A.; Gambino, C.M.; Virruso, C.; Caruso, C.; Candore, G. Mediterranean Nutraceutical Foods: Strategy to Improve Vascular Ageing. Mech. Ageing Dev. 2016, 159, 63–70. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like Activity in Extra-Virgin Olive Oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef]
- Dell’Agli, M.; Fagnani, R.; Galli, G.V.; Maschi, O.; Gilardi, F.; Bellosta, S.; Crestani, M.; Bosisio, E.; De Fabiani, E.; Caruso, D. Olive Oil Phenols Modulate the Expression of Metalloproteinase 9 in THP-1 Cells by Acting on Nuclear Factor-kappaB Signaling. J. Agric. Food Chem. 2010, 58, 2246–2252. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Vitamin E and Protection of DNA, Proteins and Lipids from Oxidative Damage (ID 160, 162, 1947), Maintenance of the Normal Function of the Immune System (ID 161, 163), Maintenance of Norm. EFSA J. 2010, 8, 1816. [Google Scholar] [CrossRef]
- Accardi, G.; Aiello, A.; Gargano, V.; Gambino, C.M.; Caracappa, S.; Marineo, S.; Vesco, G.; Carru, C.; Zinellu, A.; Zarcone, M.; et al. Nutraceutical Effects of Table Green Olives: A Pilot Study with Nocellara Del Belice Olives. Immun. Ageing 2016, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Whelan, J. Dietary Stearidonic Acid Is a Long Chain (n-3) Polyunsaturated Fatty Acid with Potential Health Benefits. J. Nutr. 2009, 139, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving Inflammation: Dual Anti-Inflammatory and pro-Resolution Lipid Mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, A.; Gil, F. Fish, a Mediterranean Source of N-3 PUFA: Benefits Do Not Justify Limiting Consumption. Br. J. Nutr. 2015, 113, S58–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kris-Etherton, P.M.; Yu-Poth, S.; Sabaté, J.; Ratcliffe, H.E.; Zhao, G.; Etherton, T.D. Nuts and Their Bioactive Constituents: Effects on Serum Lipids and Other Factors That Affect Disease Risk. Am. J. Clin. Nutr. 1999, 70, 504S–511S. [Google Scholar] [CrossRef] [Green Version]
- Gentile, C.; Allegra, M.; Angileri, F.; Pintaudi, A.M.; Livrea, M.A.; Tesoriere, L. Polymeric Proanthocyanidins from Sicilian Pistachio (Pistacia Vera L.) Nut Extract Inhibit Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Cells. Eur. J. Nutr. 2012, 51, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Rubió, L.; Motilva, M.-J.; Romero, M.-P. Recent Advances in Biologically Active Compounds in Herbs and Spices: A Review of the Most Effective Antioxidant and Anti-Inflammatory Active Principles. Crit. Rev. Food Sci. Nutr. 2013, 53, 943–953. [Google Scholar] [CrossRef]
- Tlili, N.; Khaldi, A.; Triki, S.; Munné-Bosch, S. Phenolic Compounds and Vitamin Antioxidants of Caper (Capparis Spinosa). Plant Foods Hum. Nutr. 2010, 65, 260–265. [Google Scholar] [CrossRef]
- El Azhary, K.; Tahiri Jouti, N.; El Khachibi, M.; Moutia, M.; Tabyaoui, I.; El Hou, A.; Achtak, H.; Nadifi, S.; Habti, N.; Badou, A. Anti-Inflammatory Potential of Capparis Spinosa L. in Vivo in Mice through Inhibition of Cell Infiltration and Cytokine Gene Expression. BMC Complement. Altern. Med. 2017, 17, 81. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.; Dupuis, N.; Auvin, S. Ketogenic Diet and Neuroinflammation. Epilepsy Res. 2020, 167, 106454. [Google Scholar] [CrossRef]
- Yao, A.; Li, Z.; Lyu, J.; Yu, L.; Wei, S.; Xue, L.; Wang, H.; Chen, G.-Q. On the Nutritional and Therapeutic Effects of Ketone Body D-β-Hydroxybutyrate. Appl. Microbiol. Biotechnol. 2021, 105, 6229–6243. [Google Scholar] [CrossRef]
- Bock, M.; Karber, M.; Kuhn, H. Ketogenic Diets Attenuate Cyclooxygenase and Lipoxygenase Gene Expression in Multiple Sclerosis. EBioMedicine 2018, 36, 293–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Keller, J.N. Regulation of Energy Metabolism by Inflammation: A Feedback Response in Obesity and Calorie Restriction. Aging 2010, 2, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swindell, W.R. Genes and Gene Expression Modules Associated with Caloric Restriction and Aging in the Laboratory Mouse. BMC Genom. 2009, 10, 585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.J.; Lee, E.K.; Kim, J.Y.; Zou, Y.; Sung, B.; Heo, H.S.; Kim, M.K.; Lee, J.; Kim, N.D.; Yu, B.P.; et al. Effect of Short Term Calorie Restriction on pro-Inflammatory NF-kB and AP-1 in Aged Rat Kidney. Inflamm. Res. 2009, 58, 143–150. [Google Scholar] [CrossRef]
- Taha, A.Y.; Burnham, W.M.; Auvin, S. Polyunsaturated Fatty Acids and Epilepsy. Epilepsia 2010, 51, 1348–1358. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Tolerable Upper Intake Level of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA) and Docosapentaenoic Acid (DPA). EFSA J. 2012, 10, 2815. [Google Scholar] [CrossRef]
- Sampath, H.; Ntambi, J.M. Polyunsaturated Fatty Acid Regulation of Genes of Lipid Metabolism. Annu. Rev. Nutr. 2005, 25, 317–340. [Google Scholar] [CrossRef]
- Linden, J. Molecular Approach to Adenosine Receptors: Receptor-Mediated Mechanisms of Tissue Protection. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 775–787. [Google Scholar] [CrossRef]
- Ngamsri, K.-C.; Wagner, R.; Vollmer, I.; Stark, S.; Reutershan, J. Adenosine Receptor A1 Regulates Polymorphonuclear Cell Trafficking and Microvascular Permeability in Lipopolysaccharide-Induced Lung Injury. J. Immunol. 2010, 185, 4374–4384. [Google Scholar] [CrossRef] [Green Version]
- Masino, S.A.; Rho, J.M. Mechanisms of Ketogenic Diet Action. In Jasper’s Basic Mechanisms of the Epilepsies; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar]
- Lukashev, D.E.; Ohta, A.; Sitkovsky, M.V. Physiological Regulation of Acute Inflammation by A2A Adenosine Receptor. Drug Dev. Res. 2005, 64, 172–177. [Google Scholar] [CrossRef]
- Kim, S.H.; Shaw, A.; Blackford, R.; Lowman, W.; Laux, L.C.; Millichap, J.J.; Nordli, D.R., Jr. The Ketogenic Diet in Children 3 Years of Age or Younger: A 10-Year Single-Center Experience. Sci. Rep. 2019, 9, 8736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youm, Y.-H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; et al. The Ketone Metabolite β-Hydroxybutyrate Blocks NLRP3 Inflammasome-Mediated Inflammatory Disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanashi, T.; Iwata, M.; Kamiya, N.; Tsunetomi, K.; Kajitani, N.; Wada, N.; Iitsuka, T.; Yamauchi, T.; Miura, A.; Pu, S.; et al. Beta-Hydroxybutyrate, an Endogenic NLRP3 Inflammasome Inhibitor, Attenuates Stress-Induced Behavioral and Inflammatory Responses. Sci. Rep. 2017, 7, 7677. [Google Scholar] [CrossRef]
- Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of Assembly, Regulation and Signalling. Nat. Rev. Immunol. 2016, 16, 407–420. [Google Scholar] [CrossRef]
- Gharagozloo, M.; Gris, K.V.; Mahvelati, T.; Amrani, A.; Lukens, J.R.; Gris, D. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Front. Immunol. 2017, 8, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Inatsuka, C.; Gad, E.; Disis, M.L.; Standish, L.J.; Pugh, N.; Pasco, D.S.; Lu, H. Protein-Bound Polysaccharide-K Induces IL-1β via TLR2 and NLRP3 Inflammasome Activation. Innate Immun. 2014, 20, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Iwata, M.; Ota, K.T.; Duman, R.S. The Inflammasome: Pathways Linking Psychological Stress, Depression, and Systemic Illnesses. Brain Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Katz Sand, I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018, 7, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuehrlein, B.S.; Rutenberg, M.S.; Silver, J.N.; Warren, M.W.; Theriaque, D.W.; Duncan, G.E.; Stacpoole, P.W.; Brantly, M.L. Differential Metabolic Effects of Saturated versus Polyunsaturated Fats in Ketogenic Diets. J. Clin. Endocrinol. Metab. 2004, 89, 1641–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azary, S.; Schreiner, T.; Graves, J.; Waldman, A.; Belman, A.; Guttman, B.W.; Aaen, G.; Tillema, J.-M.; Mar, S.; Hart, J.; et al. Contribution of Dietary Intake to Relapse Rate in Early Paediatric Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Unoda, K.; Doi, Y.; Nakajima, H.; Yamane, K.; Hosokawa, T.; Ishida, S.; Kimura, F.; Hanafusa, T. Eicosapentaenoic Acid (EPA) Induces Peroxisome Proliferator-Activated Receptors and Ameliorates Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2013, 256, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Vari, A. LARN: Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; SICS Editore: Bassano del Grappa, Italy, 2017; ISBN 9788869309380. [Google Scholar]
- Nöthlings, U.; Schulze, M.B.; Weikert, C.; Boeing, H.; van der Schouw, Y.T.; Bamia, C.; Benetou, V.; Lagiou, P.; Krogh, V.; Beulens, J.W.J.; et al. Intake of Vegetables, Legumes, and Fruit, and Risk for All-Cause, Cardiovascular, and Cancer Mortality in a European Diabetic Population. J. Nutr. 2008, 138, 775–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, X.; Scott, D.; Hodge, A.M.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary Protein Intake and Risk of Type 2 Diabetes: Results from the Melbourne Collaborative Cohort Study and a Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2016, 104, 1352–1365. [Google Scholar] [CrossRef]
- Hermsdorff, H.H.M.; Zulet, M.Á.; Abete, I.; Martínez, J.A. A Legume-Based Hypocaloric Diet Reduces Proinflammatory Status and Improves Metabolic Features in Overweight/obese Subjects. Eur. J. Nutr. 2011, 50, 61–69. [Google Scholar] [CrossRef]
- HHS, Office of Disease Prevention and Health Promotion (U.S.); USDA, Center for Nutrition Policy Promotion (U.S.). Dietary Guidelines for Americans 2015–2020; U.S. Department of Health and Human Services: Washington, DC, USA, 2015; ISBN 9780160934650.
- Clifton, P.M.; Condo, D.; Keogh, J.B. Long Term Weight Maintenance after Advice to Consume Low Carbohydrate, Higher Protein Diets–A Systematic Review and Meta Analysis. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 224–235. [Google Scholar] [CrossRef]
- Møller, G.; Sluik, D.; Ritz, C.; Mikkilä, V.; Raitakari, O.T.; Hutri-Kähönen, N.; Dragsted, L.O.; Larsen, T.M.; Poppitt, S.D.; Silvestre, M.P.; et al. A Protein Diet Score, Including Plant and Animal Protein, Investigating the Association with HbA1c and eGFR-The PREVIEW Project. Nutrients 2017, 9, 763. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, D.; Karunaweera, N.; Lee, S.; van Der Kooy, F.; Harman, D.G.; Raju, R.; Bennett, L.; Gyengesi, E.; Sucher, N.J.; Münch, G. Anti-Inflammatory Activity of Cinnamon (C. Zeylanicum and C. Cassia) Extracts–Identification of E-Cinnamaldehyde and O-Methoxy Cinnamaldehyde as the Most Potent Bioactive Compounds. Food Funct. 2015, 6, 910–919. [Google Scholar] [CrossRef]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef]
- Di Meo, F.; Margarucci, S.; Galderisi, U.; Crispi, S.; Peluso, G. Curcumin, Gut Microbiota, and Neuroprotection. Nutrients 2019, 11, 2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preziosi, G.; Gordon-Dixon, A.; Emmanuel, A. Neurogenic Bowel Dysfunction in Patients with Multiple Sclerosis: Prevalence, Impact, and Management Strategies. Degener. Neurol. Neuromuscul. Dis. 2018, 8, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrie, R.A.; Cohen, J.; Stuve, O.; Trojano, M.; Sørensen, P.S.; Reingold, S.; Cutter, G.; Reider, N. A Systematic Review of the Incidence and Prevalence of Comorbidity in Multiple Sclerosis: Overview. Mult. Scler. 2015, 21, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Bakke, A.; Myhr, K.M.; Grønning, M.; Nyland, H. Bladder, Bowel and Sexual Dysfunction in Patients with Multiple Sclerosis--a Cohort Study. Scand. J. Urol. Nephrol. Suppl. 1996, 179, 61–66. [Google Scholar] [PubMed]
- Lawthom, C.; Durdey, P.; Hughes, T. Constipation as a Presenting Symptom. Lancet 2003, 362, 958. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Paoli, A.; Mancin, L.; Bianco, A.; Thomas, E.; Mota, J.F.; Piccini, F. Ketogenic Diet and Microbiota: Friends or Enemies? Genes 2019, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Daïen, C.I.; Pinget, G.V.; Tan, J.K.; Macia, L. Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. Front. Immunol. 2017, 8, 548. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, W.; Pfeiffer, R.F.; Park, F.; Lof, J.; Quigley, E.M. Constipation in Parkinson’s Disease: Objective Assessment and Response to Psyllium. Mov. Disord. 1997, 12, 946–951. [Google Scholar] [CrossRef]
- Zangaglia, R.; Martignoni, E.; Glorioso, M.; Ossola, M.; Riboldazzi, G.; Calandrella, D.; Brunetti, G.; Pacchetti, C. Macrogol for the Treatment of Constipation in Parkinson’s Disease. A Randomized Placebo-Controlled Study. Mov. Disord. 2007, 22, 1239–1244. [Google Scholar] [CrossRef]
- Nelson, A.D.; Camilleri, M.; Chirapongsathorn, S.; Vijayvargiya, P.; Valentin, N.; Shin, A.; Erwin, P.J.; Wang, Z.; Murad, M.H. Comparison of Efficacy of Pharmacological Treatments for Chronic Idiopathic Constipation: A Systematic Review and Network Meta-Analysis. Gut 2017, 66, 1611–1622. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.A.; Maiya, M.; Stewart, M.L. Resistant Starch Content in Foods Commonly Consumed in the United States: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.R.; King, J.; Kennedy, E. Popular Diets: A Scientific Review. Obes. Res. 2001, 9, 1S–40S. [Google Scholar] [CrossRef] [PubMed]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowling, A.C. Complementary and Alternative Medicine and Multiple Sclerosis. Neurol. Clin. 2011, 29, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Bowling, A.C. Complementary and Alternative Medicine. In Multiple Sclerosis and CNS Inflammatory Disorders; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 91–101. ISBN 9781118298633. [Google Scholar]
- Societaà Italiana di Nutrizione Umana. LARN: Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; SICS: Bassano del Grappa, Italy, 2014; ISBN 9788890685224. [Google Scholar]
- Benton, D.; Griffiths, R.; Haller, J. Thiamine Supplementation Mood and Cognitive Functioning. Psychopharmacology 1997, 129, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D Toxicity-A Clinical Perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Szot, M.; Karpecka-Gałka, E.; Drózdz, R.; Fraczek, B. Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare 2022, 10, 186. [Google Scholar] [CrossRef]
- Durga, J.; van Boxtel, M.P.J.; Schouten, E.G.; Kok, F.J.; Jolles, J.; Katan, M.B.; Verhoef, P. Effect of 3-Year Folic Acid Supplementation on Cognitive Function in Older Adults in the FACIT Trial: A Randomised, Double Blind, Controlled Trial. Lancet 2007, 369, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.G.; Batterham, P.J.; Mackinnon, A.J.; Jorm, A.F.; Hickie, I.; Fenech, M.; Kljakovic, M.; Crisp, D.; Christensen, H. Oral Folic Acid and Vitamin B-12 Supplementation to Prevent Cognitive Decline in Community-Dwelling Older Adults with Depressive Symptoms—The Beyond Ageing Project: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2012, 95, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Li, Q.; Zhou, X.; Zhao, J.; Song, A.; Li, W.; Liu, H.; Xu, W.; Huang, G. Effects of Folic Acid Supplementation on Cognitive Function and Aβ-Related Biomarkers in Mild Cognitive Impairment: A Randomized Controlled Trial. Eur. J. Nutr. 2019, 58, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Maylor, E.A.; Simpson, E.E.A.; Secker, D.L.; Meunier, N.; Andriollo-Sanchez, M.; Polito, A.; Stewart-Knox, B.; McConville, C.; O’Connor, J.M.; Coudray, C. Effects of Zinc Supplementation on Cognitive Function in Healthy Middle-Aged and Older Adults: The ZENITH Study. Br. J. Nutr. 2006, 96, 752–760. [Google Scholar] [PubMed]
- Murray-Kolb, L.E.; Beard, J.L. Iron Treatment Normalizes Cognitive Functioning in Young Women. Am. J. Clin. Nutr. 2007, 85, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lv, J.; Wang, W.; Zhang, D. Dietary Magnesium and Calcium Intake and Risk of Depression in the General Population: A Meta-Analysis. Aust. N. Z. J. Psychiatry 2017, 51, 219–229. [Google Scholar] [CrossRef] [Green Version]
Food | Main Anti-Inflammatory/Antioxidant Components | Reference |
---|---|---|
Pistachio nut | Proanthocyanidins | [99] |
EVOO/olive | Polyphenols (e.g., oleocanthal, hydroxytyrosol, tyrosol, oleuropein). | [88] |
Almonds | Vitamin E, MUFA, PUFA | [88,98] |
Capers | Phenolic compounds (e.g., rutin), tocopherols (e.g., gamma-tocopherol), carotenoids (e.g., lutein and beta-carotene), vitamin C. | [101] |
Cinnamon | E-cinnamaldehyde, o-methoxycinnamaldehyde | [135] |
Turmeric | Curcumin | [136,137] |
Green tea | Epigallocatechin 3-gallate (EGCC) | [138] |
Micronutrients | Effect of Supplementation with Vitamins and Minerals on Mental Fatigue and Cognitive Functions | RDA, AI, or UL in Healthy Subjects According to LARN |
---|---|---|
Vitamin D | Dose > 100 µg/die Effect = toxicity [152,153] Serum concentrations >150 ng/mL Effect = clinical condition of vitamin D toxicity characterized by hypercalcemia and hypercalciuria) [154] | RDA = 15 µg/die (adult 18–74 yo) RDA = 20 µg/die (>74 yo) UL = 100 µg/die [155] |
Thiamine (B1) | Dose = 50 mg/die for 2 months (120 young women) Effect = improvement of attention threshold and mood [156] | RDA = 1.2 mg/die (men > 18 yo) RDA = 1.1 mg/die (women > 18 years) UL not defined [155] |
Niacin (B3) | Dose = 250 mg/die Effect = modulation of NIACR1 expression on peripheral immune cells by improving sleep spectrum disorders in Parkinson’s disease [157] | RDA = 18 mg/die UL (Nicotinamide) = 10 mg/die UL (Nicotinic acid) = 900 mg/die [155] |
Vitamin C | Dose > 2000 mg/die Effect = diarrhea or kidney damage [152,153] | RDA = 105 mg/die (men > 18 yo) RDA = 85 mg/die (women > 18 yo) UL not defined [155] |
Pyridoxine (B6) | Dose > 1000 mg/die Effect = might mimic MS symptoms Dose < 50 mg/die Effect = nervous symptoms [152,153] | RDA = 1.3 mg/die (18–29 years) RDA = 1.7 mg/die (men) RDA = 1.5 mg/die (women, 60–74 yo) UL = 25 mg/die [155] |
Vitamin E | Dose > 1500 IU/die Effect = possible toxicity | AI = 13 mg α-TE (men > 18 yo) AI = 12 mg α-TE (women > 18 yo) UL = 300 mg α-TE [155] |
Folic acid (B9) | Dose= 1000IU of of alpha-tocopherol twice daily for three years Effect= No significant effect cognitive function, speed of processing, clinical global impression, functional performance, adverse events, or mortality [158] Dose = 800 µg/day for 3 years Effect = improvements of global cognitive functions, information-processing speed and memory storage [159] Dose = 400 µg/day for 2 years (+100 µg/day of B12) Effect = improvement of cognitive functions particularly long- and short-term memory [160] | RDA = 400 µg/die UL = 1000 µg/die [155] |
Vitamin B12 | Dose = 400 µg/day for 2 years (180 subjects with mild cognitive impairment) Effect = improved cognitive performance (full scale and verbal intelligence, memory) [160] | RDA = 2,4 µg/die (men and women) UL not defined [155] |
Calcium | RDA = 1000 mg/die (18–59 yo) RDA = 1200 mg/die(≥60 yo) UL = 2500 mg/die [155] | |
Zinc | Dose = 15.30 mg/die (387 healthy adults 55–87 yo) Effects = better on spatial working memory [161] | RDA = 12 mg/die (men) RDA = 9 mg/die (women) UL = 25 mg/die [155] |
Iron | Dose = 60 mg/die for 4 months (149 iron-deficient American women) Effect = 5-fold improvement in cognitive performance [162] | RDA = 10 mg/die (men ≥ 18 yo) RDA = 18 mg/die (women 18–49 yo) RDA = 10 mg/die (women > 50 yo) [155] |
Magnesium | Dose = 20 mg/day Effect = reduced risk of depression [163] | AI = 2.7 mg/die (men > 18 yo) AI = 2.3 mg/die (adult women > 18 yo) UL not defined [155] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Majo, D.; Cacciabaudo, F.; Accardi, G.; Gambino, G.; Giglia, G.; Ferraro, G.; Candore, G.; Sardo, P. Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients 2022, 14, 2384. https://doi.org/10.3390/nu14122384
Di Majo D, Cacciabaudo F, Accardi G, Gambino G, Giglia G, Ferraro G, Candore G, Sardo P. Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients. 2022; 14(12):2384. https://doi.org/10.3390/nu14122384
Chicago/Turabian StyleDi Majo, Danila, Francesco Cacciabaudo, Giulia Accardi, Giuditta Gambino, Giuseppe Giglia, Giuseppe Ferraro, Giuseppina Candore, and Pierangelo Sardo. 2022. "Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions" Nutrients 14, no. 12: 2384. https://doi.org/10.3390/nu14122384
APA StyleDi Majo, D., Cacciabaudo, F., Accardi, G., Gambino, G., Giglia, G., Ferraro, G., Candore, G., & Sardo, P. (2022). Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients, 14(12), 2384. https://doi.org/10.3390/nu14122384