Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Dietary Intakes and MSDPS Calculations
2.3. Study Measurements
2.4. Measurement of CAC
2.5. PAT Volume Measurement
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grandhi, G.R.; Mirbolouk, M.; Dardari, Z.A.; Al-Mallah, M.H.; Rumberger, J.A.; Shaw, L.J.; Blankstein, R.; Miedema, M.D.; Berman, D.S.; Budoff, M.J.; et al. Interplay of Coronary Artery Calcium and Risk Factors for Predicting CVD/CHD Mortality: The CAC Consortium. JACC Cardiovasc. Imaging 2020, 13, 1175–1186. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, 984–1010. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.; Psaltis, P.J.; Bartolo, B.; Nicholls, S.J.; Puri, R. Coronary arterial calcification: A review of mechanisms, promoters and imaging. Trends Cardiovasc. Med. 2018, 28, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Detrano, R.; Hsiai, T.; Wang, S.; Puentes, G.; Fallavollita, J.; Shields, P.; Stanford, W.; Wolfkiel, C.; Georgiou, D.; Budoff, M.; et al. Prognostic Value of Coronary Calcification and Angiographic Stenoses in Patients Undergoing Coronary Angiography. J. Am. Coll. Cardiol. 1996, 27, 285–290. [Google Scholar] [CrossRef]
- Graham, G.; Blaha, M.J.; Budoff, M.J.; Rivera, J.J.; Agatston, A.; Raggi, P.; Shaw, L.J.; Berman, D.; Rana, J.S.; Callister, T.; et al. Impact of Coronary Artery Calcification on All-Cause Mortality in Individuals with and without Hypertension. Atherosclerosis 2012, 225, 432–437. [Google Scholar] [CrossRef]
- Kavousi, M.; Desai, C.S.; Ayers, C.; Blumenthal, R.S.; Budoff, M.J.; Mahabadi, A.A.; Ikram, M.A.; van der Lugt, A.; Hofman, A.; Erbel, R.; et al. Prevalence and Prognostic Implications of Coronary Artery Calcification in Low-Risk Women: A Meta-analysis. JAMA 2016, 316, 2126–2134. [Google Scholar] [CrossRef]
- Nasir, K.; Rubin, J.; Blaha, M.J.; Shaw, L.J.; Blankstein, R.; Rivera, J.J.; Khan, A.N.; Berman, D.; Raggi, P.; Callister, T.; et al. Interplay of Coronary Artery Calcification and Traditional Risk Factors for the Prediction of All-Cause Mortality in Asymptomatic Individuals. Circ. Cardiovasc. Imaging 2012, 5, 467–473. [Google Scholar] [CrossRef]
- Bertaso, A.G.; Bertol, D.; Duncan, B.B.; Foppa, M. Epicardial Fat: Definition, Measurements and Systematic Review of Main Outcomes. Arq. Bras. Cardiol. 2013, 101, 18–28. [Google Scholar] [CrossRef]
- de Wit-Verheggen, V.H.; Altintas, S.; Spee, R.J.; Mihl, C.; van Kuijk, S.M.; Wildberger, J.E.; Schrauwen-Hinderling, V.B.; Kietselaer, B.L.; van de Weijer, T. Pericardial Fat and Its Influence on Cardiac Diastolic Function. Cardiovasc. Diabetol. 2020, 19, 129. [Google Scholar] [CrossRef]
- Larsen, B.A.; Laughlin, G.A.; Saad, S.D.; Barrett-Connor, E.; Allison, M.A.; Wassel, C.L. Pericardial Fat Is Associated with All-Cause Mortality but Not Incident CVD: The Rancho Bernardo Study. Atherosclerosis 2015, 239, 470–475. [Google Scholar] [CrossRef]
- Shah, R.V.; Anderson, A.; Ding, J.; Budoff, M.; Rider, O.; Petersen, S.E.; Jensen, M.K.; Koch, M.; Allison, M.; Kawel-Boehm, N.; et al. Pericardial, but Not Hepatic, Fat by CT Is Associated with CV Outcomes and Structure. JACC Cardiovasc. Imaging 2017, 10, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association (ADA). Cardiovascular Disease. Available online: https://www.diabetes.org/diabetes/cardiovascular-disease (accessed on 20 January 2022).
- Mori, H.; Torii, S.; Kutyna, M.; Sakamoto, A.; Finn, A.V.; Virmani, R. Coronary Artery Calcification and Its Progression. JACC Cardiovasc. Imaging 2018, 11, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, K.; Kolodgie, F.D.; Lutter, C.; Mori, H.; Romero, M.E.; Finn, A.V.; Virmani, R. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-Year Follow-Up of Intensive Glucose Control in Type 2 Diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Selvin, E.; Coresh, J.; Golden, S.H.; Brancati, F.L.; Folsom, A.R.; Steffes, M.W. Glycemic Control and Coronary Heart Disease Risk in Persons with and without Diabetes. Arch. Intern. Med. 2005, 165, 1910–1916. [Google Scholar] [CrossRef]
- Budoff, M.; Backlund, J.-Y.C.; Bluemke, D.A.; Polak, J.; Bebu, I.; Schade, D.; Strowig, S.; Raskin, P.; Lachin, J.M. The Association of Coronary Artery Calcification with Subsequent Incidence of Cardiovascular Disease in Type 1 Diabetes. JACC Cardiovasc. Imaging 2019, 12, 1341–1349. [Google Scholar] [CrossRef]
- Alman, A.C.; Jacobs, D.R.; Lewis, C.E.; Snell-Bergeon, J.K.; Carnethon, M.R.; Terry, J.G.; Goff, D.C.; Ding, J.; Carr, J.J. Higher Pericardial Adiposity Is Associated with Prevalent Diabetes: The Coronary Artery Risk Development in Young Adults Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 326–332. [Google Scholar] [CrossRef]
- Yang, F.-S.; Yun, C.-H.; Wu, T.-H.; Hsieh, Y.-C.; Bezerra, H.G.; Liu, C.-C.; Wu, Y.-J.; Kuo, J.-Y.; Hung, C.-L.; Hou, C.J.-Y.; et al. High Pericardial and Peri-Aortic Adipose Tissue Burden in Pre-Diabetic and Diabetic Subjects. BMC Cardiovasc. Disord. 2013, 13, 98. [Google Scholar] [CrossRef]
- Colom, C.; Viladés, D.; Pérez-Cuellar, M.; Leta, R.; Rivas-Urbina, A.; Carreras, G.; Ordóñez-Llanos, J.; Pérez, A.; Sánchez-Quesada, J.L. Associations between Epicardial Adipose Tissue, Subclinical Atherosclerosis and High-Density Lipoprotein Composition in Type 1 Diabetes. Cardiovasc. Diabetol. 2018, 17, 156. [Google Scholar] [CrossRef]
- Chambers, M.A.; Shaibi, G.Q.; Kapadia, C.R.; Vander Wyst, K.B.; Campos, A.; Pimentel, J.; Gonsalves, R.F., 3rd; Sandweiss, B.M.; Olson, M.L. Epicardial adipose thickness in youth with type 1 diabetes. Pediatric Diabetes 2019, 20, 941–945. [Google Scholar] [CrossRef]
- American Diabetes Association (ADA). What Is the Diabetes Plate Method? Available online: https://www.diabetesfoodhub.org/articles/what-is-the-diabetes-plate-method.html#:~:text=The%20Diabetes%20Plate%20Method%20is,you%20need%20is%20a%20plate! (accessed on 24 January 2022).
- Centers for Disease Control and Prevention (CDC). Prevent Heart Disease. Available online: https://www.cdc.gov/heartdisease/prevention.htm (accessed on 20 January 2022).
- Altomare, R.; Cacciabaudo, F.; Damiano, G.; Palumbo, V.D.; Gioviale, M.C.; Bellavia, M.; Tomasello, G.; Lo Monte, A.I. The mediterranean diet: A history of health. Iran. J. Public Health 2013, 42, 449–457. [Google Scholar] [PubMed]
- Martinez-Lacoba, R.; Pardo-Garcia, I.; Amo-Saus, E.; Escribano-Sotos, F. Mediterranean Diet and Health Outcomes: A Systematic Meta-Review. Eur. J. Public Health 2018, 28, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean Food Pattern Predicts the Prevalence of Hypertension, Hypercholesterolemia, Diabetes and Obesity, among Healthy Adults; the Accuracy of the Meddietscore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean Diet and Cardiovascular Disease: A Systematic Review and Meta-Analysis of Observational Studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Georgoulis, M.; Kontogianni, M.; Yiannakouris, N. Mediterranean Diet and Diabetes: Prevention and Treatment. Nutrients 2014, 6, 1406–1423. [Google Scholar] [CrossRef]
- Sleiman, D.; Al-Badri, M.R.; Azar, S.T. Effect of Mediterranean Diet in Diabetes Control and Cardiovascular Risk Modification: A Systematic Review. Front. Public Health 2015, 3, 69. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health Status: An Updated Meta-Analysis and a Proposal for a Literature-Based Adherence Score. Public Health Nutr. 2013, 17, 2769–2782. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean Diet Adherence Scores: A Systematic Review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef]
- Aoun, C.; Papazian, T.; Helou, K.; El Osta, N.; Khabbaz, L.R. Comparison of five international indices of adherence to the Mediterranean diet among healthy adults: Similarities and differences. Nutr. Res. Pract. 2019, 13, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Rumawas, M.E.; Dwyer, J.T.; Mckeown, N.M.; Meigs, J.B.; Rogers, G.; Jacques, P.F. The Development of the Mediterranean-Style Dietary Pattern Score and Its Application to the American Diet in the Framingham Offspring Cohort. J. Nutr. 2009, 139, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and Overall Survival in Elderly People. BMJ 1995, 311, 1457–1460. [Google Scholar] [CrossRef] [PubMed]
- Angelis, A.; Chrysohoou, C.; Tzorovili, E.; Laina, A.; Xydis, P.; Terzis, I.; Ioakeimidis, N.; Aznaouridis, K.; Vlachopoulos, C.; Tsioufis, K. The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology. Nutrients 2020, 13, 108. [Google Scholar] [CrossRef]
- Frölich, S.; Lehmann, N.; Weyers, S.; Wahl, S.; Dragano, N.; Budde, T.; Kälsch, H.; Mahabadi, A.A.; Erbel, R.; Moebus, S.; et al. Association of dietary patterns with five-year degree and progression of coronary artery calcification in the Heinz Nixdorf Recall study. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 999–1007. [Google Scholar] [CrossRef]
- Murie-Fernandez, M.; Irimia, P.; Toledo, E.; Martínez-Vila, E.; Buil-Cosiales, P.; Serrano-Martínez, M.; Ruiz-Gutiérrez, V.; Ros, E.; Estruch, R.; Martínez-González, M.Á.; et al. Carotid intima-media thickness changes with Mediterranean diet: A randomized trial (PREDIMED-Navarra). Atherosclerosis 2011, 219, 158–162. [Google Scholar] [CrossRef]
- Sala-Vila, A.; Romero-Mamani, E.S.; Gilabert, R.; Núñez, I.; de la Torre, R.; Corella, D.; Ruiz-Gutiérrez, V.; López-Sabater, M.C.; Pintó, X.; Rekondo, J.; et al. Changes in ultrasound-assessed carotid intima-media thickness and plaque with a Mediterranean diet: A substudy of the PREDIMED trial. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 439–445. [Google Scholar] [CrossRef]
- Torres-Peña, J.D.; Garcia-Rios, A.; Delgado-Casado, N.; Gomez-Luna, P.; Alcala-Diaz, J.F.; Yubero-Serrano, E.M.; Gomez-Delgado, F.; Leon-Acuña, A.; Lopez-Moreno, J.; Camargo, A.; et al. Mediterranean diet improves endothelial function in patients with diabetes and prediabetes: A report from the CORDIOPREV study. Atherosclerosis 2018, 269, 50–56. [Google Scholar] [CrossRef]
- Alman, A.C.; Smith, S.R.; Eckel, R.H.; Hokanson, J.E.; Burkhardt, B.R.; Sudini, P.R.; Wu, Y.; Schauer, I.E.; Pereira, R.I.; Snell-Bergeon, J.K. The ratio of pericardial to subcutaneous adipose tissues is associated with insulin resistance. Obesity 2017, 25, 1284–1291. [Google Scholar] [CrossRef]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and Validity of an Expanded Self-Administered Semiquantitative Food Frequency Questionnaire among Male Health Professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef]
- Snell-Bergeon, J.K.; Chartier-Logan, C.; Maahs, D.M.; Ogden, L.G.; Hokanson, J.E.; Kinney, G.L.; Eckel, R.H.; Ehrlich, J.; Rewers, M. Adults with Type 1 Diabetes Eat a High-Fat Atherogenic Diet That Is Associated with Coronary Artery Calcium. Diabetologia 2009, 52, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Sampson, L.; Browne, M.; Stampfer, M.; Rosner, B.; Hennekens, C.; Speizer, F. The Use of a Self-Administered Questionnaire to Assess Diet Four Years in the Past. Am. J. Epidemiol. 1988, 127, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Yiannakou, I.; Singer, M.R.; Jacques, P.F.; Xanthakis, V.; Ellison, R.C.; Moore, L.L. Adherence to a Mediterranean-Style Dietary Pattern and Cancer Risk in a Prospective Cohort Study. Nutrients 2021, 13, 4064. [Google Scholar] [CrossRef]
- Rumawas, M.E.; Meigs, J.B.; Dwyer, J.T.; McKeown, N.M.; Jacques, P.F. Mediterranean-Style Dietary Pattern, Reduced Risk of Metabolic Syndrome Traits, and Incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2009, 90, 1608–1614. [Google Scholar] [CrossRef]
- Snell-Bergeon, J.K.; Hokanson, J.E.; Jensen, L.; MacKenzie, T.; Kinney, G.; Dabelea, D.; Eckel, R.H.; Ehrlich, J.; Garg, S.; Rewers, M. Progression of Coronary Artery Calcification in Type 1 Diabetes. Diabetes Care 2003, 26, 2923–2928. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Venuraju, S.M.; Urbanova, L.; Lahiri, A.; Steptoe, A. Physical activity, sedentary time, and pericardial fat in healthy older adults. Obesity 2012, 20, 2113–2117. [Google Scholar] [CrossRef]
- Liu, J.; Fox, C.S.; Hickson, D.; Sarpong, D.; Ekunwe, L.; May, W.D.; Hundley, G.W.; Carr, J.J.; Taylor, H.A. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: The Jackson heart study. Diabetes Care 2010, 33, 1635–1639. [Google Scholar] [CrossRef]
- Saco-Ledo, G.; Valenzuela, P.L.; Castillo-García, A.; Arenas, J.; León-Sanz, M.; Ruilope, L.M.; Lucia, A. Physical exercise and epicardial adipose tissue: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2021, 22, e13103. [Google Scholar] [CrossRef]
- Hennein, R.; Liu, C.; McKeown, N.M.; Hoffmann, U.; Long, M.T.; Levy, D.; Ma, J. Increased Diet Quality is Associated with Long-Term Reduction of Abdominal and Pericardial Fat. Obesity 2019, 27, 670–677. [Google Scholar] [CrossRef]
- Shah, M.V.; Allison, M.; Ding, J.; Budoff, M.; Frazier-Wood, A.; Lima, J.A.; Steffen, L.; Siscovick, D.; Tucker, K.; Ouyang, P.; et al. Diet and adipose tissue distributions: The Multi-Ethnic Study of Atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 185–193. [Google Scholar] [CrossRef]
- Boghossian, N.S.; Yeung, E.H.; Mumford, S.L.; Zhang, C.; Gaskins, A.J.; Wactawski-Wende, J.; Schisterman, E.F. Adherence to the Mediterranean Diet and Body Fat Distribution in Reproductive Aged Women. Eur. J. Clin. Nutr. 2013, 67, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Gepner, Y.; Shelef, I.; Komy, O.; Cohen, N.; Schwarzfuchs, D.; Bril, N.; Rein, M.; Serfaty, D.; Kenigsbuch, S.; Zelicha, H.; et al. The Beneficial Effects of Mediterranean Diet over Low-Fat Diet May Be Mediated by Decreasing Hepatic Fat Content. J. Hepatol. 2019, 71, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.L.; Itsiopoulos, C.; Tierney, A.C.; Kucianski, T.; Radcliffe, J.; Garg, M.; Willcox, J.; Thomas, C.J. Ad libitum Mediterranean diet reduces subcutaneous but not visceral fat in patients with coronary heart disease: A randomised controlled pilot study. Clin. Nutr. ESPEN 2019, 32, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Barbouti, A.; Goulas, V. Dietary Antioxidants in the Mediterranean Diet. Antioxidants 2021, 10, 1213. [Google Scholar] [CrossRef] [PubMed]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of the Mediterranean Diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef]
- Pitsavos, C.; Panagiotakos, D.B.; Tzima, N.; Chrysohoou, C.; Economou, M.; Zampelas, A.; Stefanadis, C. Adherence to the Mediterranean Diet Is Associated with Total Antioxidant Capacity in Healthy Adults: The Attica Study. Am. J. Clin. Nutr. 2005, 82, 694–699. [Google Scholar] [CrossRef]
- Bertoli, S.; Leone, A.; Vignati, L.; Bedogni, G.; Martínez-González, M.Á.; Bes-Rastrollo, M.; Spadafranca, A.; Vanzulli, A.; Battezzati, A. Adherence to the Mediterranean Diet Is Inversely Associated with Visceral Abdominal Tissue in Caucasian Subjects. Clin. Nutr. 2015, 34, 1266–1272. [Google Scholar] [CrossRef]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and Cardiovascular Health. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef]
- Zhao, C.N.; Meng, X.; Li, Y.; Li, S.; Liu, Q.; Tang, G.Y.; Li, H.B. Fruits for Prevention and Treatment of Cardiovascular Diseases. Nutrients 2017, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Chen, Y.-G.; Zhang, L.; Na Xu, Y.L.; Wang, X.; Liu, J.; Qu, W. Momordica Charantia (Bitter melon) Reduces Obesity-Associated Macrophage and Mast Cell Infiltration as Well as Inflammatory Cytokine Expression in Adipose Tissues. PLoS ONE 2013, 8, e84075. [Google Scholar] [CrossRef]
- Donado-Pestana, C.M.; Belchior, T.; Festuccia, W.T.; Genovese, M.I. Phenolic Compounds from Cambuci (Campomanesia phaea O. Berg) Fruit Attenuate Glucose Intolerance and Adipose Tissue Inflammation Induced by a High-Fat, High-Sucrose Diet. Food Res. Int. 2015, 69, 170–178. [Google Scholar] [CrossRef]
- Kim, M.Y.; Shin, M.-R.; Seo, B.-I.; Noh, J.S.; Roh, S.-S. Young persimmon fruit extract suppresses obesity by modulating lipid metabolism in white adipose tissue of obese mice. J. Med. Food 2020, 23, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Olejnik, A.; Zielińska-Wasielica, J.; Olkowicz, M. Raspberry (Rubus idaeus L.) Fruit Extract Decreases Oxidation Markers, Improves Lipid Metabolism and Reduces Adipose Tissue Inflammation in Hypertrophied 3T3-L1 Adipocytes. J. Funct. Foods 2019, 62, 103568. [Google Scholar] [CrossRef]
- Tan, S.; Li, M.; Ding, X.; Fan, S.; Guo, L.; Gu, M.; Zhang, Y.; Feng, L.; Jiang, D.; Li, Y.; et al. Effects of Fortunella Margarita Fruit Extract on Metabolic Disorders in High-Fat Diet-Induced Obese C57BL/6 Mice. PLoS ONE 2014, 9, e93510. [Google Scholar] [CrossRef]
- Baile, C.A.; Yang, J.-Y.; Rayalam, S.; Hartzell, D.L.; Lai, C.-Y.; Andersen, C.; Della-Fera, M.A. Effect of Resveratrol on Fat Mobilization. Ann. N. Y. Acad. Sci. 2011, 1215, 40–47. [Google Scholar] [CrossRef]
- Gomez-Zorita, S.; Tréguer, K.; Mercader, J.; Carpéné, C. Resveratrol Directly Affects In Vitro Lipolysis and Glucose Transport in Human Fat Cells. J. Physiol. Biochem. 2013, 69, 585–593. [Google Scholar] [CrossRef]
- Zhu, J.; Yong, W.; Wu, X.; Yu, Y.; Lv, J.; Liu, C.; Mao, X.; Zhu, Y.; Xu, K.; Han, X.; et al. Anti-Inflammatory Effect of Resveratrol on TNF-α-Induced MCP-1 Expression in Adipocytes. Biochem. Biophys. Res. Commun. 2008, 369, 471–477. [Google Scholar] [CrossRef]
- Childers, A. A Prospective Study of Mediterranean Diet and Cognitive Decline. Master’s Thesis, Appalachian State University, Boone, NC, USA, 2018. [Google Scholar]
- Gray, M.S.; Wang, H.E.; Martin, K.D.; Donnelly, J.P.; Gutiérrez, O.M.; Shikany, J.M.; Judd, S.E. Adherence to mediterranean-style diet and risk of sepsis in the REasons for geographic and racial differences in stroke (REGARDS) cohort. Br. J. Nutr. 2018, 120, 1415–1421. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Hu, E.A.; Steffen, L.M.; Selvin, E.; Rebholz, C.M. Adherence to a Mediterranean-Style Eating Pattern and Risk of Diabetes in a U.S. Prospective Cohort Study. Nutr. Diabetes 2020, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Samieri, C.; Okereke, O.I.; Devore, E.E.; Grodstein, F. Long-Term Adherence to the Mediterranean Diet Is Associated with Overall Cognitive Status, but Not Cognitive Decline, in Women. J. Nutr. 2013, 143, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Torres, J.; Alcalá-Diaz, J.F.; Torres-Peña, J.D.; Gutierrez-Mariscal, F.M.; Leon-Acuña, A.; Gómez-Luna, P.; Fernández-Gandara, C.; Quintana-Navarro, G.M.; Fernandez-Garcia, J.C.; Perez-Martinez, P.; et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke 2021, 52, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Yubero-Serrano, E.M.; Fernandez-Gandara, C.; Garcia-Rios, A.; Rangel-Zuñiga, O.A.; Gutierrez-Mariscal, F.M.; Torres-Peña, J.D.; Marin, C.; Lopez-Moreno, J.; Castaño, J.P.; Delgado-Lista, J.; et al. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med. 2020, 17, e1003282. [Google Scholar] [CrossRef]
- Joseph, A.; Ackerman, D.; Talley, J.D.; Johnstone, J.; Kupersmith, J. Manifestations of coronary atherosclerosis in young trauma victims—An autopsy study. J. Am. Coll. Cardiol. 1993, 22, 459–467. [Google Scholar] [CrossRef]
- Mohan, J.; Bhatti, K.; Tawney, A.; Zeltser, R. Coronary Artery Calcification. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Strong, J.P.; Malcom, G.T.; McMahan, C.A.; Tracy, R.E.; Newman, W.P., 3rd; Herderick, E.E.; Cornhill, J.F. Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999, 281, 727–735. [Google Scholar] [CrossRef]
- Tuzcu, E.M.; Kapadia, S.R.; Tutar, E.; Ziada, K.M.; Hobbs, R.E.; McCarthy, P.M.; Young, J.B.; Nissen, S.E. High Prevalence of Coronary Atherosclerosis in Asymptomatic Teenagers and Young Adults. Circulation 2001, 103, 2705–2710. [Google Scholar] [CrossRef]
- Gorter, P.M.; de Vos, A.M.; van der Graaf, Y.; Stella, P.R.; Doevendans, P.A.; Meijs, M.F.; Prokop, M.; Visseren, F.L. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am. J. Cardiol. 2008, 102, 380–385. [Google Scholar] [CrossRef]
- McClain, J.; Hsu, F.; Brown, E.; Burke, G.; Carr, J.; Harris, T.; Kritchevsky, S.; Szklo, M.; Tracy, R.; Ding, J. Pericardial adipose tissue and coronary artery calcification in the Multi-ethnic Study of Atherosclerosis (MESA). Obesity 2013, 21, 1056–1063. [Google Scholar] [CrossRef]
- Rosito, G.A.; Massaro, J.M.; Hoffmann, U.; Ruberg, F.L.; Mahabadi, A.A.; Vasan, R.S.; O’Donnell, C.J.; Fox, C.S. Pericardial Fat, Visceral Abdominal Fat, Cardiovascular Disease Risk Factors, and Vascular Calcification in a Community-Based Sample. Circulation 2008, 117, 605–613. [Google Scholar] [CrossRef]
- Tanaka, K.; Sata, M. Roles of Perivascular Adipose Tissue in the Pathogenesis of Atherosclerosis. Front. Physiol. 2018, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, S.N.; Visseren, F.L. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 2011, 214, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Alman, A.C.; Maahs, D.M.; Rewers, M.J.; Snell-Bergeon, J.K. Ideal Cardiovascular Health and the Prevalence and Progression of Coronary Artery Calcification in Adults with and without Type 1 Diabetes. Diabetes Care 2014, 37, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Alman, A.C.; Snell-Bergeon, J.K. Associations of Dietary Patterns and Nutrients with Glycated Hemoglobin in Participants with and without Type 1 Diabetes. Nutrients 2021, 13, 1035. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Chien, L.-C.; Alman, A.C.; Snell-Bergeon, J.K. Associations of Dietary Patterns and Nutrients with Coronary Artery Calcification and Pericardial Adiposity in a Longitudinal Study of Adults with and without Type 1 Diabetes. Eur. J. Nutr. 2021, 60, 3911–3925. [Google Scholar] [CrossRef]
- Pereira, R.I.; Snell-Bergeon, J.K.; Erickson, C.; Schauer, I.E.; Bergman, B.C.; Rewers, M.; Maahs, D.M. Adiponectin Dysregulation and Insulin Resistance in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2012, 97, E642–E647. [Google Scholar] [CrossRef]
Variables | Non-Diabetic Controls (n = 692; % = 55.14) | Type 1 Diabetes (n = 563; % = 44.86) | p-Value | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Age, years | 39 | 9 | 37 | 9 | <0.0001 |
BMI, kg/m2 | 26 | 5 | 26 | 4 | 0.9089 |
Calories, kcal/day | 1821 | 619 | 1768 | 613 | 0.1305 |
HDL-C, mg/dL | 50.6 | 14.5 | 56.3 | 16.3 | <0.0001 |
LDL, mg/dL | 115 | 33 | 101 | 29 | <0.0001 |
HbA1c, % | 5.5 | 0.4 | 7.9 | 1.2 | <0.0001 |
Systolic blood pressure, mm Hg | 114 | 12 | 117 | 14 | <0.0001 |
PAT (cm3) | 35.3 | 23.5 | 30.5 | 16.6 | <0.0001 |
MSDPS total and component scores | Score (Servings per Day) | SD | Score (Servings per Day) | SD | |
Overall MSDPS | 25.4 | 7.8 | 25.0 | 7.8 | 0.4042 |
Whole grains | 1.96 (1.63) | 1.8 (2.2) | 2.29 (2.14) | 1.9 (3.4) | 0.0013 |
Fruits | 4.47 (2.16) | 3.0 (3.6) | 4.51 (2.61) | 3.0 (4.2) | 0.8303 |
Vegetables | 3.81 (2.97) | 2.3 (5.5) | 3.89 (3.84) | 2.4 (9.0) | 0.5316 |
Dairy | 5.50 (2.06) | 3.0 (2.6) | 5.52 (2.43) | 3.1 (3.2) | 0.8907 |
Wine | 0.89 (0.26) | 1.6 (0.9) | 0.71 (0.20) | 1.6 (0.8) | 0.0484 |
Fish | 2.68 (0.39) | 2.3 (1.2) | 2.27 (0.32) | 2.2 (1.2) | 0.0013 |
Poultry | 5.18 (0.63) | 3.0 (1.1) | 5.02 (0.58) | 3.0 (1.1) | 0.3598 |
Legumes | 3.89 (0.55) | 3.0 (1.0) | 3.67 (0.66) | 3.0 (1.7) | 0.1938 |
Potatoes | 4.58 (0.41) | 2.6 (0.7) | 4.59 (0.49) | 2.7 (1.1) | 0.9441 |
Eggs | 4.38 (0.30) | 3.8 (0.5) | 4.33 (0.31) | 3.9 (0.39) | 0.8262 |
Sweets | 0.10 (5.23) | 0.9 (5.9) | 0.07 (5.59) | 0.6 (7.6) | 0.5223 |
Meat | 0.65 (0.98) | 2.0 (1.5) | 0.69 (1.18) | 2.1 (2.0) | 0.7288 |
Count | % | Count | % | ||
Sex (female) | 349 | 50 | 319 | 57 | 0.0359 |
Hispanic | 59 | 9 | 15 | 3 | <0.0001 |
NHW | 582 | 84 | 536 | 95 | <0.0001 |
CAC > 0 | 179 | 26 | 223 | 40 | <0.0001 |
Median | IQR | Median | IQR | ||
Triglycerides, mg/dL | 103 | (75–154) | 78 | (62–108) | <0.0001 |
Physical activity, min/week | 84 | (0–300) | 42.5 | (0–300) | 0.3529 |
Coronary Artery Calcification > 0 | ||||||
---|---|---|---|---|---|---|
Variable + Model | Pooled Analysis | Non-Diabetic Controls | T1D | |||
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
MSDPS + Model 1 a,d | 1.00 | (0.98, 1.02) | 0.995 | (0.97, 1.02) | 1.00 | (0.98, 1.03) |
MSDPS + Model 2 b,d | 1.00 | (0.98, 1.02) | 1.01 | (0.98, 1.03) | 1.00 | (0.97, 1.03) |
MSDPS + Model 3 c,d | 1.00 | (0.98, 1.02) | 1.01 | (0.98, 1.04) | 1.00 | (0.97, 1.03) |
Pericardial Adiposity † | ||||||
---|---|---|---|---|---|---|
Variable + Model | Pooled Analysis | Non-Diabetic Controls | T1D | |||
Estimate | 95% CI | Estimate | 95% CI | Estimate | 95% CI | |
MSDPS + Model 1 a,e | −0.005 | (−0.008, −0.001) | −0.007 | (−0.012, −0.003) | −0.001 | (−0.006, 0.004) |
MSDPS + Model 2 b,e | −0.005 | (−0.01, 0.00) | −0.007 | (−0.011, −0.002) | −0.0008 | (−0.006, 0.004) |
MSDPS + Model 3 c,e | −0.003 | (−0.006, −0.0004) | −0.005 | (−0.009, −0.001) | −0.001 | (−0.005, 0.003) |
MSDPS + Model 4 d,e | −0.002 | (−0.006, 0.001) | −0.005 | (−0.009, −0.0001) | 0.002 | (−0.003, 0.006) |
MSDPS Component Scores/Day | CAC > 0 | PAT † | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | Parameter Estimate | 95% CI | p-Value | |
Whole grains | 0.94 | (0.87, 1.02) | 0.132 | −0.01 | (−0.03, 0.00) | 0.102 |
Fruits | 0.96 | (0.91, 1.00) | 0.054 | −0.02 | (−0.03, −0.01) | <0.0001 |
Vegetables | 0.98 | (0.92, 1.04) | 0.514 | −0.01 | (−0.02, 0.00) | 0.084 |
Dairy | 1.00 | (0.96, 1.05) | 0.955 | −0.004 | (−0.013, 0.004) | 0.355 |
Wine | 0.96 | (0.88, 1.04) | 0.333 | −0.03 | (−0.05, −0.02) | 0.0001 |
Fish | 1.00 | (0.94, 1.07) | 0.957 | −0.01 | (−0.02, 0.00) | 0.149 |
Poultry | 1.03 | (0.98, 1.07) | 0.273 | 0.01 | (−0.0007, 0.017) | 0.072 |
Legumes | 0.97 | (0.92, 1.01) | 0.132 | 0.002 | (−0.01, 0.01) | 0.680 |
Potatoes | 1.02 | (0.97, 1.08) | 0.355 | 0.01 | (−0.002, 0.02) | 0.117 |
Eggs | 1.02 | (0.98, 1.05) | 0.305 | 0.001 | (−0.01, 0.01) | 0.818 |
Sweets | 1.17 | (0.97, 1.40) | 0.096 | −0.002 | (−0.04, 0.03) | 0.895 |
Meat | 0.95 | (0.89, 1.03) | 0.229 | −0.03 | (−0.04, −0.01) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, L.A.; Basu, A.; Chien, L.-C.; Alman, A.C.; Snell-Bergeon, J.K. Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults. Nutrients 2022, 14, 3385. https://doi.org/10.3390/nu14163385
Richardson LA, Basu A, Chien L-C, Alman AC, Snell-Bergeon JK. Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults. Nutrients. 2022; 14(16):3385. https://doi.org/10.3390/nu14163385
Chicago/Turabian StyleRichardson, Leigh Ann, Arpita Basu, Lung-Chang Chien, Amy C. Alman, and Janet K. Snell-Bergeon. 2022. "Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults" Nutrients 14, no. 16: 3385. https://doi.org/10.3390/nu14163385
APA StyleRichardson, L. A., Basu, A., Chien, L. -C., Alman, A. C., & Snell-Bergeon, J. K. (2022). Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults. Nutrients, 14(16), 3385. https://doi.org/10.3390/nu14163385