Smoking Exposure Is Associated with Serum Vitamin D Deficiency in Children: Evidence from the Japan Environment and Children’s Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of Children’s Tobacco Smoke Exposure
2.3. Model Covariates
2.4. Serum 25(OH)D Concentrations
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristic, Passive Smoking, and VDD
3.2. Association between Passive Smoking at Age 1.5 Years and VDD at 2 Years
3.3. Association between Passive Smoking at Age 1.5 Years and De-Seasonalized Serum 25(OH)D Concentrations at Age 2 Years
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Renal Physiol. 2005, 289, F8–F28. [Google Scholar] [CrossRef] [PubMed]
- Gois, P.H.F.; Ferreira, D.; Olenski, S.; Seguro, A.C. Vitamin D and infectious diseases: Simple bystander or contributing factor? Nutrients 2017, 9, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.; Tylavsky, F.; Kroger, H.; Karkkainen, M.; Lyytikainen, A.; Koistinen, A.; Mahonen, A.; Alen, M.; Halleen, J.; Vaananen, K.; et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am. J. Clin. Nutr. 2003, 78, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.E.; Amini, H.; Heydarpour, P.; Amini Chermahini, F.; Godderis, L. Air pollution, environmental chemicals, and smoking may trigger vitamin D deficiency: Evidence and potential mechanisms. Environ. Int. 2019, 122, 67–90. [Google Scholar] [CrossRef]
- Jaaskelainen, T.; Knekt, P.; Marniemi, J.; Sares-Jaske, L.; Mannisto, S.; Heliovaara, M.; Jarvinen, R. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur. J. Nutr. 2013, 52, 513–525. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. The Health Consequences of Smoking: 50 Years of Progress. A Report of the Surgeon General; U.S. Department of Health and Human Services; Centers for Disease Control and Prevention; National Center for Chronic Disease Prevention and Health Promotion; Office on Smoking and Health: Atlanta, GA, USA, 2014; Printed with corrections, January 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK179276/pdf/Bookshelf_NBK179276.pdf (accessed on 1 June 2022).
- Lokki, A.I.; Heikkinen-Eloranta, J.; Ohman, H.; Heinonen, S.; Surcel, H.M.; Nielsen, H.S. Smoking during pregnancy reduces vitamin D levels in a Finnish birth register cohort. Public Health Nutr. 2020, 23, 1273–1277. [Google Scholar] [CrossRef]
- Chinellato, I.; Piazza, M.; Sandri, M.; Paiola, G.; Tezza, G.; Boner, A.L. Correlation between vitamin D serum levels and passive smoking exposure in children with asthma. Allergy Asthma Proc. 2018, 39, 8–14. [Google Scholar] [CrossRef]
- Nwosu, B.U.; Kum-Nji, P. Tobacco smoke exposure is an independent predictor of vitamin D deficiency in US children. PLoS ONE 2018, 13, e0205342. [Google Scholar] [CrossRef]
- Japan Environment and Children’s Study (JECS) Study Protocol. Available online: https://www.env.go.jp/chemi/ceh/outline/data/jecs-study_protocol_14_en.pdf (accessed on 10 June 2022).
- Sekiyama, M.; Yamazaki, S.; Michikawa, T.; Nakayama, S.F.; Nitta, H.; Taniguchi, Y.; Suda, E.; Isobe, T.; Kobayashi, Y.; Iwai-Shimada, M.; et al. Study design and participants’ profile in the sub-cohort study in the Japan Environment and Children’s Study (JECS). J. Epidemiol 2022, 32, 228–236. [Google Scholar] [CrossRef]
- Yang, L.; Sato, M.; Saito-Abe, M.; Irahara, M.; Nishizato, M.; Sasaki, H.; Konishi, M.; Ishitsuka, K.; Mezawa, H.; Yamamoto-Hanada, K.; et al. Association of hemoglobin and hematocrit levels during pregnancy and maternal dietary iron intake with allergic diseases in children: The Japan Environment and Children’s Study (JECS). Nutrients 2021, 13, 810. [Google Scholar] [CrossRef]
- Khuri-Bulos, N.; Lang, R.D.; Blevins, M.; Kudyba, K.; Lawrence, L.; Davidson, M.; Faouri, S.; Halasa, N.B. Vitamin D deficiency among newborns in Amman, Jordan. Glob. J. Health Sci. 2013, 6, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Wu, H.; Chen, Y.; Xiong, F.; Zhao, J.; Sun, H.; Li, Y.; He, F. Prevalence of vitamin A and vitamin D deficiency in hospitalized neonates in Xi’an, China. Asia Pac. J. Clin. Nutr. 2022, 31, 275–281. [Google Scholar] [CrossRef]
- Al-Qahtani, S.M.; Shati, A.A.; Alqahtani, Y.A.; Dawood, S.A.; Siddiqui, A.F.; Zaki, M.S.A.; Khalil, S.N. Prevalence and correlates of vitamin D deficiency in children aged less than two years: A cross-sectional study from Aseer Region, Southwestern Saudi Arabia. Healthcare 2022, 10, 1064. [Google Scholar] [CrossRef]
- Yang, L.; Sato, M.; Saito-Abe, M.; Irahara, M.; Nishizato, M.; Sasaki, H.; Konishi, M.; Ishitsuka, K.; Mezawa, H.; Yamamoto-Hanada, K.; et al. 25-Hydroxyvitamin D levels among 2-year-old children: Findings from the Japan Environment and Children’s study (JECS). BMC Pediatr. 2021, 21, 539. [Google Scholar] [CrossRef]
- Van der Mei, I.A.; Ponsonby, A.L.; Dwyer, T.; Blizzard, L.; Taylor, B.V.; Kilpatrick, T.; Butzkueven, H.; McMichael, A.J. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J. Neurol. 2007, 254, 581–590. [Google Scholar] [CrossRef]
- Yang, L.; Sato, M.; Saito-Abe, M.; Nishizato, M.; Mezawa, H.; Yamamoto-Hanada, K.; Ohya, Y.; The Japan Environment and Children’s Study (JECS) Group. Serum 25-Hydroxyvitamin D Concentrations and Atopic Dermatitis in Early Childhood: Findings from the Japan Environment and Children’s Study. Nutrients 2021, 13, 2761. [Google Scholar] [CrossRef]
- Lin, L.Y.; Smeeth, L.; Langan, S.; Warren-Gash, C. Distribution of vitamin D status in the UK: A cross-sectional analysis of UK Biobank. BMJ Open 2021, 11, e038503. [Google Scholar] [CrossRef]
- Lorentzon, M.; Mellstrom, D.; Haug, E.; Ohlsson, C. Smoking is associated with lower bone mineral density and reduced cortical thickness in young men. J. Clin. Endocrinol. Metab. 2007, 92, 497–503. [Google Scholar] [CrossRef]
- Soldin, O.P.; Makambi, K.H.; Soldin, S.J.; O’Mara, D.M. Steroid hormone levels associated with passive and active smoking. Steroids 2011, 76, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.Q.; Chan, Y.H.; Xu, L.; Jin, Y.L.; Zhu, T.; Zhang, W.S.; Cheng, K.K.; Lam, T.H. Smoking and serum vitamin D in older Chinese people: Cross-sectional analysis based on the Guangzhou Biobank Cohort Study. BMJ Open 2016, 6, e010946. [Google Scholar] [CrossRef] [Green Version]
- Banihosseini, S.Z.; Baheiraei, A.; Shirzad, N.; Heshmat, R.; Mohsenifar, A. The effect of cigarette smoke exposure on vitamin D level and biochemical parameters of mothers and neonates. J. Diabetes Metab. Disord. 2013, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Need, A.G.; Kemp, A.; Giles, N.; Morris, H.A.; Horowitz, M.; Nordin, B.E. Relationships between intestinal calcium absorption, serum vitamin D metabolites and smoking in postmenopausal women. Osteoporos. Int. 2002, 13, 83–88. [Google Scholar] [CrossRef]
- Morabia, A.; Bernstein, M.S.; Antonini, S. Smoking, dietary calcium and vitamin D deficiency in women: A population-based study. Eur. J. Clin. Nutr. 2000, 54, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Kassi, E.N.; Stavropoulos, S.; Kokkoris, P.; Galanos, A.; Moutsatsou, P.; Dimas, C.; Papatheodorou, A.; Zafeiris, C.; Lyritis, G. Smoking is a significant determinant of low serum vitamin D in young and middle-aged healthy males. Hormones 2015, 14, 245–250. [Google Scholar] [CrossRef] [Green Version]
- De la Hunty, A.; Wallace, A.M.; Gibson, S.; Viljakainen, H.; Lamberg-Allardt, C.; Ashwell, M. UK Food Standards Agency Workshop Consensus Report: The choice of method for measuring 25-hydroxyvitamin D to estimate vitamin D status for the UK National Diet and Nutrition Survey. Br. J. Nutr. 2010, 104, 612–619. [Google Scholar] [CrossRef] [Green Version]
Variables | N | % | |
---|---|---|---|
Education level of mother | High | 3158 | 69.1 |
Low | 1413 | 30.9 | |
Missing | 22 | ||
Education level of father | High | 2774 | 60.9 |
Low | 1780 | 39.1 | |
Missing | 39 | ||
Annual Income of family | Normal or high | 2777 | 63.3 |
Low | 1610 | 36.7 | |
Missing | 206 | ||
Low birth weight | No | 4257 | 92.7 |
Yes | 336 | 7.3 | |
Sex of children | Boys | 2338 | 50.9 |
Girls | 2255 | 49.1 | |
Premature birth | No | 4415 | 96.1 |
Yes | 178 | 3.9 | |
Ages of mother at pregnancy | <35 | 3250 | 70.8 |
≥35 | 1342 | 29.2 | |
Missing | 1 | ||
Exclusive breast milk before and at 6 months | No | 2795 | 61 |
Yes | 1787 | 39 | |
Missing | 11 | ||
Day nursery | No | 2318 | 51.5 |
Yes | 2180 | 48.5 | |
Missing | 95 | ||
Season of 25(OH)D measurement | March–May | 998 | 21.7 |
June–August | 1441 | 31.4 | |
September–November | 1403 | 30.5 | |
December–February | 751 | 16.4 | |
Wearing a hat playing outside | Yes | 3508 | 77.7 |
No | 1004 | 22.3 | |
Missing | 81 | ||
Outside play time (hours) | <1 | 2060 | 46.3 |
≥1 | 2390 | 53.7 | |
Missing | 143 | ||
Parents smoking | No | 3204 | 71.3 |
Yes | 1289 | 28.7 | |
Missing | 100 | ||
Number of cigarettes smoked at home (mother) | 0 | 4229 | 93.7 |
1–5 | 122 | 2.7 | |
6–10 | 103 | 2.3 | |
≥11 | 60 | 1.3 | |
Missing | 79 | ||
Number of cigarettes smoked at home (father) | 0 | 3256 | 76.2 |
1–5 | 500 | 11.7 | |
6–10 | 307 | 7.2 | |
≥11 | 208 | 4.9 | |
Missing | 322 | ||
Serum 25(OH)D concentrations (ng/mL) | ≥20 | 3459 | 75.3 |
<20 | 1134 | 24.7 | |
Z scores of BMI at 18 months mean (SD) | 0.48 | (1.13) |
95% CI | |||||
---|---|---|---|---|---|
OR | Lower | Upper | p Value | ||
Tabaco smoking exposure # | |||||
Model 1 a | 1.34 | 1.16 | 1.55 | 0.0001 | |
Model 2 b | 1.35 | 1.14 | 1.59 | 0.0004 | |
Model 3 c | 1.34 | 1.14 | 1.59 | 0.0005 | |
Number of cigarettes smoked at home (mother) $ | |||||
Model 1 a | |||||
1–5 | 1.59 | 1.08 | 2.33 | 0.018 | |
6–10 | 0.79 | 0.49 | 1.28 | 0.340 | |
≥11 | 1.72 | 1.00 | 2.94 | 0.049 | |
Model 2 b | |||||
1–5 | 1.38 | 0.90 | 2.11 | 0.137 | |
6–10 | 0.72 | 0.43 | 1.23 | 0.228 | |
≥11 | 1.65 | 0.91 | 3.00 | 0.010 | |
Model 3 c | |||||
1–5 | 1.39 | 0.91 | 2.12 | 0.134 | |
6–10 | 0.74 | 0.43 | 1.25 | 0.253 | |
≥11 | 1.64 | 0.90 | 2.98 | 0.104 | |
Number of cigarettes smoked at home (father) $ | |||||
Model 1 a | |||||
1–5 | 1.51 | 1.23 | 1.85 | <0.001 | |
6–10 | 1.07 | 0.82 | 1.40 | 0.635 | |
≥11 | 1.22 | 0.89 | 1.66 | 0.225 | |
Model 2 b | |||||
1–5 | 1.47 | 1.17 | 1.85 | 0.001 | |
6–10 | 1.10 | 0.82 | 1.48 | 0.527 | |
≥11 | 1.25 | 0.89 | 1.77 | 0.202 | |
Model 3 c | |||||
1–5 | 1.46 | 1.16 | 1.84 | 0.001 | |
6–10 | 1.10 | 0.82 | 1.49 | 0.514 | |
≥11 | 1.25 | 0.89 | 1.77 | 0.201 |
95% CI | |||||
---|---|---|---|---|---|
Coefficients | Lower | Upper | p Value | ||
Tabaco smoking exposure | |||||
Model 1 a | −0.55 | −0.97 | −0.13 | 0.011 | |
Model 2 b | −0.52 | −0.95 | −0.08 | 0.020 | |
Model 3 c | −0.51 | −0.95 | −0.08 | 0.021 | |
Number of cigarettes smoked at home (mother) | |||||
Model 1 a | |||||
1–5 | −1.21 | −2.37 | −0.05 | 0.041 | |
6–10 | 0.53 | −0.73 | 1.79 | 0.412 | |
≥11 | 0.50 | −1.18 | 2.18 | 0.558 | |
Model 2 b | |||||
1–5 | −1.17 | −2.33 | −0.01 | 0.048 | |
6–10 | 0.53 | −0.73 | 1.80 | 0.409 | |
≥11 | 0.54 | −1.15 | 2.23 | 0.529 | |
Model 3 c | |||||
1–5 | −1.18 | −2.34 | −0.02 | 0.047 | |
6–10 | 0.52 | −0.75 | 1.78 | 0.424 | |
≥11 | 0.56 | −1.13 | 2.25 | 0.518 | |
Number of cigarettes smoked at home (father) | |||||
Model 1 a | |||||
1–5 | −0.85 | −1.46 | −0.24 | 0.007 | |
6–10 | −0.35 | −1.10 | 0.40 | 0.363 | |
≥11 | 0.30 | −0.63 | 1.22 | 0.529 | |
Model 2 b | |||||
1–5 | −0.74 | −1.36 | −0.12 | 0.020 | |
6–10 | −0.33 | −1.08 | 0.42 | 0.392 | |
≥11 | 0.22 | −0.71 | 1.15 | 0.648 | |
Model 3 c | |||||
1–5 | −0.73 | −1.35 | −0.11 | 0.021 | |
6–10 | −0.33 | −1.09 | 0.42 | 0.387 | |
≥11 | 0.22 | −0.71 | 1.15 | 0.647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Sato, M.; Saito-Abe, M.; Miyaji, Y.; Sato, C.; Nishizato, M.; Kumasaka, N.; Mezawa, H.; Yamamoto-Hanada, K.; Ohya, Y. Smoking Exposure Is Associated with Serum Vitamin D Deficiency in Children: Evidence from the Japan Environment and Children’s Study. Nutrients 2022, 14, 3121. https://doi.org/10.3390/nu14153121
Yang L, Sato M, Saito-Abe M, Miyaji Y, Sato C, Nishizato M, Kumasaka N, Mezawa H, Yamamoto-Hanada K, Ohya Y. Smoking Exposure Is Associated with Serum Vitamin D Deficiency in Children: Evidence from the Japan Environment and Children’s Study. Nutrients. 2022; 14(15):3121. https://doi.org/10.3390/nu14153121
Chicago/Turabian StyleYang, Limin, Miori Sato, Mayako Saito-Abe, Yumiko Miyaji, Chikako Sato, Minaho Nishizato, Natsuhiko Kumasaka, Hidetoshi Mezawa, Kiwako Yamamoto-Hanada, and Yukihiro Ohya. 2022. "Smoking Exposure Is Associated with Serum Vitamin D Deficiency in Children: Evidence from the Japan Environment and Children’s Study" Nutrients 14, no. 15: 3121. https://doi.org/10.3390/nu14153121
APA StyleYang, L., Sato, M., Saito-Abe, M., Miyaji, Y., Sato, C., Nishizato, M., Kumasaka, N., Mezawa, H., Yamamoto-Hanada, K., & Ohya, Y. (2022). Smoking Exposure Is Associated with Serum Vitamin D Deficiency in Children: Evidence from the Japan Environment and Children’s Study. Nutrients, 14(15), 3121. https://doi.org/10.3390/nu14153121