Impact of Bariatric Surgery-Induced Weight Loss on Anterior Eye Health in Patients with Obesity
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 March 2021).
- Bohlman, H. Communicating the Ocular and Systemic Complications of Obesity to Patients. Optometry 2005, 76, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Ee, N.; Peters, J.; Beckett, N.; Booth, A.; Rockwood, K.; Anstey, K.J. Common Risk Factors for Major Noncommunicable Disease, a Systematic Overview of Reviews and Commentary: The Implied Potential for Targeted Risk Reduction. Ther. Adv. Chronic. Dis. 2019, 10, 2040622319880392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Impact of Obesity and Lifestyle-Related Risk Indicators in Open-Angle Glaucoma: A Review|University of Toronto Medical Journal. Available online: https://www.utmj.org/index.php/UTMJ/article/view/169 (accessed on 15 March 2021).
- Patterson, R.E.; Frank, L.L.; Kristal, A.R.; White, E. A Comprehensive Examination of Health Conditions Associated with Obesity in Older Adults. Am. J. Prev. Med. 2004, 27, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Iroku-Malize, T.; Kirsch, S. Eye Conditions in Older Adults: Cataracts. FP Essent. 2016, 445, 17–23. [Google Scholar] [PubMed]
- Acer, S.; Ağladıoğlu, S.Y.; Pekel, G.; Özhan, B.; Çetin, E.N.; Yağci, R.; Yildirim, C. Density of the Crystalline Lens in Obese and Nonobese Children. J. AAPOS 2016, 20, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Van Leiden, H.A.; Dekker, J.M.; Moll, A.C.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Stehouwer, C.D.A.; Polak, B.C.P. Blood Pressure, Lipids, and Obesity Are Associated with Retinopathy: The Hoorn Study. Diabetes Care 2002, 25, 1320–1325. [Google Scholar] [CrossRef] [Green Version]
- Van Leiden, H.A.; Dekker, J.M.; Moll, A.C.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Stehouwer, C.D.A.; Polak, B.C.P. Risk Factors for Incident Retinopathy in a Diabetic and Nondiabetic Population: The Hoorn Study. Arch. Ophthalmol. 2003, 121, 245–251. [Google Scholar] [CrossRef]
- Belliveau, M.J.; Harvey, J.T. Floppy Eyelid Syndrome. CMAJ 2015, 187, 130. [Google Scholar] [CrossRef] [Green Version]
- Uchino, M.; Nishiwaki, Y.; Michikawa, T.; Shirakawa, K.; Kuwahara, E.; Yamada, M.; Dogru, M.; Schaumberg, D.A.; Kawakita, T.; Takebayashi, T.; et al. Prevalence and Risk Factors of Dry Eye Disease in Japan: Koumi Study. Ophthalmology 2011, 118, 2361–2367. [Google Scholar] [CrossRef]
- Feingold, K.R. Obesity and Dyslipidemia; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Rathnakumar, K.; Ramachandran, K.; Baba, D.; Ramesh, V.; Anebaracy, V.; Vidhya, R.; Vinothkumar, R.; Poovitha, R.; Geetha, R. Prevalence of Dry Eye Disease and Its Association with Dyslipidemia. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 195–199. [Google Scholar] [CrossRef]
- Shokr, H.; Wolffsohn, J.S.; Trave Huarte, S.; Scarpello, E.; Gherghel, D. Dry Eye Disease Is Associated with Retinal Microvascular Dysfunction and Possible Risk for Cardiovascular Disease. Acta Ophthalmol. 2021, 99, aos.14782. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.C.; Jalbert, I.; Watt, K.; Golebiowski, B. A Possible Association Between Dry Eye Symptoms and Body Fat: A Prospective, Cross-Sectional Preliminary Study. Eye Contact Lens Sci. Clin. Pract. 2017, 43, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Erdur, S.K.; Aydin, R.; Ozsutcu, M.; Olmuscelik, O.; Eliacik, M.; Demirci, G.; Kocabora, M.S. The Relationship between Metabolic Syndrome, Its Components, and Dry Eye: A Cross-Sectional Study. Curr. Eye Res. 2017, 42, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.L.; Cheng, Y.L.; Ren, Y.P.; Yu, X.N.; Shentu, X.C. Metabolic Syndrome Risk Factors and Dry Eye Syndrome: A Meta-Analysis. Int. J. Ophthalmol. 2016, 9, 1038–1045. [Google Scholar] [CrossRef]
- Wu, F.Z.; Huang, Y.L.; Wu, C.C.; Wang, Y.C.; Pan, H.J.; Huang, C.K.; Yeh, L.R.; Wu, M.T. Differential Effects of Bariatric Surgery versus Exercise on Excessive Visceral Fat Deposits. Medicine 2016, 95, e2616. [Google Scholar] [CrossRef]
- Malinowski, S.S. Nutritional and Metabolic Complications of Bariatric Surgery. Am. J. Med. Sci. 2006, 331, 219–225. [Google Scholar] [CrossRef]
- Socorro Sánchez-Sánchez, A.; Rodríguez-Murguía, N.; Martinez-Cordero, C.; Chávez-Cerda, S. Protein Diet in Bariatric Patients Could Modify Tear Film. Obes. Surg. 2019, 30, 2053–2055. [Google Scholar] [CrossRef]
- Marques, N.P.N.; Felberg, S.; De Barros, J.N.; Malheiros, C.A. Evaluation of the Ocular Surface Following Bariatric Surgery. Arq. Bras. Oftalmol. 2017, 80, 247–251. [Google Scholar] [CrossRef]
- Pérez-Bartolomé, F.; Sanz-Pozo, C.; Martínez-de la Casa, J.M.; Arriola-Villalobos, P.; Fernández-Pérez, C.; García-Feijoó, J. Assessment of Ocular Redness Measurements Obtained with Keratograph 5M and Correlation with Subjective Grading Scales. J. Fr. Ophtalmol. 2018, 41, 836–846. [Google Scholar] [CrossRef]
- Wu, S.; Hong, J.; Tian, L.; Cui, X.; Sun, X.; Xu, J. Assessment of Bulbar Redness with a Newly Developed Keratograph. Optom. Vis. Sci. 2015, 92, 892–899. [Google Scholar] [CrossRef]
- Shokr, H.; Gherghel, D. European Society of Cardiology/European Society of Hypertension versus the American College of Cardiology/American Heart Association Guidelines on the Cut-off Values for Early Hypertension: A Microvascular Perspective. Sci. Rep. 2021, 11, 3473. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Qu, J.H.; Zhang, X.Y.; Sun, X.G. Repeatability and Reproducibility of Noninvasive Keratograph 5m Measurements in Patients with Dry Eye Disease. J. Ophthalmol. 2016, 2016, 8013621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Montero, M.; Rico-del-Viejo, L.; Lorente-Velázquez, A.; Martínez-Alberquilla, I.; Hernández-Verdejo, J.L.; Madrid-Costa, D. Repeatability of Noninvasive Keratograph 5M Measurements Associated With Contact Lens Wear. Eye Contact Lens Sci. Clin. Pract. 2019, 45, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Arita, R.; Suehiro, J.; Haraguchi, T.; Shirakawa, R.; Tokoro, H.; Amano, S. Objective Image Analysis of the Meibomian Gland Area. Br. J. Ophthalmol. 2014, 98, 746–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pult, H.; Riede-Pult, B. Comparison of Subjective Grading and Objective Assessment in Meibography. Contact Lens Anterior Eye 2013, 36, 22–27. [Google Scholar] [CrossRef]
- Pult, H.; Nichols, J.J. A Review of Meibography. Optom. Vis. Sci. 2012, 89, E760–E769. [Google Scholar] [CrossRef] [Green Version]
- Wolffsohn, J.S.; Tahhan, M.; Vidal-Rohr, M.; Hunt, O.A.; Bhogal-Bhamra, G. Best Technique for Upper Lid Eversion. Contact Lens Anterior Eye 2019, 42, 666–669. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology Report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Peterson, R.C.; Wolffsohn, J.S.; Fowler, C.W. Optimization of Anterior Eye Fluorescein Viewing. Am. J. Ophthalmol. 2006, 142, 572–575.e2. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. In Proceedings of the Behavior Research Methods; Psychonomic Society Inc.: Chicago, IL, USA, 2007; Volume 39, pp. 175–191. [Google Scholar]
- Pult, H.; Riede-Pult, B.H. Non-Contact Meibography: Keep It Simple but Effective. Contact Lens Anterior Eye 2012, 35, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Shimazaki-Den, S.; Tsubota, K.; Shimazaki, J. Morphological Evaluation of Meibomian Glands Using Noncontact Infrared Meibography. Ocul. Surf. 2013, 11, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, J.P.; Muntz, A.; Wang, M.T.M.; Luensmann, D.; Tan, J.; Trave Huarte, S.; Xue, A.L.; Jones, L.; Willcox, M.D.P.; Wolffsohn, J.S. Developing Evidence-Based Guidance for the Treatment of Dry Eye Disease with Artificial Tear Supplements: A Six-Month Multicentre, Double-Masked Randomised Controlled Trial. Ocul. Surf. 2021, 20, 62–69. [Google Scholar] [CrossRef]
- Alexopoulos, N.; Katritsis, D.; Raggi, P. Visceral Adipose Tissue as a Source of Inflammation and Promoter of Atherosclerosis. Atherosclerosis 2014, 233, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Shikama, Y.; Kurosawa, M.; Furukawa, M.; Ishimaru, N.; Matsushita, K. Involvement of Adiponectin in Age-Related Increases in Tear Production in Mice. Aging 2019, 11, 8329–8346. [Google Scholar] [CrossRef] [PubMed]
- Bilkhu, P.; Vidal-Rohr, M.; Trave-Huarte, S.; Wolffsohn, J.S. Effect of Meibomian Gland Morphology on Functionality with Applied Treatment. Contact Lens Anterior Eye 2021, 45, 101402. [Google Scholar] [CrossRef]
- Dogan, K.; Aarts, E.O.; Koehestanie, P.; Betzel, B.; Ploeger, N.; De Boer, H.; Aufenacker, T.J.; Van Laarhoven, K.J.H.M.; Janssen, I.M.C.; Berends, F.J. Optimization of Vitamin Suppletion after Roux-En-Y Gastric Bypass Surgery Can Lower Postoperative Deficiencies:A Randomized Controlled Trial. Medicine 2014, 93, e169. [Google Scholar] [CrossRef]
- da Cruz, S.P.; Matos, A.; Pereira, S.; Saboya, C.; da Cruz, S.P.; Ramalho, A. Roux-En-Y Gastric Bypass Aggravates Vitamin A Deficiency in the Mother-Child Group. Obes. Surg. 2018, 28, 114–121. [Google Scholar] [CrossRef]
- Gilbert, C. The Eye Signs of Vitamin A Deficiency. Community Eye Health J. 2013, 26, 66–67. [Google Scholar]
- Malm, E.; Ghosh, F. Chronic Conjunctivitis in a Patient with Folic Acid Deficiency. Acta Ophthalmol. Scand. 2006, 85, 226. [Google Scholar] [CrossRef]
- Ozen, S.; Ozer, M.A.; Akdemir, M.O. Vitamin B12 Deficiency Evaluation and Treatment in Severe Dry Eye Disease with Neuropathic Ocular Pain. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Sekeryapan, B.; Oner, V.; Kirbas, A.; Turkyilmaz, K.; Durmus, M. Plasma Homocysteine Levels in Dry Eye Patients. Cornea 2013, 32, e94–e96. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.D.; Martin, N.; Dodson, P.M. Homocysteine, Folates, and the Eye. Eye 2008, 22, 989–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roedl, J.B.; Bleich, S.; Schlötzer-Schrehardt, U.; Von Ahsen, N.; Kornhuber, J.; Naumann, G.O.H.; Kruse, F.E.; Jünemann, A.G.M. Increased Homocysteine Levels in Tear Fluid of Patients with Primary Open-Angle Glaucoma. Ophthalmic Res. 2008, 40, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.Y.; Zarshenas, N.; Jorgensen, J. Prevalence of Nutrient Deficiencies in Bariatric Patients. Nutrition 2009, 25, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Woodard, G.A.; Peraza, J.; Bravo, S.; Toplosky, L.; Hernandez-Boussard, T.; Morton, J.M. One Year Improvements in Cardiovascular Risk Factors: A Comparative Trial of Laparoscopic Roux-En-Y Gastric Bypass vs. Adjustable Gastric Banding. Obes. Surg. 2010, 20, 578–582. [Google Scholar] [CrossRef]
- Yeotikar, N.S.; Zhu, H.; Markoulli, M.; Nichols, K.K.; Naduvilath, T.; Papas, E.B. Functional and Morphologic Changes of Meibomian Glands in an Asymptomatic Adult Population. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3996–4007. [Google Scholar] [CrossRef] [Green Version]
- Osae, E.A.; Steven, P.; Redfern, R.; Hanlon, S.; Smith, C.W.; Rumbaut, R.E.; Burns, A.R. Dyslipidemia and Meibomian Gland Dysfunction: Utility of Lipidomics and Experimental Prospects with a Diet-Induced Obesity Mouse Model. Int. J. Mol. Sci. 2019, 20, 3505. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, E.; Thorell, A. Insulin Resistance in Bariatric Surgery. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 255–261. [Google Scholar] [CrossRef]
- Schirra, F.; Richards, S.M.; Liu, M.; Suzuki, T.; Yamagami, H.; Sullivan, D.A. Androgen Regulation of Lipogenic Pathways in the Mouse Meibomian Gland. Exp. Eye Res. 2006, 83, 291–296. [Google Scholar] [CrossRef]
Parameter | Baseline | Follow-Up | p-Value |
---|---|---|---|
BMI (kg/m2) | 49.20 (7.69) | 38.38 (7.84) | <0.001 * |
SBP (mmHg) | 144.24 (14.35) | 128.75 (13.23) | <0.001 * |
DBP (mmHg) | 78.96 (11.35) | 73.34 (10.84) | 0.039 * |
MAP (mmHg) | 100.72 (10.58) | 92.48 (10.94) | <0.001 * |
HR (bpm) | 74.10 (13.45) | 69.17 (9.88) | 0.046 * |
CHOL (mmol/L) | 4.90 (1.21) | 4.53 (0.97) | 0.003 * |
HDL-C (mmol/L) | 1.24 (0.35) | 1.51 (0.40) | <0.001 * |
LDL-C (mmol/L) | 2.97 (1.01) | 2.49 (0.81) | <0.001 * |
TG (mmol/L) | 1.44 (0.72) | 1.13 (0.50) | 0.002 * |
Parameter | Baseline | Follow Up | p-Value |
---|---|---|---|
TMH (mm) | 0.30 (0.10) | 0.27 (0.08) | 0.074 |
Fluorescein staining (%) | 1.76 (2.46) | 2.73 (4.53) | 0.333 |
Lissamine staining (%) | 12.10 (9.32) | 11.03 (4.72) | 0.372 |
NIBUT | |||
First (sec) | 10.08 (7.08) | 10.29 (6.72) | 0.875 |
Average (sec) | 11.92 (6.71) | 12.14 (6.53) | 0.849 |
Hyperemia | |||
Bulbar temporal | 0.86 (9.36) | 0.86 (0.44) | 0.952 |
Bulbar nasal | 0.99 (0.47) | 0.93 (0.41) | 0.451 |
Limbal temporal | 0.57 (0.32) | 0.57 (0.39) | 0.948 |
Limbal nasal | 0.71 (0.33) | 0.62 (0.32) | 0.082 |
MG Dropout | |||
Superior loss (%) | 22.12 (11.73) | 18.64 (10.88) | 0.062 |
Inferior loss (%) | 16.99 (9.94) | 14.39 (11.06) | 0.181 |
BMI | SBP | DBP | MAP | HR | CHOL | HDL-C | LDL-C | TG | ||
---|---|---|---|---|---|---|---|---|---|---|
− | 0.310 | 0.201 | 0.138 | 0.179 | 0.116 | 0.155 | −0.120 | 0.268 | −0.108 | |
Staining | Fluorescein | −0.010 | −0.075 | −0.050 | −0.078 | 0.025 | −0.151 | −0.164 | −0.150 | 0.083 |
Lissamine | 0.219 | 0.046 | −0.176 | −0.103 | 0.341 | 0.011 | −10.49 | 0.041 | 0.110 | |
NIBUT | First | 0.050 | 0.115 | 0.048 | 0.080 | 0.322 | −00.41 | −0.114 | 0.048 | −0.069 |
Average | 0.033 | 0.131 | 0.034 | 0.080 | 0.348 | −00.86 | −0.191 | 0.001 | −0.035 | |
Hyperemia | Bulbar Temporal | −0.129 | 0.103 | −0.032 | 0.036 | −0.191 | −0.097 | −0.063 | −0.107 | 0.121 |
Bulbar Nasal | −0.049 | 0.114 | −0.102 | −0.010 | −0.048 | −0.153 | −0.037 | −0.096 | 0.016 | |
Limbal Temporal | −0.115 | 0.169 | 0.024 | 0.119 | −0.307 | 0.012 | −0.094 | −0.001 | 0.181 | |
Limbal Nasal | 0.003 | 0.245 | 0.037 | 0.144 | −0.126 | 0.124 | 0.062 | 0.137 | 0.089 | |
MG Dropout | Upper | 0.112 | 0.310 | 0.150 | 0.237 | 0.049 | −0.041 | −0.051 | 0.003 | −0.026 |
Lower | 0.204 | 0.213 | −0.001 | 0.076 | −0.123 | 0.280 | −0.031 | 0.325 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimzad, S.; Bilkhu, P.S.; Wolffsohn, J.S.; Bellary, S.; Shokr, H.; Singhal, R.; Gherghel, D. Impact of Bariatric Surgery-Induced Weight Loss on Anterior Eye Health in Patients with Obesity. Nutrients 2022, 14, 2462. https://doi.org/10.3390/nu14122462
Karimzad S, Bilkhu PS, Wolffsohn JS, Bellary S, Shokr H, Singhal R, Gherghel D. Impact of Bariatric Surgery-Induced Weight Loss on Anterior Eye Health in Patients with Obesity. Nutrients. 2022; 14(12):2462. https://doi.org/10.3390/nu14122462
Chicago/Turabian StyleKarimzad, Said, Paramdeep S. Bilkhu, James S. Wolffsohn, Srikanth Bellary, Hala Shokr, Rishi Singhal, and Doina Gherghel. 2022. "Impact of Bariatric Surgery-Induced Weight Loss on Anterior Eye Health in Patients with Obesity" Nutrients 14, no. 12: 2462. https://doi.org/10.3390/nu14122462
APA StyleKarimzad, S., Bilkhu, P. S., Wolffsohn, J. S., Bellary, S., Shokr, H., Singhal, R., & Gherghel, D. (2022). Impact of Bariatric Surgery-Induced Weight Loss on Anterior Eye Health in Patients with Obesity. Nutrients, 14(12), 2462. https://doi.org/10.3390/nu14122462