Polyphenol-Rich Date Palm Fruit Seed (Phoenix Dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage
Abstract
:1. Introduction
2. Methods
2.1. Plant Material and Preparation
2.2. Study Materials
2.3. Antioxidant Activity
2.3.1. DPPH•-Free Radical-Scavenging Test
2.3.2. ABTS•-Free Radical-Scavenging Test
2.3.3. Ferric-Reducing/Antioxidant Power (FRAP) Test
2.3.4. Nitric Oxide Radical (NO) Scavenging Test
2.3.5. Total Antioxidant Activity
2.3.6. Labile Iron Inhibition Test
2.4. Enzyme Inhibitory Activity
2.4.1. Tyrosinase Inhibition Test
2.4.2. Porcine α-Amylase Inhibition Assay
2.4.3. Acetylcholinesterase Inhibition Test
2.5. Free Radical-Induced Damage to DNA Test
2.6. AAPH Induce Protein Oxidation Test
2.7. Anticancer Inhibitory Activity
Cytotoxicity of DSE on HSF Cells
2.8. DSE Anti-Cancer Activity by MTT Test
2.9. Analysis of Nuclear Staining
2.10. Analysis of Cell Cycle
2.11. Quantitative Analysis of Change in the Expression of Oncogenes
3. Statistical Analysis
4. Results and Discussion
4.1. Antioxidant Activity
4.2. DPPH•-Free Radical-Scavenging Assay
4.3. ABTS•-Free Radical-Scavenging Assay
4.4. Ferric-Reducing/Antioxidant Power Assay
4.5. Nitric Oxide Radical Scavenging Assay
4.6. Total Antioxidant Activity
4.7. Labile Iron Inhibition Assay
4.8. Enzyme Inhibitory Activity
Tyrosinase Inhibition Assay
4.9. Porcine α-Amylase Inhibition Assay
4.10. Acetylcholinesterase Inhibition Assay
4.11. DNA Damage by Free Radicals
4.12. Protein Oxidation Induced by AAPH
4.13. Anticancer Inhibitory Activity
In Vitro Cytotoxicity Effects of the DSE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://faostat.fao.org/ (accessed on 1 March 2022).
- Habib, H.M.; Ibrahim, W.H. Nutritional Quality Evaluation of Eighteen Date Pit Varieties. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S1), 99–111. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.S.; Zeidan, D.W.; Almallah, A.A.; Ali Hassan, A.G.; Khalil, W.F.; Abdelrazek, H.M.A. Effect of Chronic Administration of Date Palm Seeds Extract on Some Biochemical Parameters, Oxidative Status and Caspase-3 Expression in Female Albino Rats. Biomed. Pharmacol. J. 2021, 14, 1025–1032. [Google Scholar] [CrossRef]
- Devaraj, A.; Mahalingam, G. Bioactive Molecules from Medicinal Plants as Functional Foods (Biscuits) for the Benefit of Human Health as Antidiabetic Potential. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; IntechOpen: London, UK, 2021. [Google Scholar]
- Kareem, M.O.; Edathil, A.A.; Rambabu, K.; Bharath, G.; Banat, F.; Nirmala, G.S.; Sathiyanarayanan, K. Extraction, Characterization and Optimization of High Quality Bio-Oil Derived from Waste Date Seeds. Chem. Eng. Commun. 2021, 208, 801–811. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khorshidian, N.; Yousefi, M.; Khaneghah, A.M. Physicochemical, Rheological, and Sensory Properties of Gluten-Free Cookie Produced by Flour of Chestnut, Date Seed, and Modified Starch. J. Food Qual. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Sriharsha, C.H.; Swamy, R.; Padmavathi, T.V.N. Development and Quality Evaluation of Date Seed Powder Incorporated Cookies. J. Exp. Agric. Int. 2021, 43, 87–93. [Google Scholar] [CrossRef]
- Djaoudene, O.; Mansinhos, I.; Gonçalves, S.; Jara-Palacios, M.J.; Bachir bey, M.; Romano, A. Phenolic Profile, Antioxidant Activity and Enzyme Inhibitory Capacities of Fruit and Seed Extracts from Different Algerian Cultivars of Date (Phoenix dactylifera L.) Were Affected by in Vitro Simulated Gastrointestinal Digestion. S. Afr. J. Bot. 2021, 137, 133–148. [Google Scholar] [CrossRef]
- Platat, C.; Hilary, S.; Tomas-Barberan, F.; Martinez-Blazquez, J.; Al-Meqbali, F.; Souka, U.; Al-Hammadi, S.; Ibrahim, W. Urine Metabolites and Antioxidant Effect after Oral Intake of Date (Phoenix dactylifera L.) Seeds-Based Products (Powder, Bread and Extract) by Human. Nutrients 2019, 11, 2489. [Google Scholar] [CrossRef]
- Habib, H.M.; Platat, C.; Meudec, E.; Cheynier, V.; Ibrahim, W.H. Polyphenolic Compounds in Date Fruit Seed (Phoenix dactylifera): Characterisation and Quantification by Using UPLC-DAD-ESI-MS. J. Sci. Food Agric. 2014, 94, 1084–1089. [Google Scholar] [CrossRef]
- Hilary, S.; Tomás-Barberán, F.A.; Martinez-Blazquez, J.A.; Kizhakkayil, J.; Souka, U.; Al-Hammadi, S.; Habib, H.; Ibrahim, W.; Platat, C. Polyphenol Characterisation of Phoenix dactylifera L. (Date) Seeds Using HPLC-Mass Spectrometry and Its Bioaccessibility Using Simulated in-Vitro Digestion/Caco-2 Culture Model. Food Chem. 2020, 311, 125969. [Google Scholar] [CrossRef]
- Mitra, S.; Tareq, A.M.; Das, R.; Emran, T.B.; Nainu, F.; Chakraborty, A.J.; Ahmad, I.; Tallei, T.E.; Idris, A.M.; Simal-Gandara, J. Polyphenols: A First Evidence in the Synergism and Bioactivities. Food Rev. Int. 2022, 1–23. [Google Scholar] [CrossRef]
- Habib, H.M.; Theuri, S.W.; Kheadr, E.; Mohamed, F.E. DNA and BSA Damage Inhibitory Activities, and Anti-Acetylcholinesterase, Anti-Porcine α-Amylase and Antioxidant Properties of Dolichos Lablab Beans. Food Funct. 2017, 8, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.M.; El-Fakharany, E.M.; Kheadr, E.; Ibrahim, W.H. Grape Seed Proanthocyanidin Extract Inhibits DNA and Protein Damage and Labile Iron, Enzyme, and Cancer Cell Activities. Sci. Rep. 2022, 12, 12393. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W.H. Bioactive Components, Antioxidant and DNA Damage Inhibitory Activities of Honeys from Arid Regions. Food Chem. 2014, 153, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.H.; Habib, H.M.; Kamal, H.; Clair, D.K.S.; Chow, C.K. Mitochondrial Superoxide Mediates Labile Iron Level: Evidence from Mn-SOD-Transgenic Mice and Heterozygous Knockout Mice and Isolated Rat Liver Mitochondria. Free Radic. Biol. Med. 2013, 65, 143–149. [Google Scholar] [CrossRef]
- Habib, H.M.; Kheadr, E.; Ibrahim, W.H. Inhibitory Effects of Honey from Arid Land on Some Enzymes and Protein Damage. Food Chem. 2021, 364, 130415. [Google Scholar] [CrossRef]
- Habib, H.M.; Theuri, S.W.; Kheadr, E.E.; Mohamed, F.E. Functional, Bioactive, Biochemical, and Physicochemical Properties of the Dolichos Lablab Bean. Food Funct. 2017, 8, 872–880. [Google Scholar] [CrossRef]
- Abu-Serie, M.M.; El-Fakharany, E.M. Efficiency of Novel Nanocombinations of Bovine Milk Proteins (Lactoperoxidase and Lactoferrin) for Combating Different Human Cancer Cell Lines. Sci. Rep. 2017, 7, 16769. [Google Scholar] [CrossRef]
- El-Fakharany, E.M.; Abu-Serie, M.M.; Litus, E.A.; Permyakov, S.E.; Permyakov, E.A.; Uversky, V.N.; Redwan, E.M. The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. Protein J. 2018, 37, 203–215. [Google Scholar] [CrossRef]
- Bouhlali, E.d.T.; Alem, C.; Ennassir, J.; Benlyas, M.; Mbark, A.N.; Zegzouti, Y.F. Phytochemical Compositions and Antioxidant Capacity of Three Date (Phoenix dactylifera L.) Seeds Varieties Grown in the South East Morocco. J. Saudi Soc. Agric. Sci. 2017, 16, 350–357. [Google Scholar] [CrossRef]
- Khan, S.A.; Al Kiyumi, A.R.; Al Sheidi, M.S.; Al Khusaibi, T.S.; Al Shehhi, N.M.; Alam, T. In Vitro Inhibitory Effects on α-Glucosidase and α-Amylase Level and Antioxidant Potential of Seeds of Phoenix dactylifera L. Asian Pac. J. Trop. Biomed. 2016, 6, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Djaoudene, O.; López, V.; Cásedas, G.; Les, F.; Schisano, C.; Bey, M.B.; Tenore, G.C. Phoenix dactylifera L. Seeds: A by-Product as a Source of Bioactive Compounds with Antioxidant and Enzyme Inhibitory Properties. Food Funct. 2019, 10, 4953–4965. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.; Charles, A.L. In Vitro Antioxidant Activity of Kyoho Grape Extracts in DPPH and ABTS Assays: Estimation Methods for EC50 Using Advanced Statistical Programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Ourradi, H.; Ennahli, S.; Viuda Martos, M.; Hernadez, F.; Dilorenzo, C.; Hssaini, L.; Elantari, A.; Hanine, H. Proximate Composition of Polyphenolic, Phytochemical, Antioxidant Activity Content and Lipid Profiles of Date Palm Seeds Oils (Phoenix dactylifera L.). J. Agric. Food Res. 2021, 6, 100217. [Google Scholar] [CrossRef]
- Bouhlali, E.d.T.; Hmidani, A.; Bourkhis, B.; Khouya, T.; Ramchoun, M.; Filali-Zegzouti, Y.; Alem, C. Phenolic Profile and Anti-Inflammatory Activity of Four Moroccan Date (Phoenix dactylifera L.) Seed Varieties. Heliyon 2020, 6, e03436. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, S.; Zaim, A.; Ibrahim, W.H. The Role of Iron in the Pathogenesis of COVID-19 and Possible Treatment with Lactoferrin and Other Iron Chelators. Biomed. Pharmacother. 2021, 136, 111228. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Fan, L.; Duan, Z. Five Individual Polyphenols as Tyrosinase Inhibitors: Inhibitory Activity, Synergistic Effect, Action Mechanism, and Molecular Docking. Food Chem. 2019, 297, 124910. [Google Scholar] [CrossRef]
- Yu, Q.; Fan, L. Understanding the Combined Effect and Inhibition Mechanism of 4-Hydroxycinnamic Acid and Ferulic Acid as Tyrosinase Inhibitors. Food Chem. 2021, 352, 129369. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, W.; Sun, W.; Chen, S.; Liu, D.; Kong, X.; Tian, J.; Ye, X. Inhibition of Porcine Pancreatic α-Amylase Activity by Chlorogenic Acid. J. Funct. Foods 2020, 64, 103587. [Google Scholar] [CrossRef]
- Shakoor, H.; Abdelfattah, F.; Albadi, K.; Adib, M.; Kizhakkayil, J.; Platat, C. Inhibition of Digestive Enzyme and Stimulation of Human Liver Cells (HepG2) Glucose Uptake by Date Seeds Extract. Evid.-Based Complement. Altern. Med. 2020, 2020, 4290702. [Google Scholar] [CrossRef]
- Hinkaew, J.; Aursalung, A.; Sahasakul, Y.; Tangsuphoom, N.; Suttisansanee, U. A Comparison of the Nutritional and Biochemical Quality of Date Palm Fruits Obtained Using Different Planting Techniques. Molecules 2021, 26, 2245. [Google Scholar] [CrossRef]
- Al-Sheddi, E. Anticancer Potential of Seed Extract and Pure Compound from Phoenix dactylifera on Human Cancer Cell Lines. Pharmacogn. Mag. 2019, 15, 494. [Google Scholar] [CrossRef]
- Rezaei, M. Date Seed Extract Diminished Apoptosis Event in Human Colorectal Carcinoma Cell Line. MOJ Toxicol. 2015, 1, 00017. [Google Scholar] [CrossRef]
- Hilary, S.; Kizhakkayil, J.; Souka, U.; Al-Meqbaali, F.; Ibrahim, W.; Platat, C. In-Vitro Investigation of Polyphenol-Rich Date (Phoenix dactylifera L.) Seed Extract Bioactivity. Front. Nutr. 2021, 8, 571. [Google Scholar] [CrossRef]
- Lamia, F.S.; Mukti, R.F. Bangladeshi Wild Date Palm Fruits (Phoenix sylvestris): Promising Source of Anti-Cancer Agents for Hepatocellular Carcinoma Treatment. Int. J. Appl. Sci. Biotechnol. 2021, 9, 32–37. [Google Scholar] [CrossRef]
- Habib, H.; Platat, C.; AlMaqbali, F.; Ibrahim, W. Date Seed (Phoenix dactylifera) Extract Reduces the Proliferation of Pancreatic Cancer Cells, DNA Damage and Superoxide-dependent Iron Release from Ferritin in Vitro (829.20). FASEB J. 2014, 28, 829.20. [Google Scholar] [CrossRef]
- Al-Zubaidy, N.A.; Al-Zubaidy, A.A.; Sahib, H.B. The Anti-Proliferative Activity of Phoenix dactylifera Seed Extract on MCF-7 Breast Cancer Cell Line. Int. J. Pharm. Sci. Rev. Res. 2016, 41, 358–362. [Google Scholar]
- Khan, M.A.; Singh, R.; Siddiqui, S.; Ahmad, I.; Ahmad, R.; Upadhyay, S.; Barkat, M.A.; Ali, A.M.A.; Zia, Q.; Srivastava, A.; et al. Anticancer Potential of Phoenix dactylifera L. Seed Extract in Human Cancer Cells and pro-Apoptotic Effects Mediated through Caspase-3 Dependent Pathway in Human Breast Cancer MDA-MB-231 Cells: An in Vitro and in Silico Investigation. BMC Complement Altern. Med. 2022, 22, 68. [Google Scholar] [CrossRef]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. P53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, N.; Chen, B.; Kan, C.; Han, F.; Zhang, J.; Sun, X. Post-Translational Modifications of P53 in Ferroptosis: Novel Pharmacological Targets for Cancer Therapy. Front. Pharmacol. 2022, 13, 1–12. [Google Scholar] [CrossRef]
(A) Free Radical Inhibition Activity—IC50 (µg/mL) | |||||||||||
DPPH | ABTS | FRAP | |||||||||
DSE | VC | Rutin | DSE | VC | Rutin | DSE | VC | Rutin | |||
89.44 ± 3.04 | 880 ± 12.89 | 415.90 ± 5.38 | 3.19 ± 0.51 | 0.68 ± 0.12 | 6.31 ± 1.00 | 14,191 ± 22.97 | 5106 ± 40.54 | 533 ± 22.85 | |||
Total antioxidant Capacity | Nitric oxide | Labile Iron | |||||||||
DSE | VC | Rutin | DSE | VC | Rutin | DSE | Rutin | Gallic acid | Trolox | ||
2983.26 ± 22.93 | 3005.29 ± 427.80 | 13,002 ± 213.60 | 427.70 ± 63.33 | 2710 ± 65.98 | 270.10 ± 18.62 | 4.92 ± 0.65 | 0.08 ± 0.14 | 4.86 ± 0.23 | ± 0.64 | ||
(B) Enzyme Inhibition Activity—IC50 (µg/mL) | |||||||||||
Tyrosinase | Porcine α-amylase | Acetylcholinesterase | |||||||||
DSE | VC | Rutin | Kojic acid | DSE | VC | Rutin | Acarbose | DSE | VC | Rutin | Galantamine |
472.90 ± 1.00 | 42.74 ± 0.23 | 72.08 ± 0.54 | 24.25 ± 2.09 | 434.80 ± 0.85 | 87.24 ± 0.71 | 79.60 ± 0.55 | 223.6 ± 18.59 | 92.46 ± 1.18 | 1113 ± 0.34 | 421.70 ± 0.60 | 102.9 ± 9.01 |
(C) DNA, BSA Damage Inhibition Activity—IC50 (µg/mL) | |||||||||||
DNA | BSA | ||||||||||
DSE | VC | Rutin | DSE | VC | Rutin | ||||||
48.46 ± 2.00 | 42.03 ± 1.06 | 2.45 ± 0.13 | 1.17 ± 0.20 | 25.94 ± 0.28 | 4.42 ± 0.24 | ||||||
(D) DSE: EC100, IC50, and SI (μg/mL) | |||||||||||
HSF | HepG-2 | Caco-2 | MDA | ||||||||
24 h. | 48 h. | 24 h. | 48 h. | 24 h. | 48 h. | 24 h. | 48 h. | ||||
EC100 | 59.65 ± 2.12 | 43.05 ± 1.72 | 29.07 ± 2.93 | 21.35 ± 1.76 | 32.12 ± 1.03 | 25.47 ± 2.64 | 55.66 ± 2.5 | 21.92 ± 2.19 | |||
IC50 | 592.6 ± 21.07 | 565 ± 17.11 | 282 ± 13.56 | 191.3 ± 8.16 | 321.1 ± 10.28 | 256.6 ± 12.23 | 312.9 ± 7.89 | 219.1 ± 10.14 | |||
SI | - | - | 2.1 ± 0.17 | 2.95 ± 0.14 | 1.85 ± 0.06 | 2.2 ± 0.08 | 1.89 ± 0.03 | 2.58 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, H.M.; El-Fakharany, E.M.; Souka, U.D.; Elsebaee, F.M.; El-Ziney, M.G.; Ibrahim, W.H. Polyphenol-Rich Date Palm Fruit Seed (Phoenix Dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage. Nutrients 2022, 14, 3536. https://doi.org/10.3390/nu14173536
Habib HM, El-Fakharany EM, Souka UD, Elsebaee FM, El-Ziney MG, Ibrahim WH. Polyphenol-Rich Date Palm Fruit Seed (Phoenix Dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage. Nutrients. 2022; 14(17):3536. https://doi.org/10.3390/nu14173536
Chicago/Turabian StyleHabib, Hosam M., Esmail M. El-Fakharany, Usama D. Souka, Fatma M. Elsebaee, Mohamed G. El-Ziney, and Wissam H. Ibrahim. 2022. "Polyphenol-Rich Date Palm Fruit Seed (Phoenix Dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage" Nutrients 14, no. 17: 3536. https://doi.org/10.3390/nu14173536
APA StyleHabib, H. M., El-Fakharany, E. M., Souka, U. D., Elsebaee, F. M., El-Ziney, M. G., & Ibrahim, W. H. (2022). Polyphenol-Rich Date Palm Fruit Seed (Phoenix Dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage. Nutrients, 14(17), 3536. https://doi.org/10.3390/nu14173536