Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples
2.2. Sample Preparation of KBF
2.3. Determination of the Basic Nutrient Content and Bioactive Components
2.4. Animal and Diet
2.5. Measurement of the BW, Food Efficiency Ratio and Organ Weight
2.6. Serum Biochemical Analysis Hyperlipidemia
2.7. Metabolites in Serum Analysis
2.8. 16S rRNA-Amplicon-Based Sequencing and Microbial Analysis
2.9. Bioinformatics and Statistical Analyses
2.10. Statistical Analysis
3. Results
3.1. Fermentation Changes the Bioactive Ingredients of KBF
3.2. Effect of the KBF on BW, Food Intake and the Food Efficiency Ratio
3.3. Effects of KBF on Body Length, Abdominal Circumference and Organ Quality of Rats
3.4. Effects of KBF on Lipid Levels in High-Fat Rats
3.5. Effects of KBF on Serum Metabolites
3.6. Effect of the KBF on Regulation of Gut Microbiota
3.7. Association between the Serum Apparent Data, Metabolites and Gut Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KBF | kidney bean fermented broth |
KBNF | unfermented kidney bean broth |
BW | body weight |
KBF-H | higher dose group with kidney bean fermented broth |
KBF-M | medium dosage group with kidney bean fermented broth |
KBF-L | lower dose group with kidney bean fermented broth |
HFD | high-fat diet |
MOD | model group with saline extracts |
CON | control group |
TC | total cholesterol |
TG | triglyceride |
AI | atherosclerosis index |
ATS | atorvastatin |
ALT | alanine aminotransferase |
LDL-C | low density lipoprotein chesterol |
HDL-C | high density liptein cholesterol |
References
- Wang, W.; Hu, M.; Liu, H.; Zhang, X.; Li, H.; Zhou, F.; Liu, Y.; Lei, F.; Qin, J.; Zhao, Y.; et al. Global burden of disease study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease. Cell Metab. 2021, 33, 1943–1956.e1942. [Google Scholar] [CrossRef]
- Feigin, V.; Stark, B.; Johnson, C.; Roth, G.; Bisignano, C.; Abady, G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Barrios, V.; Escobar, C.; Cicero, A.; Burke, D.; Fasching, P.; Banach, M.; Bruckert, E. A nutraceutical approach (Armolipid Plus) to reduce total and LDL cholesterol in individuals with mild to moderate dyslipidemia: Review of the clinical evidence. Atheroscler. Suppl. 2017, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Afshin, A.; Forouzanfar, M.; Marissa, B.; Patrick, S.; Kara, E.; Alex, L.; Laurie, M.; Ali, H.; Maziar, M.; Mohsen, N.; et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Mathers, C.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, H.; Yang, J.; Mu, J.; Wang, R.; Zhao, X. Effect of soybean milk fermented with Lactobacillus plantarum HFY01 isolated from yak yogurt on weight loss and lipid reduction in mice with obesity induced by a high-fat diet. RSC Adv. 2020, 10, 34276–34289. [Google Scholar] [CrossRef]
- Wu, H.; Liu, H.; Ma, A.; Zhou, J.; Xia, X. Synergetic effects of Lactobacillus plantarum and Rhizopus oryzae on physicochemical, nutritional and antioxidant properties of whole-grain oats (Avena sativa L.) during solid-state fermentation. Food Sci. Technol. 2022, 154, 112687. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Xue, C. Latest developments in food-grade delivery systems for probiotics: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 8, 1–18. [Google Scholar] [CrossRef]
- Guan, Q.; Ding, X.; Zhong, L.; Zhu, C.; Nie, P.; Song, L. Beneficial effects of Lactobacillus-fermented black barley on high fat diet-induced fatty liver in rats. Food Funct. 2021, 12, 6526–6539. [Google Scholar] [CrossRef]
- Duan, R.; Guan, X.; Huang, K.; Zhang, Y.; Shen, M. Flavonoids from Whole-Grain Oat Alleviated High-Fat Diet-Induced Hyperlipidemia via Regulating Bile Acid Metabolism and Gut Microbiota in Mice. J. Agric. Food Chem. 2021, 69, 7629–7640. [Google Scholar] [CrossRef]
- Deglaire, A.; Moughan, P.J.; Bos, C.; Tome, D. Commercial Phaseolus Vulgaris Extract (Starch Stopper) Increases Ileal Endogenous Amino Acid and Crude Protein Losses in The Growing Rat. J. Agric. Food Chem. 2006, 54, 5197–5202. [Google Scholar] [CrossRef]
- Guo, X.; Cao, X.; Fang, X.; Guo, A.; Li, E. Inhibitory effects of fermented Ougan (Citrus reticulata cv. Suavissima) juice on high-fat diet-induced obesity associated with white adipose tissue browning and gut microbiota modulation in mice. Food Funct. 2021, 12, 9300–9314. [Google Scholar] [CrossRef]
- Neil, E.S.; McGinley, J.N.; Fitzgerald, V.K.; Lauck, C.A.; Tabke, J.A.; Streeter-McDonald, M.R.; Yao, L.; Broeckling, C.D.; Weir, T.L.; Foster, M.T.; et al. White Kidney Bean (Phaseolus Vulgaris L.) Consumption Reduces Fat Accumulation in a Polygenic Mouse Model of Obesity. Nutrients 2019, 15, 2780. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Li, N.; Shi, J.; Li, H.; Yue, Y.; Jiao, W.; Wang, N.; Song, Y.; Huo, G.; Li, B. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food Funct. 2019, 10, 5804–5815. [Google Scholar] [CrossRef]
- Curiel, J.; Pinto, D.; Marzani, B.; Filannino, P.; Farris, G.; Gobbett, M.; Rizzello, C. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb. Cell Factories 2015, 14, 67. [Google Scholar] [CrossRef] [Green Version]
- Revilla, E.; Santa, C.; Miramontes, E. Antiproliferative and immunoactivatory ability of an enzymatic extract from rice bran. Food Chem. 2013, 136, 526–531. [Google Scholar] [CrossRef]
- Valim, F.; Aguiar-Oliveira, E.; Kamimura, E.; Alves, V.; Maldonado, R. Production of Star Fruit Alcoholic Fermented Beverage. Indian J. Microbiol. 2016, 56, 476–481. [Google Scholar] [CrossRef]
- Kumar, M.; Ghosh, M.; Ganguli, A. Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverage. World J. Microbiol. Biotechnol. 2012, 28, 703–711. [Google Scholar] [CrossRef]
- Liao, X.; Guo, L.; Ye, Z.; Qiu, L.; Gu, F.; Lin, J. Use of Autochthonous Lactic Acid Bacteria Starters to Ferment Mango Juices for Promoting Its Probiotic Roles. Prep. Biochem. Biotechnol. 2016, 46, 399–405. [Google Scholar] [CrossRef]
- Ran, B.; Guo, C.; Li, W.; Li, W.; Wang, Q.; Qian, J.; Li, H. Sea buckthorn (Hippophae rhamnoides L.) fermentation liquid protects against alcoholic liver disease linked to regulation of liver metabolome and the abundance of gut microbiota. Food Res. Int. 2018, 4, 2846–2854. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, Y.; Teng, C.; Yao, Y.; Ren, G.; Richel, A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct. 2020, 11, 1624–1634. [Google Scholar] [CrossRef]
- Vlieg, J.; Veiga, P.; Zhang, C.; Derrien, M.; Zhao, L. Impact of microbial transformation of food on health from fermented foods to fermentation in the gastro-intestinal tract. Curr. Opin. Biotechnol. 2011, 22, 211–219. [Google Scholar] [CrossRef]
- Han, K.; Bose, S.; Wang, J.; Kim, B.; Kim, M.; Kim, E.; Kim, H. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Food Res. 2015, 59, 1004–1008. [Google Scholar] [CrossRef]
- Yan, J.; Xue, Q.; Chen, W.; Wang, K.; Peng, D.; Jiang, J.; Li, P.; Du, B. Probiotic-fermented alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota. Food Res. Int. 2022, 155, 111–125. [Google Scholar] [CrossRef]
- Monk, J.; Wu, W.; Lepp, D.; Wellings, H.; Hutchinson, A.; Liddle, D.; Graf, D.; Pauls, K.; Robinson, L.; Power, K. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J. Nutr. Biochem. 2019, 70, 91–104. [Google Scholar] [CrossRef]
- Eid, H.; Michelle, L.W.; Anil, N.; Qawasmeh, A.; Hassan, S.; Mocan, A.; Nabavi, S.; Rastrelli, L.; Atanasov, A.; Haddad1, P. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front. Pharmacol. 2017, 8, 387. [Google Scholar] [CrossRef]
- Guo, C.; Li, J. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed a cholesterol-enriched diet. Int. Dairy J. 2013, 32, 144–149. [Google Scholar] [CrossRef]
- Ridaura, V.; Faith, J.; Rey, F.; Cheng, J.; Duncan, A.; Kau, A.; Griffin, N.; Lombard, V.; Bernard, H.; Bain, J.; et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science 2013, 341, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Wang, Y.; Han, Y.; Zhao, J.; Han, F.; Song, G.; Jiang, P.; Miao, H. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats. J. Agric. Food Chem. 2018, 66, 6326–6335. [Google Scholar] [CrossRef]
- Yaneth, C.; Alfredo, L.; Margarita, B.; Vicente, M.; Ana, I. High relative abundance of Firmicutes and increased TNF-α levels correlate with obesity in children. Salud Publica Mex. 2018, 60, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Chalid, S.; Muawanah, A.; Nurbayti, S.; Utami, W. Characteristics and antioxidant activity of kidney bean (Phaseolus vulgaris L.) tempeh as functional food. AIP Conf. Proc. 2021, 2331, 040003. [Google Scholar] [CrossRef]
- Nolan, R.; Shannon, O.; Robinson, N.; Joel, A.; Houghton, D.; Malcomson, F. It’s No Has Bean: A Review of the Effects of White Kidney Bean Extract on Body Composition and Metabolic Health. Nutrients 2020, 12, 1398. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, C.A.; Andrés-Grau, A.M. Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xiao, X.; Dong, Y.; Shi, L.; Xu, T.; Wu, F. The anti-obesity effect of fermented barley extracts with Lactobacillus plantarum dy-1 and Saccharomyces cerevisiae in diet-induced obese rats. Food Funct. 2017, 8, 1132–1143. [Google Scholar] [CrossRef]
- Wang, S.; Chen, L.; Yang, H.; Gu, J.; Wang, J.; Ren, F. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects. Food Sci. Nutr. 2020, 8, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhao, W.; Xie, B.; Liu, H. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J. Funct. Foods 2020, 72, 104038. [Google Scholar] [CrossRef]
- Qin, H.; Sun, Q.; Pan, X.; Qiao, Z.; Yang, H. Microbial Diversity and Biochemical Analysis of Suanzhou: A Traditional Chinese Fermented Cereal Gruel. Front. Microbiol. 2016, 25, 1311. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, Y.; Ma, F.; Sun, M.; Mu, G.; Tuo, Y. The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflame buckwheat Monascus purpureus-fermented common mation and lipid metabolism in obese mice fed with a high fat diet. Food Funct. 2020, 11, 5024–5039. [Google Scholar] [CrossRef]
- Lubec, B.; Hayn, M.; Kitzmüller, E.; Vierhapper, H.; Lubec, G. L-Arginine Reduces Lipid Peroxidation in Patients with Diabetes Mellitus. Free. Radic. Biol. Med. 1997, 22, 355–357. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, M.; Guo, W.; Li, T.; Liu, B.; Bai, W.; Ai, L.; Rao, P.; Ni, L.; Lv, X. Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome. Food Res. Int. 2020, 136, 109511. [Google Scholar] [CrossRef]
- Li, S.; You, J.; Wang, Z.; Liu, Y.; Wang, B.; Du, M.; Zou, T. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res. Int. 2021, 143, 110270. [Google Scholar] [CrossRef]
- Méndez, J.; Balderas, F. Regulation of hyperglycemia and dyslipidemia by exogenous L-arginine in diabetic rats. Biochimie 2001, 83, 453–458. [Google Scholar] [CrossRef]
- Tanaka, M.; Honda, Y.; Miwa, S.; Akahori, R.; Matsumoto, K. Comparison of the Effects of Roasted and Boiled Red Kidney Beans (Phaseolus vulgaris L.) on Glucose/Lipid Metabolism and Intestinal Immunity in a High-Fat Diet-Induced Murine Obesity Model. J. Food Sci. 2019, 84, 1180–1187. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Jia, Y.; Shi, J.; Tong, Z.; Fang, D.; Yang, B.; Su, C.; Li, R.; Xiao, X.; et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat. Microbiol. 2021, 6, 874–884. [Google Scholar] [CrossRef]
- Ajiboye, T.; Iliasu, G.; Adeleye, A.; Ojewuyi, O.; Kolawole, F.; Bellod, S.; Mohammed, A. A fermented sorghum/millet based beverage, Obiolor, extenuates high fat diet-induced dyslipidemia and redox imbalance in the liver of rats. J. Sci. Food Agric. 2015, 25, 791–797. [Google Scholar] [CrossRef]
- Wen, J.; Li, M.; Gao, H.; Hu, J.; Nie, Q.; Chen, H.; Zhang, Y.; Xie, M.; Nie, S. Polysaccharides from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorate metabolic disorders and gut microbiota change in obese rats. Food Funct. 2021, 12, 2617–2630. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Wang, X.; Luo, L.; Sun, K.; Zeng, L. Gut Microbiome and Metabolome Response of Pu-erh Tea on Metabolism Disorder Induced by Chronic Alcohol Consumption. J. Agric. Food Chem. 2020, 68, 6615–6627. [Google Scholar] [CrossRef]
- Burcelin, R. Gut microbiota and immune crosstalk in metabolic disease. Mol. Metab. 2016, 5, 771–781. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Y.; Zha, S.; Sun, K.; Luo, L.; Zeng, L. Ripened Pu-Erh Tea Improved the Enterohepatic Circulation in a Circadian Rhythm Disorder Mice Model. J. Agric. Food Chem. 2021, 69, 13533–13545. [Google Scholar] [CrossRef]
- Shreiner, A.; Kao, J.; Young, V. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Ormerod, K.; Wood, D.; Lachner, N.; Gellatly, S.; Daly, J.; Parsons, J.; Molin, C.; Palfreyman, R.; Nielsen, L.; Cooper, M.; et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Zhao, J.; Zhang, M.; Chen, Z.; Ma, Q.; Liu, H.; Nie, C.; Zhang, Z.; An, W.; Li, J. Lycium ruthenicum Anthocyanins Attenuate High-Fat Diet-Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Mol. Nutr. Efood Res. 2021, 65, e2000745. [Google Scholar] [CrossRef]
KBNF | KBF | |
---|---|---|
Protein (g/100 g) | 0.54 ± 0.03 | 0.45 ± 0.01 ▲ |
Ash (g/100 g) | 0.48 ± 0.02 | 0.31 ± 0.03 ▲▲ |
Carbohydrate (g/100 g) | 11.61 ± 0.02 | 1.82 ± 0.04 ▲▲▲ |
Starch (g/100 g) | 0.11 ± 0.02 | 0.04 ± 0.01 ▲▲ |
Energy (kJ/100 g) | 205.32 ± 0.26 | 40.63 ± 0.25 ▲▲▲ |
Soluble solids (%) | 11.50 ± 0.05 | 4.60 ± 0.02 ▲▲▲ |
Total polyphenol (mg/mL) | 30.02 ± 0.62 | 92.24 ± 2.14 ▲▲▲ |
Total flavonoid (μg/mL) | 235.89 ± 2.08 | 367.75 ± 4.24 ▲▲▲ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, W.; Wang, D.; Zuo, Z.; Wang, Y.; Sun, W.; Zhang, N.; Zhang, D. Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition. Nutrients 2022, 14, 3202. https://doi.org/10.3390/nu14153202
Pang W, Wang D, Zuo Z, Wang Y, Sun W, Zhang N, Zhang D. Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition. Nutrients. 2022; 14(15):3202. https://doi.org/10.3390/nu14153202
Chicago/Turabian StylePang, Weiqiao, Di Wang, Zhaohang Zuo, Ying Wang, Wei Sun, Naidan Zhang, and Dongjie Zhang. 2022. "Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition" Nutrients 14, no. 15: 3202. https://doi.org/10.3390/nu14153202
APA StylePang, W., Wang, D., Zuo, Z., Wang, Y., Sun, W., Zhang, N., & Zhang, D. (2022). Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition. Nutrients, 14(15), 3202. https://doi.org/10.3390/nu14153202