One-Carbon Metabolism Biomarkers and Risks of Incident Neurocognitive Disorder among Cognitively Normal Older Adults
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashton, N.J.; Hye, A.; Rajkumar, A.P.; Leuzy, A.; Snowden, S.; Suárez-Calvet, M.; Karikari, T.K.; Schöll, M.; La Joie, R.; Rabinovici, G.D.; et al. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat. Rev. Neurol. 2020, 16, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. Vitamins associated with brain aging, mild cognitive impairment, and Alzheimer disease: Biomarkers, epidemiological and experimental evidence, plausible mechanisms, and knowledge gaps. Adv. Nutr. 2017, 8, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.M.; Reed, M.C.; Nijhout, H.F. Modeling folate, one-carbon metabolism, and DNA methylation. Nutr. Rev. 2008, 66 (Suppl. 1), S27–S30. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H.A.; Hems, R.; Tyler, B. The regulation of folate and methionine metabolism. Biochem. J. 1976, 158, 341–353. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Yuan, C.; Ding, D. Vitamin B12, B6, or folate and cognitive function in community-dwelling older adults: A systematic review and meta-analysis. J. Alzheimers Dis. 2020, 77, 781–794. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, G.; Liu, D.; Yang, Y.; Li, X.; Cai, G.; Liu, Y.; Wu, Y. The association between folate and Alzheimer’s disease: A systematic review and meta-analysis. Front. Neurosci. 2021, 15, 661198. [Google Scholar] [CrossRef]
- O’Leary, F.; Allman-Farinelli, M.; Samman, S. Vitamin B₁₂ status, cognitive decline and dementia: A systematic review of prospective cohort studies. Br. J. Nutr. 2012, 108, 1948–1961. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H. Homocysteine, B vitamins, and cognitive impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef]
- Hooshmand, B.; Solomon, A.; Kåreholt, I.; Rusanen, M.; Hänninen, T.; Leiviskä, J.; Winblad, B.; Laatikainen, T.; Soininen, H.; Kivipelto, M. Associations between serum homocysteine, holotranscobalamin, folate and cognition in the elderly: A longitudinal study. J. Intern. Med. 2012, 271, 204–212. [Google Scholar] [CrossRef]
- Kado, D.M.; Karlamangla, A.S.; Huang, M.H.; Troen, A.; Rowe, J.W.; Selhub, J.; Seeman, T.E. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high functioning adults: MacArthur Studies of Successful Aging. Am. J. Med. 2005, 118, 161–167. [Google Scholar] [CrossRef]
- Tucker, K.L.; Qiao, N.; Scott, T.; Rosenberg, I.; Spiro, A., 3rd. High homocysteine and low B vitamins predict cognitive decline in aging men: The Veterans Affairs Normative Aging Study. Am. J. Clin. Nutr. 2005, 82, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Mooijaart, S.P.; Gussekloo, J.; Frolich, M.; Jolles, J.; Stott, D.J.; Westendorp, R.G.J.; de Craen, A.J.M. Homocysteine, vitamin B-12, and folic acid and the risk of cognitive decline in old age: The Leiden 85-Plus study. Am. J. Clin. Nutr. 2005, 82, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Doets, E.L.; Ueland, P.M.; Tell, G.S.; Vollset, S.E.; Nygard, O.K.; Veer, P.V.; de Groot, L.C.P.G.M.; Nurk, E.; Refsum, H.; Smith, A.D.; et al. Interactions between plasma concentrations of folate and markers of vitamin B (12) status with cognitive performance in elderly people not exposed to folic acid fortification: The Hordaland Health Study. Br. J. Nutr. 2014, 111, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Irizarry, M.C.; Grodstein, F. Prospective study of plasma folate, vitamin B12, and cognitive function and decline. Epidemiology 2006, 17, 650–657. [Google Scholar] [CrossRef]
- Hughes, C.F.; Ward, M.; Tracey, F.; Hoey, L.; Molloy, A.M.; Pentieva, K.; McNulty, H. B-Vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients, 2017; Epub ahead of print. [Google Scholar] [CrossRef]
- Mendonça, N.; Granic, A.; Mathers, J.C.; Martin-Ruiz, C.; Wesnes, K.A.; Seal, C.J.; Jagger, C.; Hill, T.R. One-carbon metabolism biomarkers and cognitive decline in the very old: The Newcastle 85+ Study. J. Am. Med. Dir. Assoc. 2017, 18, 806.e19–806.e27. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.F.H.; Horváth-Puhó, E.; Sørensen, H.T.; Nexø, E.; Pedersen, L.; Ording, A.G.; Henderson, V.W. Plasma vitamin B12 levels, high-dose vitamin B12 treatment, and risk of dementia. J. Alzheimers Dis. 2021, 79, 1601–1612. [Google Scholar] [CrossRef]
- Chen, S.; Honda, T.; Ohara, T.; Hata, J.; Hirakawa, Y.; Yoshida, D.; Shibata, M.; Sakata, S.; Oishi, E.; Furuta, Y.; et al. Serum homocysteine and risk of dementia in Japan. J. Neurol. Neurosurg. Psychiatry 2020, 91, 540–546. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Hebert, L.E.; Scherr, P.A.; Schneider, J.A. Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch. Neurol. 2005, 62, 641–645. [Google Scholar] [CrossRef]
- Setién-Suero, E.; Suárez-Pinilla, M.; Suárez-Pinilla, P.; Crespo-Facorro, B.; Ayesa-Arriola, R. Homocysteine and cognition: A systematic review of 111 studies. Neurosci. Biobehav. Rev. 2016, 69, 280–298. [Google Scholar] [CrossRef] [Green Version]
- Ho, R.C.; Cheung, M.W.; Fu, E.; Win, H.H.; Zaw, M.H.; Ng, A.; Mak, A. Is high homocysteine level a risk factor for cognitive decline in elderly? A systematic review, meta-analysis, and meta-regression. Am. J. Geriatr. Psychiatry 2011, 19, 607–617. [Google Scholar] [CrossRef]
- Selhub, J.; Morris, M.S.; Jacques, P.F.; Rosenberg, I.H. Folate-vitamin B-12 interaction in relation to cognitive impairment, anemia, and biochemical indicators of vitamin B-12 deficiency. Am. J. Clin. Nutr. 2009, 89, 702S–706S. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.M.; Ames, D.; Mander, A.G.; Carne, R.P.; Brodaty, H.; Woodward, M.C.; Boundy, K.; Ellis, K.A.; Bush, A.I.; Faux, N.G.; et al. Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: Combined data from three cohorts. J. Alzheimers Dis. 2014, 39, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Jun, S.; Murphy, L.; Green, R.; Gahche, J.J.; Dwyer, J.T.; Potischman, N.; McCabe, G.P.; Miller, J.W. High folic acid or folate combined with low vitamin B-12 status: Potential but inconsistent association with cognitive function in a nationally representative cross-sectional sample of US older adults participating in the NHANES. Am. J. Clin. Nutr. 2020, 112, 1547–1557. [Google Scholar] [CrossRef]
- Bailey, R.; Jun, S.; Murphy, L.; Green, R.; Miller, J. High folate and low vitamin B12 status: Potential interactions with cognitive function among U.S. older adults, NHANES 2011–2014. Curr. Dev. Nutr. 2020, 4, 1189. [Google Scholar] [CrossRef]
- Ng, T.P.; Feng, L.; Nyunt, M.S.; Feng, L.; Gao, Q.; Lim, M.L.; Collinson, S.L.; Chong, M.S.; Lim, W.S.; Lee, T.S.; et al. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: Follow-up of the Singapore Longitudinal Ageing Study cohort. JAMA Neurol. 2016, 73, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Niti, M.; Yap, K.B.; Kua, E.H.; Tan, C.H.; Ng, T.P. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int. Psychogeriatr. 2008, 20, 237–251. [Google Scholar] [CrossRef]
- Jorm, A.F. A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Development and cross-validation. Psychol. Med. 1994, 24, 145–153. [Google Scholar] [CrossRef]
- Nyunt, M.S.; Fones, C.; Niti, M.; Ng, T.P. Criterion-based validity and reliability of the Geriatric Depression Screening Scale (GDS-15) in a large validation sample of community-living Asian older adults. Aging Ment. Health 2009, 13, 376–382. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Lee, C.K.; Collinson, S.L.; Feng, L.; Ng, T.P. Preliminary normative neuropsychological data for an elderly chinese population. Clin. Neuropsychol. 2012, 26, 321–334. [Google Scholar] [CrossRef]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Backman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment: Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Hixson, J.E.; Vernier, D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid. Res. 1990, 31, 545–548. [Google Scholar] [CrossRef]
- Rutjes, A.W.; Denton, D.A.; Di Nisio, M.; Chong, L.Y.; Abraham, R.P.; Al-Assaf, A.S.; Anderson, J.L.; Malik, M.A.; Vernooij, R.W.M.; Martinez, G.; et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst. Rev. 2018, 12, CD011906. [Google Scholar] [CrossRef] [PubMed]
- Lonn, E.; Yusuf, S.; Arnold, M.J.; Sheridan, P.; Pogue, J.; Micks, M.; McQueen, M.J.; Probstfield, J.; Fodor, G.; Held, C.; et al. Hearts Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med. 2006, 354, 1567–1577. [Google Scholar]
- Zhang, D.M.; Ye, J.X.; Mu, J.S.; Cui, X.P. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J. Geriatr. Psychiatry Neurol. 2017, 30, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Smith, S.M.; de Jager, C.A.; Whitbread, P.; Johnston, C.; Agacinski, G.; Oulhaj, A.; Bradley, K.M.; Jacoby, R.; Refsum, H. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS ONE 2010, 5, e12244. [Google Scholar] [CrossRef]
- Grande, G.; Qiu, C.; Fratiglioni, L. Prevention of dementia in an ageing world: Evidence and biological rationale. Aging Res. Rev. 2020, 64, 101045. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Sachdev, P.S.; Valenzuela, M.; Wang, X.L.; Looi, J.C.; Brodaty, H. Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 2002, 58, 1539–1541. [Google Scholar] [CrossRef]
- Feng, L.; Isaac, V.; Sim, S.; Ng, T.P.; Krishnan, K.R.; Chee, M.W. Associations between elevated homocysteine, cognitive impairment, and reduced white matter volume in healthy old adults. Am. J. Geriatr. Psychiatry 2013, 21, 164–172. [Google Scholar] [CrossRef]
- Sachdev, P.; Parslow, R.; Salonikas, C.; Lux, O.; Wen, W.; Kumar, R.; Naidoo, D.; Christensen, H.; Jorm, A. Homocysteine and the brain in mid adult life: Evidence for an increased risk of leukoaraiosis in men. Arch. Neurol. 2004, 61, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- De Lau, L.M.; Smith, A.D.; Refsum, H.; Johnston, C.; Breteler, M.M. Plasma vitamin B12 status and cerebral white-matter lesions. J. Neurol. Neurosurg. Psychiatry 2009, 80, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Refsum, H.; de Jager, C.A.; Jacoby, R.; Nichols, T.E.; Smith, S.M.; Smith, A.D. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. USA 2013, 110, 9523–9528. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, B.; Mangialasche, F.; Kalpouzos, G.; Solomon, A.; Kåreholt, I.; Smith, A.D.; Refsum, H.; Wang, R.; Mühlmann, M.; Ertl-Wagner, B.; et al. Association of Vitamin B12, Folate, and Sulfur Amino Acids With Brain Magnetic Resonance Imaging Measures in Older Adults: A Longitudinal Population-Based Study. JAMA Psychiatry 2016, 73, 606–613. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Full Sample | Remained Cognitively Normal | Progressed to NCD | p | ||||
---|---|---|---|---|---|---|---|---|
N = 690 | N = 651 | N = 39 (5) ¥ | ||||||
Age | 64.9 | ±6.6 | 64.7 | ±6.4 | 68.7 | ±9.0 | <0.001 *** | |
Ethnicity | Non-Chinese | 5.1 | (35) | 4.5 | (29) | 15.4 | (6) | 0.003 ** |
Sex | Female | 64.1 | (442) | 63.1 | (411) | 79.5 | (31) | 0.036 * |
Education | ≤6 years | 55.4 | (382) | 53.9 | (351) | 79.5 | (31) | 0.002 ** |
Smoking | Never | 80.6 | (556) | 80.6 | (525) | 79.5 | (31) | 0.260 |
Ex-smoker | 9.3 | (64) | 8.9 | (58) | 15.4 | (6) | ||
Current smoker | 10.1 | (70) | 10.4 | (68) | 5.1 | (2) | ||
Alcohol | ≥1 drinks daily | 0.1 | (1) | 0.2 | 91) | 0.0 | (0) | 0.807 |
APOE-ε4 | 15.7 | (108) | 15.2 | (99) | 23.1 | (9) | 0.189 | |
Physical activity score | 0–8 | 2.5 | ±1.6 | 2.6 | ±1.6 | 1.9 | ±1.2 | 0.010 * |
Social activity score | 0–14 | 3.5 | ±2.9 | 3.6 | ±3.0 | 2.7 | ±2.0 | 0.083 |
Productive activity score | 0–9 | 4.3 | ±1.8 | 4.3 | ±1.8 | 4.3 | ±1.8 | 0.963 |
Overall activity score | 0–30 | 10.2 | ±4.5 | 10.3 | ±4.6 | 8.7 | ±3.4 | 0.043 * |
GDS score | 0.59 | ±1.07 | 0.60 | ±1.09 | 0.44 | ±0.64 | 0.345 | |
Central obesity | 53.9 | (372) | 53.1 | (346) | 66.7 | (26) | 0.096 | |
Hyperglycaemia/diabetes | 25.9 | (179) | 25.3 | (165) | 35.9 | (14) | 0.104 | |
Hypertension | 62.5 | (431) | 62.1 | (404) | 69.2 | (27) | 0.369 | |
Low HDL-C | <1.0 mmol/L | 49.4 | (341) | 49.2 | (320) | 53.8 | (21) | 0.569 |
High TG | >2.2 mmol/L | 47.0 | (324) | 47.3 | (308) | 41.0 | (16) | 0.445 |
Metabolic syndrome | ≥3 components | 34.6 | (239) | 33.8 | (220) | 48.7 | (19) | 0.044 * |
Heart disease/stroke | Yes vs. No | 8.8 | (61) | 8.6 | (56) | 12.8 | (5) | 0.367 |
Folate | nmol/L | 10.4 | ±5.7 | 10.5 | ±5.8 | 9.7 | ±4.0 | 0.393 |
<6.0 | 15.5 | (107) | 15.5 | (101) | 15.4 | (6) | 0.706 | |
6.0–9.3 | 36.4 | (251) | 36.3 | (236) | 38.4 | (15) | ||
9.4–14.7 | 31.6 | (218) | 31.5 | (205) | 33.3 | (13) | ||
≥14.8 | 16.5 | (114) | 16.7 | (109) | 12.8 | (5) | ||
B12 | pmol/L | 505 | ±221 | 510 | ±290 | 420 | ±221 | 0.026 * |
≤211 | 6.4 | (44) | 5.7 | (37) | 17.9 | 7 | 0.014 * | |
212–469 | 51.9 | (358) | 51.8 | (337) | 53.8 | 21 | ||
470–727 | 23.9 | (165) | 24.3 | (158) | 17.9 | 7 | ||
≥728 | 17.8 | (123) | 18.3 | (119) | 10.3 | 4 | ||
Homocysteine | μmol/L | 13.0 | ±4.3 | 12.9 | ±4.3 | 14.6 | ±4.2 | 0.018 * |
≤8.3 | 13.2 | (91) | 13.7 | (89) | 5.1 | (2) | 0.007 ** | |
8.4–13.1 | 45.9 | (317) | 46.4 | (302) | 38.5 | (15) | ||
13.2–17.8 | 30.0 | (207) | 29.8 | (194) | 33.3 | (13) | ||
≥17.9 | 10.9 | (75) | 10.1 | (66) | 23.1 | (9) | ||
1-C index | Z-scores | −0.026 | ±0.986 | −0.001 | ±0.990 | −0.444 | ±0.819 | 0.006 ** |
≤−1.00 | 13.0 | (90) | 11.8 | (77) | 33.3 | (13) | 0.007 ** | |
−0.99–0.00 | 37.0 | (255) | 37.6 | (245) | 25.6 | (10) | ||
0.01–1.00 | 37.2 | (257) | 37.6 | (245) | 35.9 | (12) | ||
≥ 1.01 | 12.8 | (88) | 12.9 | (84) | 10.3 | (4) | ||
B12-folate subgroups | Low B12 and high folate | 3.2 | (22) | 2.8 | (18) | 10.3 | (4) | 0.015 * |
Low B12, or low folate | 31.3 | (216) | 30.9 | (201) | 38.5 | (15) | ||
Normal B12, normal folate | 65.5 | (452) | 66.4 | (432) | 51.3 | (20) |
Unadjusted | Adjusted † | |||||||
---|---|---|---|---|---|---|---|---|
Predictor Variable | OR | 95%CI | p | OR | 95%CI | p | ||
Folate | Per SD (reversed) | 1.12 | (0.58, 2.16) | 0.741 | 0.94 | (0.64, 1.39) | 0.776 | |
B12 | Per SD (reversed) | 1.70 | (1.11, 2.61) | 0.016 * | 2.10 | (1.26, 3.52) | 0.005 ** | |
Homocysteine | Per SD | 1.68 | (1.15, 2.44) | 0.007 ** | 1.96 | (1.18, 3.24) | 0.009 ** | |
1-Carbon index | Per SD (reversed) | 1.56 | (1.07, 2.29) | 0.021 ** | 1.67 | (1.06, 2.64) | 0.027 ** | |
Folate | <6.0 | 1.29 | (0.38, 4.37) | 0.677 | 0.93 | (0.25, 3.45) | 0.914 | |
6.0–9.3 | 1.39 | (0.49, 3.91) | 0.538 | 0.96 | (0.31, 2.94) | 0.947 | ||
9.4–14.7 | 1.38 | (0.49, 3.91) | 0.548 | 1.16 | (0.37, 3.60) | 0.794 | ||
≥14.8 nmol/L | 1 | 1 | ||||||
B12 | ≤211 | 5.63 | (1.56, 20.3) | 0.008 ** | 16.3 | (2.86, 93.5) | 0.002 ** | |
212–469 | 1.85 | (0.62, 5.51) | 0.267 | 3.72 | (0.80, 17.2) | 0.093 | ||
470–727 | 1.32 | (0.38, 4.61) | 0.665 | 3.41 | (0.64, 18.1) | 0.149 | ||
>727 pmol/L | 1 | 1 | ||||||
Homocysteine | <8.4 | 1 | 1 | |||||
8.4–13.1 | 2.21 | (0.50, 9.85) | 0.298 | 1.17 | (0.25, 5.61) | 0.840 | ||
13.2–17.8 | 2.98 | (0.66, 13.5) | 0.156 | 2.52 | (0.51, 12.6) | 0.256 | ||
≥17.9 μmol/L | 6.07 | (1.27, 29.0) | 0.024 * | 5.27 | (0.87, 31.7) | 0.070 | ||
1-C Index (z-score) | ≤−1.00 | 3.54 | (1.11, 11.3) | 0.033 * | 6.23 | 1.43 | 27.1 | 0.015 ** |
−0.99–0.00 | 0.86 | (0.26, 2.80) | 0.799 | 1.12 | 0.28 | 4.51 | 0.873 | |
0.01–1.00 | 1.03 | (0.32, 3.28) | 0.962 | 1.57 | 0.39 | 6.23 | 0.524 | |
≥1.01 | 1 | 1 | ||||||
B12-folate | Low B12 and high folate | 4.80 | (1.49, 15.5) | 0.009 ** | 3.81 | (1.04, 13.9) | 0.044 * | |
Subgroups | Low B12 and/or low or normal folate | 1.61 | (0.81, 3.21) | 0.175 | 1.49 | (0.73, 3.07) | 0.277 | |
Normal B12, Normal folate | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybycien-Gaweda, P.M.; Lee, T.S.; Lim, W.S.; Chong, M.S.; Yap, P.; Cheong, C.Y.; Rawtaer, I.; Liew, T.M.; Gwee, X.; Gao, Q.; et al. One-Carbon Metabolism Biomarkers and Risks of Incident Neurocognitive Disorder among Cognitively Normal Older Adults. Nutrients 2022, 14, 3535. https://doi.org/10.3390/nu14173535
Przybycien-Gaweda PM, Lee TS, Lim WS, Chong MS, Yap P, Cheong CY, Rawtaer I, Liew TM, Gwee X, Gao Q, et al. One-Carbon Metabolism Biomarkers and Risks of Incident Neurocognitive Disorder among Cognitively Normal Older Adults. Nutrients. 2022; 14(17):3535. https://doi.org/10.3390/nu14173535
Chicago/Turabian StylePrzybycien-Gaweda, Paulina Maria, Tih Shih Lee, Wee Shiong Lim, Mei Sian Chong, Philip Yap, Chin Yee Cheong, Iris Rawtaer, Tau Ming Liew, Xinyi Gwee, Qi Gao, and et al. 2022. "One-Carbon Metabolism Biomarkers and Risks of Incident Neurocognitive Disorder among Cognitively Normal Older Adults" Nutrients 14, no. 17: 3535. https://doi.org/10.3390/nu14173535
APA StylePrzybycien-Gaweda, P. M., Lee, T. S., Lim, W. S., Chong, M. S., Yap, P., Cheong, C. Y., Rawtaer, I., Liew, T. M., Gwee, X., Gao, Q., Yap, K. B., & Ng, T. P. (2022). One-Carbon Metabolism Biomarkers and Risks of Incident Neurocognitive Disorder among Cognitively Normal Older Adults. Nutrients, 14(17), 3535. https://doi.org/10.3390/nu14173535