High Meat Consumption Is Prospectively Associated with the Risk of Non-Alcoholic Fatty Liver Disease and Presumed Significant Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection and Definitions of Variables
2.3. NAFLD and Liver Fibrosis Evaluation
2.4. Evaluation and Definitions of Nutritional Variables
2.5. Statistical Analysis
3. Results
3.1. Description of the Study Population and Comparison between Subjects with High and Low (by Gender-Specific Median) Meat Consumption
3.2. Multivariable Association of High Meat Consumption with NAFLD, and of NAFLD with Elevated ALT
3.3. Univariate and Multivariable Association between Changes in Consumption of Different Meat Types and NAFLD
3.4. Sensitivity Analysis for the Association between Meat Consumption and NAFLD Evaluated Only by Liver US at Both Time Points
3.5. Multivariable Association of High Red and/or Processed Meat Consumption at Baseline with Presumed Liver Fibrosis at Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Baseline Evaluation | Follow-Up Evaluation |
---|---|---|
Total meat | Beefsteak or roast, internal beef organs, fried beef patties, lamb and pork, hamburger, salami, pastrami, sausages, processed schnitzel, canned meat, fourth of whole chicken, chicken breast, homemade schnitzel and turkey, chicken liver, chicken internal organs. High consumption defined as above the sample’s gender-specific medians (≥88.2 g/day for women or ≥122.9 for men) | Beefsteak on fire, beef steak in a pan, beef roast in the oven, beef cooked with sauce, internal beef organs, fried beef patties, cooked beef patties, minced meat with sauce, minced meat without sauce, lamb on fire, lamb in a pan, lamb in the oven, lamb cooked with sauce, pork, goose or duck, hamburger/kabab on fire, hamburger/kabab in a pan, processed schnitzel, chicken sausages in a pan, chicken sausages on fire, salami, pastrami, canned meat, chicken liver, internal chicken organs, fourth of whole chicken, chicken cooked with sauce, chicken in water, chicken breast in a pan, chicken breast on fire, homemade schnitzel, chicken/turkey fried or cooked patties. High consumption defined as above the sample’s gender-specific medians (≥81.0 g/day for women or ≥111.8 for men). |
Red and/or processed meat | Beefsteak or roast, internal beef organs, fried beef patties, lamb and pork, hamburger, salami, pastrami, sausages, processed schnitzel, and canned meat. High consumption is defined as above the sample’s gender-specific medians (≥16.3 g/day for women or ≥37.2 for men). | Beefsteak on fire, beef steak in a pan, beef roast in the oven, beef cooked with sauce, internal beef organs, fried beef patties, cooked beef patties, minced meat with sauce, minced meat without sauce, lamb on fire, lamb in a pan, lamb in the oven, lamb cooked with sauce, pork, goose or duck, hamburger/kabab on fire, hamburger/kabab in a pan, processed schnitzel, chicken sausages in a pan, chicken sausages on fire, salami, pastrami, canned meat High consumption is defined as above the sample’s gender-specific medians (≥28.5 g/day for women or ≥41.5 for men). |
Processed meat | Hamburger, salami, pastrami, sausages, processed schnitzel, and canned meat. High consumption is defined as above the sample’s gender-specific medians (≥1.8 g/day for women or ≥5.7 for men). | Hamburger/kabab on fire, hamburger/kabab in a pan, processed schnitzel, chicken sausages in a pan, chicken sausages on fire, salami, pastrami, canned meat High consumption is defined as above the sample’s gender-specific medians (≥0.7 g/day for women or ≥5.7 for men). |
Unprocessed red meat | Beefsteak or roast, internal beef organs, fried beef patties, lamb, and pork. High consumption is defined as above the sample’s gender-specific medians (≥9.6 g/day for women or ≥26.2 for men). | Beefsteak on fire, beefsteak in a pan, beef roast in the oven, beef cooked with sauce, internal beef organs, fried beef patties, cooked beef patties, minced meat with sauce, minced meat without sauce, lamb on fire, lamb in a pan, lamb in the oven, lamb cooked with sauce, pork, goose, or duck. High consumption is defined as above the sample’s gender-specific medians (≥16.9 g/day for women or ≥31.7 for men). |
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Hultcrantz, R.; Kechagias, S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; O’Reilly-Shah, V.N.; Fong, C.; Ivancovsky-Wajcman, D.; Reed, M.J.; Bentov, I. Liver Fibrosis Marker and Postoperative Mortality in Patients without Overt Liver Disease. Anesth. Analg. 2022, 10-1213. [Google Scholar] [CrossRef]
- Carrieri, P.; Mourad, A.; Marcellin, F.; Trylesinski, A.; Calleja, J.L.; Protopopescu, C.; Lazarus, J.V. Knowledge of liver fibrosis stage among adults with NAFLD/NASH improves adherence to lifestyle changes. Liver Int. 2022, 42, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Hassani Zadeh, S.; Mansoori, A.; Hosseinzadeh, M. Relationship between dietary patterns and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 1470–1478. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Charlton, M.; Kawaguchi, A.; Yamamura, S.; Nakano, D.; Tsutsumi, T.; Zafer, M.; Torimura, T. Effects of Mediterranean diet in patients with nonalcoholic fatty liver disease: A systematic review, meta-analysis, and meta-regression analysis of randomized controlled trials. Semin. Liver Dis. 2021, 41, 225–234. [Google Scholar] [CrossRef]
- Salomone, F.; Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Grosso, G.; Godos, J.; Galvano, F.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Higher phenolic acid intake independently associates with lower prevalence of insulin resistance and non-alcoholic fatty liver disease. JHEP Rep. 2020, 2, 100069. [Google Scholar] [CrossRef]
- Abdelmalek, M.F.; Suzuki, A.; Guy, C.; Unalp-Arida, A.; Colvin, R.; Johnson, R.J.; Diehl, A.M.; Network, N.S.C.R. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010, 51, 1961–1971. [Google Scholar] [CrossRef]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021, 41, 2635–2645. [Google Scholar] [CrossRef]
- He, K.; Li, Y.; Guo, X.; Zhong, L.; Tang, S. Food groups and the likelihood of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Fliss Isakov, N.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J. Hepatol. 2018, 68, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Noureddin, M.; Zelber-Sagi, S.; Wilkens, L.R.; Porcel, J.; Boushey, C.J.; Le Marchand, L.; Rosen, H.R.; Setiawan, V.W. Diet associations with nonalcoholic fatty liver disease in an ethnically diverse population: The Multiethnic Cohort. Hepatology 2020, 71, 1940–1952. [Google Scholar] [CrossRef]
- Soleimani, D.; Ranjbar, G.; Rezvani, R.; Goshayeshi, L.; Razmpour, F.; Nematy, M. Dietary patterns in relation to hepatic fibrosis among patients with nonalcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 2019, 12, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Lahelma, M.; Luukkonen, P.K.; Qadri, S.; Ahlholm, N.; Lallukka-Brück, S.; Porthan, K.; Juuti, A.; Sammalkorpi, H.; Penttilä, A.K.; Arola, J. Assessment of lifestyle factors helps to identify liver fibrosis due to non-alcoholic fatty liver disease in obesity. Nutrients 2021, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, M.; Merat, S.; Poustchi, H.; Jafari, E.; Radmard, A.-R.; Kamangar, F.; Freedman, N.; Hekmatdoost, A.; Sheikh, M.; Boffetta, P. Red meat consumption and risk of nonalcoholic fatty liver disease in a population with low meat consumption: The golestan cohort study. Am. J. Gastroenterol. 2021, 116, 1667–1675. [Google Scholar] [CrossRef]
- Kim, M.N.; Lo, C.-H.; Corey, K.E.; Luo, X.; Long, L.; Zhang, X.; Chan, A.T.; Simon, T.G. Red meat consumption, obesity, and the risk of nonalcoholic fatty liver disease among women: Evidence from mediation analysis. Clin. Nutr. 2022, 41, 356–364. [Google Scholar] [CrossRef]
- European Association for the Study of Liver; European Association for the Study of Diabetes; European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Obes. Facts 2016, 9, 65–90. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Keinan-Boker, L.; Noyman, N.; Chinich, A.; Green, M.S.; Nitzan-Kaluski, D. Overweight and obesity prevalence in Israel: Findings of the first national health and nutrition survey (MABAT). Isr. Med. Assoc. J. 2005, 7, 219–223. [Google Scholar]
- Cantwell, M.; Mittl, B.; Curtin, J.; Carroll, R.; Potischman, N.; Caporaso, N.; Sinha, R. Relative validity of a food frequency questionnaire with a meat-cooking and heterocyclic amine module. Cancer Epidemiol. Biomark. Prev. 2004, 13, 293–298. [Google Scholar] [CrossRef]
- Gore, R.M.; Levine, M.S. Textbook of Gastrointestinal Radiology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Petroff, D.; Blank, V.; Newsome, P.N.; Voican, C.S.; Thiele, M.; de Lédinghen, V.; Baumeler, S.; Chan, W.K.; Perlemuter, G.; Cardoso, A.-C. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: An individual patient data meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 185–198. [Google Scholar] [CrossRef]
- Selvaraj, E.A.; Mózes, F.E.; Jayaswal, A.N.A.; Zafarmand, M.H.; Vali, Y.; Lee, J.A.; Levick, C.K.; Young, L.A.J.; Palaniyappan, N.; Liu, C.-H. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2021, 75, 770–785. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Vergniol, J.; Wong, G.L.-H.; Foucher, J.; Chan, A.W.-H.; Chermak, F.; Choi, P.C.-L.; Merrouche, W.; Chu, S.H.-T.; Pesque, S. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Off. J. Am. Coll. Gastroenterol. ACG 2012, 107, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG clinical guideline: Evaluation of abnormal liver chemistries. Off. J. Am. Coll. Gastroenterol. ACG 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Fracanzani, A.L.; Valenti, L.; Bugianesi, E.; Vanni, E.; Grieco, A.; Miele, L.; Consonni, D.; Fatta, E.; Lombardi, R.; Marchesini, G. Risk of nonalcoholic steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease and low visceral adiposity. J. Hepatol. 2011, 54, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.R.; Diab, D.L.; Baker, A.R.; Yerian, L.; Bajaj, H.; Gray-McGuire, C.; Schauer, P.R.; Gupta, M.; Feldstein, A.E.; Hazen, S.L. Triglyceride levels and not adipokine concentrations are closely related to severity of nonalcoholic fatty liver disease in an obesity surgery cohort. Obesity 2009, 17, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Fracanzani, A.L.; Valenti, L.; Bugianesi, E.; Andreoletti, M.; Colli, A.; Vanni, E.; Bertelli, C.; Fatta, E.; Bignamini, D.; Marchesini, G. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: A role for insulin resistance and diabetes. Hepatology 2008, 48, 792–798. [Google Scholar] [CrossRef]
- Loomba, R.; Sanyal, A.J.; Kowdley, K.V.; Terrault, N.; Chalasani, N.P.; Abdelmalek, M.F.; McCullough, A.J.; Shringarpure, R.; Ferguson, B.; Lee, L. Factors associated with histologic response in adult patients with nonalcoholic steatohepatitis. Gastroenterology 2019, 156, 88–95.e85. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Wang, C.; Mao, Z.; Zhou, W.; Zhang, L.; Fan, M.; Cui, S.; Li, L. Meat and fish intake and type 2 diabetes: Dose–response meta-analysis of prospective cohort studies. Diabetes Metab. 2020, 46, 345–352. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Meat consumption and risk of metabolic syndrome: Results from the Korean population and a meta-analysis of observational studies. Nutrients 2018, 10, 390. [Google Scholar] [CrossRef]
- Iqbal, R.; Dehghan, M.; Mente, A.; Rangarajan, S.; Wielgosz, A.; Avezum, A.; Seron, P.; AlHabib, K.F.; Lopez-Jaramillo, P.; Swaminathan, S. Associations of unprocessed and processed meat intake with mortality and cardiovascular disease in 21 countries [Prospective Urban Rural Epidemiology (PURE) Study]: A prospective cohort study. Am. J. Clin. Nutr. 2021, 114, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [PubMed]
- Carr, P.R.; Walter, V.; Brenner, H.; Hoffmeister, M. Meat subtypes and their association with colorectal cancer: Systematic review and meta-analysis. Int. J. Cancer 2016, 138, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Alferink, L.J.; Kiefte-de Jong, J.C.; Erler, N.S.; Veldt, B.J.; Schoufour, J.D.; De Knegt, R.J.; Ikram, M.A.; Metselaar, H.J.; Janssen, H.L.; Franco, O.H. Association of dietary macronutrient composition and non-alcoholic fatty liver disease in an ageing population: The Rotterdam Study. Gut 2019, 68, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, A.; Sinha, R.; Ward, M.H.; Graubard, B.I.; Inoue-Choi, M.; Dawsey, S.M.; Abnet, C.C. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: Population based cohort study. BMJ 2017, 357, j1957. [Google Scholar] [CrossRef] [PubMed]
- Ivancovsky-Wajcman, D.; Zelber-Sagi, S.; Fliss Isakov, N.; Webb, M.; Zemel, M.; Shibolet, O.; Kariv, R. Serum Soluble Receptor for AGE (sRAGE) Levels Are Associated With Unhealthy Lifestyle and Nonalcoholic Fatty Liver Disease. Clin. Transl. Gastroenterol. 2019, 10, e00040. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein oxidation in muscle foods: A comprehensive review. Antioxidants 2021, 11, 60. [Google Scholar] [CrossRef]
- Parola, M.; Pinzani, M.; Casini, A.; Albano, E.; Poli, G.; Gentilini, A.; Gentilini, P.; Dianzani, M.U. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen α1 (I) gene expression in human liver fat-storing cells. Biochem. Biophys. Res. Commun. 1993, 194, 1044–1050. [Google Scholar] [CrossRef]
- Salomone, F.; Petta, S.; Micek, A.; Pipitone, R.M.; Distefano, A.; Castruccio Castracani, C.; Rini, F.; Di Rosa, M.; Gardi, C.; Calvaruso, V. Hepatitis C virus eradication by direct antiviral agents abates oxidative stress in patients with advanced liver fibrosis. Liver Int. 2020, 40, 2820–2827. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Hahn, M.; Webb, M.; Shibolet, O.; Kariv, R.; Tirosh, O. Serum Malondialdehyde is Associated with Non-Alcoholic Fatty Liver and Related Liver Damage Differentially in Men and Women. Antioxidants 2020, 9, 578. [Google Scholar] [CrossRef]
- Ge, X.; Arriazu, E.; Magdaleno, F.; Antoine, D.J.; dela Cruz, R.; Theise, N.; Nieto, N. High mobility group box-1 drives fibrosis progression signaling via the receptor for advanced glycation end products in mice. Hepatology 2018, 68, 2380–2404. [Google Scholar] [PubMed] [Green Version]
- Mehta, K.J.; Coombes, J.D.; Briones-Orta, M.; Manka, P.P.; Williams, R.; Patel, V.B.; Syn, W.-K. Iron enhances hepatic fibrogenesis and activates transforming growth factor-β signaling in murine hepatic stellate cells. Am. J. Med. Sci. 2018, 355, 183–190. [Google Scholar]
- Tuan, J.; Chen, Y.-X. Dietary and lifestyle factors associated with colorectal cancer risk and interactions with microbiota: Fiber, red or processed meat and alcoholic drinks. Gastrointest. Tumors 2016, 3, 17–24. [Google Scholar] [CrossRef]
- Vallianou, N.; Christodoulatos, G.S.; Karampela, I.; Tsilingiris, D.; Magkos, F.; Stratigou, T.; Kounatidis, D.; Dalamaga, M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2022, 12, 56. [Google Scholar]
- Ergün, Y.; Kurutaş, E.B.; Özdil, B.; Güneşaçar, R.; Ergün, Y. Evaluation of nitrite/nitrate levels in relation to oxidative stress parameters in liver cirrhosis. Clin. Res. Hepatol. Gastroenterol. 2011, 35, 303–308. [Google Scholar] [PubMed]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The liver as an endocrine organ—Linking NAFLD and insulin resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [PubMed]
- Boursier, J.; Vergniol, J.; Guillet, A.; Hiriart, J.-B.; Lannes, A.; Le Bail, B.; Michalak, S.; Chermak, F.; Bertrais, S.; Foucher, J. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease. J. Hepatol. 2016, 65, 570–578. [Google Scholar]
- Kwok, R.; Choi, K.C.; Wong, G.L.-H.; Zhang, Y.; Chan, H.L.-Y.; Luk, A.O.-Y.; Shu, S.S.-T.; Chan, A.W.-H.; Yeung, M.-W.; Chan, J.C.-N. Screening diabetic patients for non-alcoholic fatty liver disease with controlled attenuation parameter and liver stiffness measurements: A prospective cohort study. Gut 2016, 65, 1359–1368. [Google Scholar]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar]
- Lazarus, J.V.; Anstee, Q.M.; Hagstrom, H.; Cusi, K.; Cortez-Pinto, H.; Mark, H.E.; Roden, M.; Tsochatzis, E.A.; Wong, V.W.; Younossi, Z.M.; et al. Defining comprehensive models of care for NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 717–729. [Google Scholar] [CrossRef] [PubMed]
Variable | Baseline Gender-Specific Medians of Total Meat Consumption | ||
---|---|---|---|
Low Consumption 1 (n = 160) | High Consumption 1 (n = 156) | p-Value | |
Age (years) | 59.06 ± 6.25 | 58.22 ± 6.63 | 0.244 |
Gender (% male) | 56.90 | 56.40 | 0.934 |
BMI (kg/m2) | 27.79 ± 5.77 | 28.45 ± 5.17 | 0.288 |
Weight change % 2 | −0.18 ± 12.04 | −1.22 ± 7.26 | 0.355 |
Glucose (mg/dl) | 87.04 ± 17.03 | 92.48 ± 21.36 | 0.013 |
HbA1C (%) (n = 309) | 5.76 ± 0.61 | 5.84 ± 0.74 | 0.285 |
HOMA-IR (score) | 2.50 ± 1.63 | 3.00 ± 2.24 | 0.024 |
Total cholesterol (mg/dl) | 182.72 ± 37.36 | 180.22 ± 32.17 | 0.526 |
Triglycerides (mg/dl) | 110.62 ± 65.18 | 114.28 ± 56.73 | 0.596 |
ALT (U/L) | 25.81 ± 10.67 | 28.40 ± 20.33 | 0.160 |
AST (U/L) | 26.39 ± 8.02 | 24.61 ± 9.13 | 0.068 |
GGT (U/L) | 25.37 ± 17.76 | 31.20 ± 32.53 | 0.052 |
Uric acid (mg/dl) | 5.44 ± 1.38 | 5.53 ± 1.41 | 0.569 |
Ferritin (ng/mL) (n = 293) | 85.34 ± 68.95 | 94.24 ± 89.02 | 0.338 |
Dietary intake and lifestyle habits | |||
Energy (Kcal) | 1869. 95 ± 681.17 | 2134.61 ± 631.44 | <0.001 |
Protein (% total Kcal) | 17.26 ± 4.29 | 20.69 ± 4.65 | <0.001 |
Carbohydrates (%total Kcal) | 43.08 ± 8.79 | 39.12 ± 8.30 | <0.001 |
Fat (% total Kcal) | 35.93 ± 6.32 | 36.85 ± 6.16 | 0.189 |
Saturated fatty acids (% total Kcal) | 12.56 ± 3.73 | 12.48 ± 3.33 | 0.835 |
Cholesterol (mg/day) | 270.10 ± 130.44 | 407.12 ± 215.84 | <0.001 |
Coffee (cup/day) | 3.00 ± 2.96 | 2.78 ± 2.76 | 0.514 |
Fiber (g/day) | 23.89 ± 13.04 | 22.88 ± 9.69 | 0.437 |
Sugared beverages (cups/day) | 1.82 ± 3.01 | 1.88 ± 3.53 | 0.865 |
Smoking (% ever smokers) | 50.60 | 49.40 | 0.822 |
Physical activity (h/week) | 2.73 ± 3.49 | 2.43 ± 2.95 | 0.404 |
Alcohol (portions/week) | 1.69 ± 2.57 | 1.95 ± 3.00 | 0.414 |
New Onset or Persistence (vs. Never or Remission) | Incidence (New Onset among Those without the Outcome at Baseline) | |
---|---|---|
OR (95% CI), p-Value | ||
NAFLD | ||
N cases/N total (109/316) | N cases/N total (36/198) | |
Total meat (≥88.2 g/day women/≥122.9 men) | 1.41 (0.81–2.46), 0.230 | 1.37 (0.58–3.23), 0.472 |
Red and/or processed meat (≥16.3 g/day women/≥37.2 men) | 1.51 (0.89–2.56), 0.129 | 1.28 (0.56–2.96), 0.557 |
Processed meat (≥1.8 g/day women/≥5.7 men) | 1.17 (0.71–1.93), 0.545 | 1.12 (0.53–2.40), 0.767 |
Unprocessed red meat (≥9.6 g/day women/≥26.2 men) | 1.41 (0.85–2.34), 0.181 | 0.93 (0.41–2.06), 0.848 |
NAFLD with elevated ALT 1 | ||
N cases/N total (34/314 2) | N cases/N total (19/275) | |
Total meat (≥88.2 g/day women/≥122.9 men) | 1.18 (0.52–2.69), 0.694 | 1.77 (0.60–5.26), 0.301 |
Red and/or processed meat (≥16.3 g/day women/≥37.2 men) | 3.07 (1.31–7.21), 0.010 | 3.75 (1.21–11.62), 0.022 |
Processed meat (≥1.8 g/day women/≥5.7 men) | 2.52 (1.14–5.59), 0.023 | 2.22 (0.80–6.14), 0.124 |
Unprocessed red meat (≥9.6 g/day women/≥26.2 men) | 2.28 (1.04–4.99), 0.039 | 2.62 (0.93–7.36), 0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Grinshpan, L.S.; Salomone, F.; Lazarus, J.V.; Webb, M.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. High Meat Consumption Is Prospectively Associated with the Risk of Non-Alcoholic Fatty Liver Disease and Presumed Significant Fibrosis. Nutrients 2022, 14, 3533. https://doi.org/10.3390/nu14173533
Ivancovsky-Wajcman D, Fliss-Isakov N, Grinshpan LS, Salomone F, Lazarus JV, Webb M, Shibolet O, Kariv R, Zelber-Sagi S. High Meat Consumption Is Prospectively Associated with the Risk of Non-Alcoholic Fatty Liver Disease and Presumed Significant Fibrosis. Nutrients. 2022; 14(17):3533. https://doi.org/10.3390/nu14173533
Chicago/Turabian StyleIvancovsky-Wajcman, Dana, Naomi Fliss-Isakov, Laura Sol Grinshpan, Federico Salomone, Jeffrey V. Lazarus, Muriel Webb, Oren Shibolet, Revital Kariv, and Shira Zelber-Sagi. 2022. "High Meat Consumption Is Prospectively Associated with the Risk of Non-Alcoholic Fatty Liver Disease and Presumed Significant Fibrosis" Nutrients 14, no. 17: 3533. https://doi.org/10.3390/nu14173533
APA StyleIvancovsky-Wajcman, D., Fliss-Isakov, N., Grinshpan, L. S., Salomone, F., Lazarus, J. V., Webb, M., Shibolet, O., Kariv, R., & Zelber-Sagi, S. (2022). High Meat Consumption Is Prospectively Associated with the Risk of Non-Alcoholic Fatty Liver Disease and Presumed Significant Fibrosis. Nutrients, 14(17), 3533. https://doi.org/10.3390/nu14173533