A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namias, N.; Harvill, S.; Ball, S.; McKenney, M.G.; Salomone, J.P.; Civetta, J.M. Cost and morbidity associated with antibiotic prophylaxis in the ICU. J. Am. Coll. Surg. 1999, 188, 225–230. [Google Scholar] [CrossRef]
- Bhangu, A.; Ademuyiwa, A.O.; Aguilera, M.L.; Alexander, P.; Al-Saqqa, S.W.; Borda-Luque, G.; Costas-Chavarri, A.; Drake, T.M.; Ntirenganya, F.; Fitzgerald, J.E.; et al. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: A prospective, international, multicentre cohort study. Lancet Infect. Dis. 2018, 18, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Guyton, K.; Alverdy, J.C. The gut microbiota and gastrointestinal surgery. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health care-associated infections: A meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 2013, 173, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 97–132; quiz 133–134; discussion 196. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Adiamah, A.; Kushairi, A.; Varadhan, K.K.; Krznaric, Z.; Kulkarni, A.D.; Neal, K.R.; Lobo, D.N. Perioperative Probiotics or Synbiotics in Adults Undergoing Elective Abdominal Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann. Surg. 2020, 271, 1036–1047. [Google Scholar] [CrossRef]
- Lederer, A.K.; Pisarski, P.; Kousoulas, L.; Fichtner-Feigl, S.; Hess, C.; Huber, R. Postoperative changes of the microbiome: Are surgical complications related to the gut flora? A systematic review. BMC Surg. 2017, 17, 125. [Google Scholar] [CrossRef] [Green Version]
- Mustansir Dawoodbhoy, F.; Patel, B.K.; Patel, K.; Bhatia, M.; Lee, C.N.; Moochhala, S.M. Gut Microbiota Dysbiosis as a Target for Improved Post-Surgical Outcomes and Improved Patient Care: A Review of Current Literature. Shock 2021, 55, 441–454. [Google Scholar] [CrossRef]
- Lukovic, E.; Moitra, V.K.; Freedberg, D.E. The microbiome: Implications for perioperative and critical care. Curr. Opin. Anaesthesiol. 2019, 32, 412–420. [Google Scholar] [CrossRef]
- Domecky, P.; Rejman Patkova, A. Inflammatory blood parameters as prognostic factors for surgical site infection after primary hip or knee arthroplasty: A systematic review protocol. BMJ Open 2021, 11, e046027. [Google Scholar] [CrossRef]
- Zeng, J.; Ji, Y.; Liang, B.; Zhang, G.; Chen, D.; Zhu, M.; Wu, S.; Kuang, W. The effect of pro/synbiotics on postoperative infections in colorectal cancer patients: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2021, 43, 101370. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 2016, 1, e00199-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayakawa, M.; Asahara, T.; Henzan, N.; Murakami, H.; Yamamoto, H.; Mukai, N.; Minami, Y.; Sugano, M.; Kubota, N.; Uegaki, S.; et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig. Dis. Sci. 2011, 56, 2361–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmeister, D.M.; Johnson, T.R.; Lai, Z.; Scroggins, S.R.; DeRosa, M.; Jonas, R.B.; Zhu, C.; Scherer, E.; Stewart, R.M.; Schwacha, M.G.; et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J. Trauma Acute Care Surg. 2020, 88, 579–587. [Google Scholar] [CrossRef]
- Kelly, L.S.; Apple, C.G.; Gharaibeh, R.; Pons, E.E.; Thompson, C.W.; Kannan, K.B.; Darden, D.B.; Efron, P.A.; Thomas, R.M.; Mohr, A.M. Stress-related changes in the gut microbiome after trauma. J. Trauma Acute Care Surg. 2021, 91, 192–199. [Google Scholar] [CrossRef]
- Yeh, A.; Rogers, M.B.; Firek, B.; Neal, M.D.; Zuckerbraun, B.S.; Morowitz, M.J. Dysbiosis Across Multiple Body Sites in Critically Ill Adult Surgical Patients. Shock 2016, 46, 649–654. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Stavrou, G.; Giamarellos-Bourboulis, E.J.; Kotzampassi, K. The role of probiotics in the prevention of severe infections following abdominal surgery. Int. J. Antimicrob. Agents 2015, 46 (Suppl. S1), S2–S4. [Google Scholar] [CrossRef]
- Ng, S.C.; Hart, A.L.; Kamm, M.A.; Stagg, A.J.; Knight, S.C. Mechanisms of action of probiotics: Recent advances. Inflamm. Bowel Dis. 2009, 15, 300–310. [Google Scholar] [CrossRef]
- Kasatpibal, N.; Whitney, J.D.; Saokaew, S.; Kengkla, K.; Heitkemper, M.M.; Apisarnthanarak, A. Effectiveness of Probiotic, Prebiotic, and Synbiotic Therapies in Reducing Postoperative Complications: A Systematic Review and Network Meta-analysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 64, S153–S160. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.M.; Kalgudi, S.; Corbett, J.M.; Litton, E. Gut microbiota in surgical and critically ill patients. Anaesth. Intensive Care 2020, 48, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Hoover, L.; Bochicchio, G.V.; Napolitano, L.M.; Joshi, M.; Bochicchio, K.; Meyer, W.; Scalea, T.M. Systemic inflammatory response syndrome and nosocomial infection in trauma. J. Trauma 2006, 61, 310–316; discussion 316–317. [Google Scholar] [CrossRef] [PubMed]
- Kotzampassi, K.; Giamarellos-Bourboulis, E.J.; Voudouris, A.; Kazamias, P.; Eleftheriadis, E. Benefits of a synbiotic formula (Synbiotic 2000Forte) in critically Ill trauma patients: Early results of a randomized controlled trial. World J. Surg. 2006, 30, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Bengmark, S.; Kanellakopoulou, K.; Kotzampassi, K. Pro- and synbiotics to control inflammation and infection in patients with multiple injuries. J. Trauma 2009, 67, 815–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutelidakis, I.M.; Bezirtzoglou, E.; Giamarellos-Bourboulis, E.J.; Grosomanidis, V.; Kotzampassi, K. Impact of synbiotics on the intestinal flora of critically ill patients with multiple injuries. Int. J. Antimicrob. Agents 2010, 36, 90–91. [Google Scholar] [CrossRef]
- Tsilika, M.; Thoma, G.; Aidoni, Z.; Tsaousi, G.; Fotiadis, K.; Stavrou, G.; Malliou, P.; Chorti, A.; Massa, H.; Antypa, E.; et al. A four-probiotic preparation for ventilator-associated pneumonia in multi-trauma patients: Results of a randomized clinical trial. Int. J. Antimicrob. Agents 2022, 59, 106471. [Google Scholar] [CrossRef]
- Calandra, T.; Cohen, J. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit. Care Med. 2005, 33, 1538–1548. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- George, A.K.; Behera, J.; Homme, R.P.; Tyagi, N.; Tyagi, S.C.; Singh, M. Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Mol. Neurobiol. 2021, 58, 3614–3627. [Google Scholar] [CrossRef]
- Mahajan, C.; Khurana, S.; Kapoor, I.; Sokhal, S.; Kumar, S.; Prabhakar, H.; Mathur, P.; Mani, K. Characteristics of Gut Microbiome After Traumatic Brain Injury. J. Neurosurg. Anesthesiol. 2021. [Google Scholar] [CrossRef]
- Aghakhani, N. Relationship between mild traumatic brain injury and the gut microbiome: A scoping review. J. Neurosci. Res. 2022, 100, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Hanscom, M.; Loane, D.J.; Shea-Donohue, T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J. Clin. Investig. 2021, 131, e143777. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A. The neurobiology of stress and gastrointestinal disease. Gut 2000, 47, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.R.; Peterson, K.D.; Mu, Y.; Banerjee, S.; Allen-Bridson, K.; Morrell, G.; Dudeck, M.A.; Pollock, D.A.; Horan, T.C. National Healthcare Safety Network (NHSN) report: Data summary for 2006 through 2008, issued December 2009. Am. J. Infect. Control 2009, 37, 783–805. [Google Scholar] [CrossRef] [PubMed]
- Paryavi, E.; Stall, A.; Gupta, R.; Scharfstein, D.O.; Castillo, R.C.; Zadnik, M.; Hui, E.; O’Toole, R.V. Predictive model for surgical site infection risk after surgery for high-energy lower-extremity fractures: Development of the risk of infection in orthopedic trauma surgery score. J. Trauma Acute Care Surg. 2013, 74, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Torbert, J.T.; Joshi, M.; Moraff, A.; Matuszewski, P.E.; Holmes, A.; Pollak, A.N.; O’Toole, R.V. Current bacterial speciation and antibiotic resistance in deep infections after operative fixation of fractures. J. Orthop. Trauma 2015, 29, 7–17. [Google Scholar] [CrossRef]
- Wise, B.T.; Connelly, D.; Rocca, M.; Mascarenhas, D.; Huang, Y.; Maceroli, M.A.; Gage, M.J.; Joshi, M.; Castillo, R.C.; O’Toole, R.V. A Predictive Score for Determining Risk of Surgical Site Infection After Orthopaedic Trauma Surgery. J. Orthop. Trauma 2019, 33, 506–513. [Google Scholar] [CrossRef]
- Païssé, S.; Valle, C.; Servant, F.; Courtney, M.; Burcelin, R.; Amar, J.; Lelouvier, B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016, 56, 1138–1147. [Google Scholar] [CrossRef]
- Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Łoniewski, I.; Lara, L.F.; Koulaouzidis, A. A Systematic Review, Meta-Analysis, and Meta-Regression Evaluating the Efficacy and Mechanisms of Action of Probiotics and Synbiotics in the Prevention of Surgical Site Infections and Surgery-Related Complications. J. Clin. Med. 2018, 7, 556. [Google Scholar] [CrossRef] [Green Version]
- Lukic, J.; Chen, V.; Strahinic, I.; Begovic, J.; Lev-Tov, H.; Davis, S.C.; Tomic-Canic, M.; Pastar, I. Probiotics or pro-healers: The role of beneficial bacteria in tissue repair. Wound Repair Regen. 2017, 25, 912–922. [Google Scholar] [CrossRef]
- Im, A.R.; Kim, H.S.; Hyun, J.W.; Chae, S. Potential for tyndalized Lactobacillus acidophilus as an effective component in moisturizing skin and anti-wrinkle products. Exp. Ther. Med. 2016, 12, 759–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varian, B.J.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; et al. Microbial lysate upregulates host oxytocin. Brain Behav. Immun. 2017, 61, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorožňáková, E.; Bucková, B.; Hurníková, Z.; Revajová, V.; Lauková, A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet. Parasitol. 2016, 231, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Kekkonen, R.A.; Kajasto, E.; Miettinen, M.; Veckman, V.; Korpela, R.; Julkunen, I. Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-gamma production. World J. Gastroenterol. 2008, 14, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Vitko, H.A.; Sekula, L.K.; Schreiber, M.A. Probiotics for Trauma Patients: Should We Be Taking a Precautionary Approach? J. Trauma Nurs. Off. J. Soc. Trauma Nurses 2017, 24, 46–52. [Google Scholar] [CrossRef]
- Ren, D.; Li, C.; Qin, Y.; Yin, R.; Du, S.; Liu, H.; Zhang, Y.; Wang, C.; Rong, F.; Jin, N. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe 2015, 35, 22–27. [Google Scholar] [CrossRef]
- Dharmani, P.; De Simone, C.; Chadee, K. The probiotic mixture VSL#3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS ONE 2013, 8, e58671. [Google Scholar] [CrossRef] [Green Version]
- Otte, J.M.; Werner, I.; Brand, S.; Chromik, A.M.; Schmitz, F.; Kleine, M.; Schmidt, W.E. Human beta defensin 2 promotes intestinal wound healing in vitro. J. Cell. Biochem. 2008, 104, 2286–2297. [Google Scholar] [CrossRef]
- Hessle, C.; Andersson, B.; Wold, A.E. Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect. Immun. 2000, 68, 3581–3586. [Google Scholar] [CrossRef] [Green Version]
- Hart, A.L.; Lammers, K.; Brigidi, P.; Vitali, B.; Rizzello, F.; Gionchetti, P.; Campieri, M.; Kamm, M.A.; Knight, S.C.; Stagg, A.J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 2004, 53, 1602–1609. [Google Scholar] [CrossRef]
- Viazis, N.; Argyriou, K.; Kotzampassi, K.; Christodoulou, D.K.; Apostolopoulos, P.; Georgopoulos, S.D.; Liatsos, C.; Giouleme, O.; Koustenis, K.; Veretanos, C.; et al. A Four-Probiotics Regimen Combined with A Standard Helicobacter pylori-Eradication Treatment Reduces Side Effects and Increases Eradication Rates. Nutrients 2022, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Kotzampassi, K.; Stavrou, G.; Damoraki, G.; Georgitsi, M.; Basdanis, G.; Tsaousi, G.; Giamarellos-Bourboulis, E.J. A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J. Surg. 2015, 39, 2776–2783. [Google Scholar] [CrossRef] [PubMed]
- Moysidis, M.; Stavrou, G.; Cheva, A.; Abba Deka, I.; Tsetis, J.K.; Birba, V.; Kapoukranidou, D.; Ioannidis, A.; Tsaousi, G.; Kotzampassi, K. The 3-D configuration of excisional skin wound healing after topical probiotic application. Injury 2022, 53, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Poutahidis, T.; Kearney, S.M.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Erdman, S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS ONE 2013, 8, e78898. [Google Scholar] [CrossRef] [Green Version]
- Hempel, S.; Newberry, S.; Ruelaz, A.; Wang, Z.; Miles, J.N.; Suttorp, M.J.; Johnsen, B.; Shanman, R.; Slusser, W.; Fu, N.; et al. Safety of probiotics used to reduce risk and prevent or treat disease. Evid. Rep. Technol. Assess. 2011, 200, 1–645. [Google Scholar]
Placebo (n = 50) | Probiotics (n = 53) | p-Value | |
---|---|---|---|
Male gender, n (%) | 40 (80.0%) | 50 (94.3%) | 0.028 |
Age (years), mean ± SD | 44.1 ± 13.9 | 38.4 ± 16.9 | 0.061 |
Smokers, n (%) | 13 (26.0%) | 12 (22.6%) | 0.691 |
Diabetes Mellitus, n (%) | 4 (8.0%) | 5 (9.4%) | 0.796 |
Total number of operations | 89 | 88 | - |
* NISS, mean ± SD | 7.68 ± 2.17 | 7.43 ± 2.13 | 0.443 |
* GCS, mean ± SD | 10.02 ± 4.17 | 10.81 ± 3.49 | 0.133 |
* SOFA score, mean ± SD | 6.22 ± 1.41 | 5.91 ± 1.44 | 0.142 |
* APACHE II score, mean ± SD | 15.28 ± 5.61 | 14.82 ± 5.22 | 0.496 |
Type of Operation | Placebo (n = 50) | Probiotics (n = 53) | p-Value |
---|---|---|---|
exploratory laparotomy | 19 | 16 | 0.40 |
neurosurgery | 6 | 13 | 0.10 |
osteosynthesis | 35 | 25 | 0.019 |
thoracostomies | 20 | 26 | 0.36 |
others | 9 | 8 | 0.69 |
Total number of operations | 89 | 88 |
Type of Operations Per Patient | Placebo | Probiotics | p-Value |
---|---|---|---|
ONE OPERATION/PATIENT | |||
Osteosynthesis | 14 | 8 | 0.11 |
Neurosurgery | 1 | 7 | 0.03 |
Laparotomy | 0 | 4 | 0.05 |
Thoracostomy | 0 | 3 | 0.08 |
Others | 7 | 4 | 0.29 |
Number of patients, n (%) | 22 (44.0%) | 26 (49.0%) | 0.61 |
Number of operations, n | 22 | 26 | 0.47 |
TWO OPERATIONS/PATIENT | |||
Osteosynthesis + thoracostomy | 4 | 11 | 0.07 |
Osteosynthesis + laparotomy | 7 | 1 | 0.02 |
Osteosynthesis + others | 1 | 1 | 0.97 |
Laparotomy + neurosurgery | 0 | 1 | 0.33 |
Laparotomy + thoracostomy | 5 | 4 | 0.66 |
Laparotomy + others | 0 | 1 | 0.33 |
Number of patients, n (%) | 17 (34.0%) | 19 (35.8%) | 0.84 |
Number of operations, n | 34 | 38 | 0.50 |
THREE OPERATIONS/PATIENT | |||
Neurosurgery + thoracostomy + osteosynthesis | 4 | 2 | 0.36 |
Neurosurgery + thoracostomy + laparotomy | 1 | 3 | 0.34 |
Thoracostomy + laparotomy + osteosynthesis | 5 | 1 | 0.08 |
Thoracostomy + laparotomy + others | 1 | 1 | 0.97 |
Thoracostomy + osteosynthesis + others | 0 | 1 | 0.33 |
Number of patients, n (%) | 11 (22.0%) | 8 (15.2%) | 0.37 |
Number of operations, n | 33 | 24 | 0.16 |
Total number of patients, n (%) | 50 | 53 | - |
Total number of operations, n | 89 | 88 | - |
PLACEBO | PROBIOTICS | ||||
---|---|---|---|---|---|
OPERATIONS | Patients | SSI | Patients | SSI | p-Value |
ONE OPERATION/PATIENT | |||||
Osteosynthesis | 14 | 10 | 8 | 2 | 0.035 |
Neurosurgery | 1 | 0 | 7 | 0 | n/a |
Laparotomy | 0 | 0 | 4 | 1 | n/a |
Thoracostomy | 0 | 0 | 3 | 0 | n/a |
Others | 7 | 5 | 4 | 2 | 0.477 |
Number of patients | 22 | 26 | 0.61 | ||
Number of SSI | 15 | 5 | <0.001 | ||
TWO OPERATIONS/PATIENT | |||||
Osteosynthesis + thoracostomy | 4 | 2 | 11 | 2 | 0.22 |
Osteosynthesis + laparotomy | 7 | 0 | 1 | 2 | n/a |
Osteosynthesis + others | 1 | 0 | 1 | 1 | 0.157 |
Laparotomy + neurosurgery | 0 | 0 | 1 | 0 | n/a |
Laparotomy + thoracostomy | 5 | 1 | 4 | 0 | 0.12 |
Laparotomy + others | 0 | 0 | 1 | 0 | n/a |
Number of patients | 17 | 19 | 0.84 | ||
Number of SSI | 3 | 5 | 0.53 | ||
THREE OPERATIONS/PATIENT | |||||
Neurosurgery + thoracostomy + osteosynthesis | 4 | 2 | 2 | 1 | 0.99 |
Neurosurgery + thoracostomy + laparotomy | 1 | 0 | 3 | 0 | n/a |
Thoracostomy + laparotomy + osteosynthesis | 5 | 3 | 1 | 1 | 0.43 |
Thoracostomy + laparotomy + others | 1 | 0 | 1 | 1 | n/a |
Thoracostomy + osteosynthesis + others | 0 | 0 | 1 | 0 | n/a |
Number of patients | 11 | 8 | 0.37 | ||
Number of SSI | 5 | 3 | 0.73 | ||
Total number of patients | 50 | 53 | |||
Total number of SSI | 23 | 13 | 0.022 |
PATHOGENS n (%) | Placebo | Probiotics | p-Value |
---|---|---|---|
Staphylococcus aureus | 6 (25.0) | 9 (69.2) | 0.009 |
Proteus mirabilis | 4 (16.7) * | - | 0.110 |
Acinetobacter baumannii | 5 (20.8) * | - | 0.078 |
Enterococcus faecium | - | 1 (7.7) | 0.168 |
Pseudomonas aeruginosa | 4 (16.7) | 1 (7.7) | 0.446 |
Klebsiella oxytoca | 3 (12.5) | 1 (7.7) | 0.653 |
Serratia marcescens | 2 (8.3) | 1 (7.7) | 0.946 |
Total n of pathogens isolated | 24 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzikos, G.; Tsalkatidou, D.; Stavrou, G.; Thoma, G.; Chorti, A.; Tsilika, M.; Michalopoulos, A.; Papavramidis, T.; Giamarellos-Bourboulis, E.J.; Kotzampassi, K. A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients. Nutrients 2022, 14, 2620. https://doi.org/10.3390/nu14132620
Tzikos G, Tsalkatidou D, Stavrou G, Thoma G, Chorti A, Tsilika M, Michalopoulos A, Papavramidis T, Giamarellos-Bourboulis EJ, Kotzampassi K. A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients. Nutrients. 2022; 14(13):2620. https://doi.org/10.3390/nu14132620
Chicago/Turabian StyleTzikos, Georgios, Despoina Tsalkatidou, George Stavrou, Giannoula Thoma, Angeliki Chorti, Maria Tsilika, Antonios Michalopoulos, Theodosios Papavramidis, Evangelos J. Giamarellos-Bourboulis, and Katerina Kotzampassi. 2022. "A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients" Nutrients 14, no. 13: 2620. https://doi.org/10.3390/nu14132620
APA StyleTzikos, G., Tsalkatidou, D., Stavrou, G., Thoma, G., Chorti, A., Tsilika, M., Michalopoulos, A., Papavramidis, T., Giamarellos-Bourboulis, E. J., & Kotzampassi, K. (2022). A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients. Nutrients, 14(13), 2620. https://doi.org/10.3390/nu14132620