Nutrition and Health in Human Evolution–Past to Present
Abstract
:1. Introduction
1.1. From the Origin of Life to the Evolution of Homo Sapiens
“Nothing in biology makes sense except in the light of evolution.”Theodosius Dobzhansky 1973
1.2. Evolutionary Frameworks for Understanding Human Nature
1.3. Nature’s Cycle of Materials and the Role of Nutrition in Sustaining Life
2. Methods and Techniques for the Reconstruction of Diet in the Past
3. Basics of Nutrition from Early Primates through Prehistoric Periods to the Industrial Age-from Nature-Given to Culturally Shaped
3.1. The Diet Spectrum of Primates
3.2. Medical Significance
3.3. The Diet of Pleistocene Hunter-Gatherers
3.4. Medical Significance
3.5. The Neolithic Transition and the Emergence of Civilisation Diseases
3.6. Medical Significance
3.7. The Present-Day Diet since the Beginning of the Industrial Age
3.8. Medical Significance
3.9. Nutrition as a Social Phenomenon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The Physiology and Habitat of the Last Universal Common Ancestor. Nat. Microbiol. 2016, 1, 16116. [Google Scholar] [CrossRef] [PubMed]
- Hublin, J.-J.; Ben-Ncer, A.; Bailey, S.E.; Freidline, S.E.; Neubauer, S.; Skinner, M.M.; Bergmann, I.; Le Cabec, A.; Benazzi, S.; Harvati, K. New Fossils from Jebel Irhoud, Morocco and the Pan-African Origin of Homo sapiens. Nature 2017, 546, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Grün, R.; Joannes-Boyau, R.; Steele, T.E.; Amani, F.; Rué, M.; Fernandes, P.; Raynal, J.-P.; Geraads, D.; Ben-Ncer, A.; et al. The Age of the Hominin Fossils from Jebel Irhoud, Morocco, and the Origins of the Middle Stone Age. Nature 2017, 546, 293–296. [Google Scholar] [CrossRef]
- Muehlenbein, M.P. Basics in Human Evolution; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Vogel, C. Die Hominisation, ein singulärer Sprung aus dem Kontinuum der Evolution? Nova Acta Leopold. NF 1989, 62, 141–154. [Google Scholar]
- Urry, L.A.; Meyers, N.; Cain, M.L.; Wasserman, S.A.; Minorsky, P.V.; Orr, R. Campbell Biology, 12th ed.; Pearson: London, UK, 2021. [Google Scholar]
- Blonder, B.; Royer, D.L.; Johnson, K.R.; Miller, I.; Enquist, B.J. Plant Ecological Strategies Shift across the Cretaceous–Paleogene Boundary. PLoS Biol. 2014, 12, e1001949. [Google Scholar] [CrossRef]
- Shock, E.L.; Boyd, E.S. Principles of Geobiochemistry. Elements 2015, 11, 395–401. [Google Scholar] [CrossRef]
- Gamble, C. Settling the Earth: The Archaeology of Deep Human History; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Boivin, N.L.; Zeder, M.A.; Fuller, D.Q.; Crowther, A.; Larson, G.; Erlandson, J.M.; Denham, T.; Petraglia, M.D. Ecological Consequences of Human Niche Construction: Examining Long-Term Anthropogenic Shaping of Global Species Dstributions. Proc. Nat. Acad. Sci. USA 2016, 113, 6388–6396. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Koch, P.L.; Feranec, R.S.; Wing, S.L.; Shabel, A.B. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science 2004, 306, 70–75. [Google Scholar] [CrossRef]
- Smolin, L.A.; Grosvenor, M.B. Nutrition: Science and Applications, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Sayers, K.; Lovejoy, C.O. Blood, Bulbs, and Bunodonts: On Evolutionary Ecology and the Diets of Ardipithecus, Australopithecus, and Early Homo. Q. Rev. Biol. 2014, 89, 319–357. [Google Scholar] [CrossRef]
- Tomasello, M.; Kruger, A.C.; Ratner, H.H. Cultural Learning. Behav. Brain Sci. 1993, 16, 495–511. [Google Scholar] [CrossRef]
- Cordain, L.; Miller, J.B.; Eaton, S.B.; Mann, N.; Holt, S.H.; Speth, J.D. Plant-Animal Subsistence Ratios and Macronutrient Energy Estimations in Worldwide Hunter-Gatherer Diets. Am. J. Clin. Nutr. 2000, 71, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Mann, N. Meat in the Human Diet: An Anthropological Perspective. Nutr. Diet. 2007, 64, S102–S107. [Google Scholar] [CrossRef]
- Thompson, P.; Harris, S. Seeds, Sex and Civilization: How the Hidden Life of Plants Has Shaped Our World; Thames & Hudson: London, UK, 2010. [Google Scholar]
- Bogaard, A. Neolithic Farming in Central Europe: An Archaeobotanical Study of Crop Husbandry Practices; Routledge: London, UK, 2004. [Google Scholar]
- O’Connor, T. The Archaeology of Animal Bones; The History Press: Cheltenham, UK, 2013. [Google Scholar]
- Reitz, E.J.; Wing, E.S. Zooarchaeology, 2nd ed.; Cambridge Manuels in Archaeology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Lee-Thorp, J.; Katzenberg, M. (Eds.) The Oxford Handbook of the Archaeology of Diet; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-175688-7. [Google Scholar]
- Buikstra, J.; Beck, L. Bioarchaeology. The Contextual Analysis of Human Remains; Elsevier: Burlington, MA, USA, 2006. [Google Scholar]
- Larsen, C.S. A Companion to Biological Anthropology; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Haidle, M.N. Mangel-Krisen-Hungersnöte? Ernährungszustände in Süddeutschland und der Nordschweiz. Vom Neolithikum bis ins 19. Jahrhundert. Archäol. Inf. 1997, 20, 185–188. [Google Scholar]
- Lee-Thorp, J.A. On Isotopes and Old Bones. Archaeometry 2008, 50, 925–950. [Google Scholar] [CrossRef]
- Ambrose, S.H.; Katzenberg, M.A. Biogeochemical Approaches to Paleodietary Analysis; Kluwer Academic: New York, NY, USA, 2000. [Google Scholar]
- Alt, K.W. Kulinarischer Streifzug durch 8000 Jahre Ernährung in Sachsen-Anhalt—Das Potenzial der stabilen Kohlenstoff- und Stickstoffisotopenanalysen. Blickpkt. Archäol. 2016, 4, 178–187. [Google Scholar]
- Schoeninger, M.J.; DeNiro, M.J. Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochim. Cosmochim. Acta 1984, 48, 625–639. [Google Scholar] [CrossRef]
- Pacey, L. Calculus Is a Long-Term Reservoir of Disease. Br. Dent. J. 2014, 216, 438. [Google Scholar] [CrossRef] [PubMed]
- Warinner, C.; Rodrigues, J.F.M.; Vyas, R.; Trachsel, C.; Shved, N.; Grossmann, J.; Radini, A.; Hancock, Y.; Tito, R.Y.; Fiddyment, S.; et al. Pathogens and Host Immunity in the Ancient Human Oral Cavity. Nat. Genet. 2014, 46, 336–344. [Google Scholar] [CrossRef]
- Hujoel, P. Dietary Carbohydrates and Dental-Systemic Diseases. J. Dent. Res. 2009, 88, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Warinner, C. Dental Calculus and the Evolution of the Human Oral Microbiome. J. Calif. Dent. Assoc. 2016, 44, 411–420. [Google Scholar]
- Adler, C.J.; Dobney, K.; Weyrich, L.S.; Kaidonis, J.; Walker, A.W.; Haak, W.; Bradshaw, C.J.; Townsend, G.; Sołtysiak, A.; Alt, K.W.; et al. Sequencing Ancient Calcified Dental Plaque Shows Changes in Oral Microbiota with Dietary Shifts of the Neolithic and Industrial Revolutions. Nat. Genet. 2013, 45, 450–455. [Google Scholar] [CrossRef]
- Weyrich, L.S.; Duchene, S.; Soubrier, J.; Arriola, L.; Llamas, B.; Breen, J.; Morris, A.G.; Alt, K.W.; Caramelli, D.; Dresely, V.; et al. Neanderthal Behaviour, Diet, and Disease Inferred from Ancient DNA in Dental Calculus. Nature 2017, 544, 357–361. [Google Scholar] [CrossRef]
- Power, R.C.; Salazar-García, D.C.; Wittig, R.M.; Freiberg, M.; Henry, A.G. Dental Calculus Evidence of Taï Forest Chimpanzee Plant Consumption and Life History Transitions. Sci. Rep. 2015, 5, srep15161. [Google Scholar] [CrossRef]
- Luca, F.; Perry, G.H.; Di Rienzo, A. Evolutionary Adaptations to Dietary Changes. Ann. Rev. Nutr. 2010, 30, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Nishida, T.; Uehara, S. Natural Diet of Chimpanzees (Pan Troglodytes Schweinfurthii): Long-Term Record from the Mahale Mountains, Tanzania. Afr. Study Monogr. 1983, 3, 109–130. [Google Scholar]
- Nishida, T. Chimpanzees of the Lakeshore: Natural History and Culture at Mahale; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Davies, G.E. Colobine Monkeys: Their Ecology, Behaviour and Evolution; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Oelze, V.M.; Fuller, B.T.; Richards, M.P.; Fruth, B.; Surbeck, M.; Hublin, J.-J.; Hohmann, G. Exploring the Contribution and Significance of Animal Protein in the Diet of Bonobos by Stable Isotope Ratio Analysis of Hair. Proc. Nat. Acad. Sci. USA 2011, 108, 9792–9797. [Google Scholar] [CrossRef]
- Clayton, J.B.; Al-Ghalith, G.A.; Long, H.T.; Van Tuan, B.; Cabana, F.; Huang, H.; Vangay, P.; Ward, T.; Van Minh, V.; Tam, N.A.; et al. Associations between Nutrition, Gut Microbiome, and Health in a Novel Nonhuman Primate Model. Sci. Rep. 2018, 8, 11159. [Google Scholar] [CrossRef]
- Sponheimer, M.; Passey, B.H.; De Ruiter, D.J.; Guatelli-Steinberg, D.; Cerling, T.E.; Lee-Thorp, J.A. Isotopic Evidence for Dietary Variability in the Early Hominin Paranthropus Robustus. Science 2006, 314, 980–982. [Google Scholar] [CrossRef]
- Henry, A.G.; Ungar, P.S.; Passey, B.H.; Sponheimer, M.; Rossouw, L.; Bamford, M.; Sandberg, P.; de Ruiter, D.J.; Berger, L. The Diet of Australopithecus Sediba. Nature 2012, 487, 90–93. [Google Scholar] [CrossRef]
- Zink, K.D.; Lieberman, D.E. Impact of Meat and Lower Palaeolithic Food Processing Techniques on Chewing in Humans. Nature 2016, 531, 500–503. [Google Scholar] [CrossRef]
- Hardy, K.; Brand-Miller, J.; Brown, K.D.; Thomas, M.G.; Copeland, L. The Importance of Dietary Carbohydrate in Human Evolution. Q. Rev. Biol. 2015, 90, 251–268. [Google Scholar] [CrossRef]
- Humphrey, L.T.; De Groote, I.; Morales, J.; Barton, N.; Collcutt, S.; Ramsey, C.B.; Bouzouggar, A. Earliest Evidence for Caries and Exploitation of Starchy Plant Foods in Pleistocene Hunter-Gatherers from Morocco. Proc. Nat. Acad. Sci. USA 2014, 111, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Towle, I.; Irish, J.D.; Sabbi, K.H.; Loch, C. Dental Caries in Wild Primates: Interproximal Cavities on Anterior Teeth. Am. J. Primatol. 2022, 84, e23349. [Google Scholar] [CrossRef] [PubMed]
- Page, R.C.; Schroeder, H.E. Periodontitis in Man and Other Animals; Karger: Basel, Switzerland, 1982. [Google Scholar]
- Boehlke, C.; Rupf, S.; Tenniswood, M.; Chittur, S.V.; Hannig, C.; Zierau, O. Caries and Periodontitis Associated Bacteria Are More Abundant in Human Saliva Compared to Other Great Apes. Arch. Oral Biol. 2020, 111, 104648. [Google Scholar] [CrossRef] [PubMed]
- Raindi, D.; Rees, J.; Hirschfeld, J.; Wright, H.; Dobbs, P.; Moittié, S.; White, K.; Stahl, W.; Martin, M.; Redrobe, S. Periodontal Health, Neutrophil Activity and Cardiovascular Health in Captive Chimpanzees. Arch. Oral Biol. 2022, 134, 105342. [Google Scholar] [CrossRef] [PubMed]
- Grün, R.; Pike, A.; McDermott, F.; Eggins, S.; Mortimer, G.; Aubert, M.; Kinsley, L.; Joannes-Boyau, R.; Rumsey, M.; Denys, C. Dating the Skull from Broken Hill, Zambia, and Its Position in Human Evolution. Nature 2020, 580, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Hublin, J.-J.; Richards, M.P. The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Organ, C.; Nunn, C.L.; Machanda, Z.; Wrangham, R.W. Phylogenetic Rate Shifts in Feeding Time during the Evolution of Homo. Proc. Natl. Acad. Sci. USA 2011, 108, 14555–14559. [Google Scholar] [CrossRef]
- Lüdecke, T.; Kullmer, O.; Wacker, U.; Sandrock, O.; Fiebig, J.; Schrenk, F.; Mulch, A. Dietary Versatility of Early Pleistocene Hominins. Proc. Nat. Acad. Sci. USA 2018, 115, 13330–13335. [Google Scholar] [CrossRef]
- Gibbard, P.L.; Head, M.J.; Walker, M.J.; Stratigraphy, S.O.Q. Formal Ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a Base at 2.58 Ma. J. Q. Sci. 2010, 25, 96–102. [Google Scholar] [CrossRef]
- Richards, M.P.; Trinkaus, E. Isotopic Evidence for the Diets of European Neanderthals and Early Modern Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 16034–16039. [Google Scholar] [CrossRef]
- Bocherens, H. Neanderthal Dietary Habits: Review of the Isotopic Evidence. In The Evolution of Hominin Diets. Vertebrate Paleobiology and Paleoanthropology; Hublin, J.J., Richards, M.P., Eds.; Springer: Dortrecht, The Netherlands, 2009; pp. 241–250. [Google Scholar]
- Henry, A.G.; Brooks, A.S.; Piperno, D.R. Plant Foods and the Dietary Ecology of Neanderthals and Early Modern Humans. J. Hum. Evol. 2014, 69, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Salazar-García, D.C.; Power, R.C.; Rudaya, N.; Kolobova, K.; Markin, S.; Krivoshapkin, A.; Henry, A.G.; Richards, M.P.; Viola, B. Dietary Evidence from Central Asian Neanderthals: A Combined Isotope and Plant Microremains Approach at Chagyrskaya Cave (Altai, Russia). J. Hum. Evol. 2021, 156, 102985. [Google Scholar] [CrossRef]
- Grove, M. Logistical Mobility Reduces Subsistence Risk in Hunting Economies. J. Archaeol. Sci. 2010, 37, 1913–1921. [Google Scholar] [CrossRef]
- Bar-Yosef, O. Facing Climatic Hazards: Paleolithic Foragers and Neolithic Farmers. Q. Int. 2017, 428, 64–72. [Google Scholar] [CrossRef]
- Logan, A.C.; Katzman, M.A.; Balanzá-Martínez, V. Natural Environments, Ancestral Diets, and Microbial Ecology: Is There a Modern “Paleo-Deficit Disorder”? Part II. J. Physiol. Anthropol. 2015, 34, 9. [Google Scholar] [CrossRef] [Green Version]
- Boyden, S.V. Cultural Adaptation to Biological Maladjustment. In The Impact of Civilisation on the Biology of Man; Boyden, S., Ed.; National University Press: Canberra, Australia, 1970; pp. 190–218. [Google Scholar]
- Dubos, R. Keynote Address Nutritional Adaptations. Am. J. Clin. Nutr. 1979, 32, 2623–2626. [Google Scholar] [CrossRef]
- Willett, W.C.; Koplan, J.P.; Nugent, R.; Dusenbury, C.; Puska, P.; Gaziano, T.A. Prevention of Chronic Disease by Means of Diet and Lifestyle Changes. In Disease Control Priorities in Developing Countries, 2nd ed.; Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Evans, D.B., Jha, P., Mills, A., Musgrove, P., Eds.; The World Bank: Washington, DC, USA, 2006; pp. 833–850. [Google Scholar]
- Price, W.A. Nutrition and Physical Degeneration: A Comparison of Primative and Modern Diets and Their Effects; Paul B. Hoeber: New York, NY, USA, 1945. [Google Scholar]
- Cohen, M. History, Diet, and Hunter-Gatherers. In The Cambridge World History of Food; Kiple, K.F., Ornelas, K.C., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 63–71. ISBN 978-1-139-05863-6. [Google Scholar]
- Oxilia, G.; Peresani, M.; Romandini, M.; Matteucci, C.; Spiteri, C.D.; Henry, A.G.; Schulz, D.; Archer, W.; Crezzini, J.; Boschin, F.; et al. Earliest Evidence of Dental Caries Manipulation in the Late Upper Palaeolithic. Sci. Rep. 2015, 5, 12150. [Google Scholar] [CrossRef]
- Larsen, C.S. Bioarchaeology: Interpreting Behavior from the Human Skeleton, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Bailey, S.E.; Hublin, J.-J. Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology; Springer: Dortrecht, The Netherlands, 2007. [Google Scholar]
- Hillson, S. The Current State of Dental Decay. In Technique and Application in Dental Anthropology; Irish, J.D., Nelson, G.C., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 111–115. [Google Scholar]
- Gibbons, A. An Evolutionary Theory of Dentistry. Science 2012, 336, 973–975. [Google Scholar] [CrossRef]
- Alt, K.W.; Garve, R.; Türp, J.C. Is Dental Wear a Pathological Process? A Dento-Anthropological Perspective. Deutsch. Zahnärztl. Z. 2013, 68, 550–558. [Google Scholar]
- Halvorsrud, K.; Lewney, J.; Craig, D.; Moynihan, P.J. Effects of Starch on Oral Health: Systematic Review to Inform WHO Guideline. J. Dent. Res. 2019, 98, 46–53. [Google Scholar] [CrossRef]
- Fellows Yates, J.A.; Velsko, I.M.; Aron, F.; Posth, C.; Hofman, C.A.; Austin, R.M.; Parker, C.E.; Mann, A.E.; Nägele, K.; Arthur, K.W. The Evolution and Changing Ecology of the African Hominid Oral Microbiome. Proc. Nat. Acad. Sci. USA 2021, 118, e2021655118. [Google Scholar] [CrossRef]
- Amato, K.R.; Jeyakumar, T.; Poinar, H.; Gros, P. Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. Bioessays 2019, 41, 1900034. [Google Scholar] [CrossRef]
- Benz, M. Die Neolithisierung im Vorderen Orient. Theorien, archaeologische Daten und ein ethnologisches Modell; Ex oriente: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Ellison, C.R.; Chapman, M.R.; Hall, I.R. Surface and Deep Ocean Interactions during the Cold Climate Event 8200 Years Ago. Science 2006, 312, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Weninger, B.; Alram-Stern, E.; Bauer, E.; Clare, L.; Danzeglocke, U.; Jöris, O.; Kubatzki, C.; Rollefson, G.; Todorova, H. Die Neolithisierung von Südosteuropa als mögliche Folge des abrupten Klimawandels um 8200 calBP. In Klimaveraenderung und Kulturwandel in neolithischen Gesellschaften Mitteleuropas 6.700-2.200 v.Chr; Gronenborn, D., Ed.; RGZM Tagungen: Mainz, Germany, 2005; pp. 73–115. [Google Scholar]
- Brandt, G.; Haak, W.; Adler, C.J.; Roth, C.; Szécsényi-Nagy, A.; Karimnia, S.; Möller-Rieker, S.; Meller, H.; Ganslmeier, R.; Friederich, S.; et al. Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity. Science 2013, 342, 257–261. [Google Scholar] [CrossRef]
- Lazaridis, I.; Patterson, N.; Mittnik, A.; Renaud, G.; Mallick, S.; Kirsanow, K.; Sudmant, P.H.; Schraiber, J.G.; Castellano, S.; Lipson, M.; et al. Ancient Human Genomes Suggest Three Ancestral Populations for Present-Day Europeans. Nature 2014, 513, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Haak, W.; Lazaridis, I.; Patterson, N.; Rohland, N.; Mallick, S.; Llamas, B.; Brandt, G.; Nordenfelt, S.; Harney, E.; Stewardson, K.; et al. Massive Migration from the Steppe Was a Source for Indo-European Languages in Europe. Nature 2015, 522, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Szécsényi-Nagy, A.; Brandt, G.; Haak, W.; Keerl, V.; Jakucs, J.; Möller-Rieker, S.; Köhler, K.; Mende, B.G.; Oross, K.; Marton, T.; et al. Tracing the Genetic Origin of Europe’s First Farmers Reveals Insights into Their Social Organization. Proc. R. Soc. B 2015, 282, 20150339. [Google Scholar] [CrossRef]
- Szécsényi-Nagy, A.; Roth, C.; Brandt, G.; Rihuete-Herrada, C.; Tejedor-Rodríguez, C.; Held, P.; García-Martínez-De-Lagrán, Í.; Magallón, H.A.; Zesch, S.; Knipper, C.; et al. The Maternal Genetic Make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age. Sci. Rep. 2017, 7, 15644. [Google Scholar] [CrossRef]
- Cordain, L. Cereal Grains: Humanity’s Double-Edged Sword. World Rev. Nutr. Diet. 1999, 84, 19. [Google Scholar]
- Bocquet-Appel, J.-P.; Bar-Yosef, O. The Neolithic Demographic Transition and Its Consequences; Springer: New York, NY, USA, 2008. [Google Scholar]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. Our World in Data.org. 2019. Available online: https://ourworldindata.org/world-population-growth (accessed on 22 August 2022).
- Benz, M.; Coşkun, A.; Rössner, C.; Deckers, K.; Riehl, S.; Alt, K.W.; Özkaya, V. First Evidence of an Epipalaeolithic Hunter-Fisher-Gatherer Settlement at Körtik Tepe. Arkeom. Sonuc. Toplantisi 2013, 28, 65–78. [Google Scholar]
- Alt, K.W.; Tejedor Rodríguez, C.; Nicklisch, N.; Roth, D.; Szécsényi Nagy, A.; Knipper, C.; Lindauer, S.; Held, P.; de Lagrán, Í.G.M.; Schulz, G. A Massacre of Early Neolithic Farmers in the High Pyrenees at Els Trocs, Spain. Sci. Rep. 2020, 10, 2131. [Google Scholar] [CrossRef]
- Werner, A. Reconstructions and Experimental Use of Late Neolithic Bread Ovens. In Proceedings of the Archéologie Expérimentale, Beaune, France, 6–9 April 1988; Errance: Paris, France, 1991; pp. 210–213. [Google Scholar]
- Jacomet, S. Plant Economy and Village Life in Neolithic Lake Dwellings at the Time of the Alpine Iceman. Veg. Hist. Archaeobot. 2009, 18, 47–59. [Google Scholar] [CrossRef]
- Hosch, S.; Jacomet, S. New Aspects of Archaeobotanical Research in Central European Neolithic Lake Dwelling Sites. Environ. Archaeol. 2001, 6, 59–71. [Google Scholar] [CrossRef]
- Antolín, F.; Bleicher, N.; Brombacher, C.; Kühn, M.; Steiner, B.L.; Jacomet, S. Quantitative Approximation to Large-Seeded Wild Fruit Use in a Late Neolithic Lake Dwelling: New Results from the Case Study of Layer 13 of Parkhaus Opéra in Zürich (Central Switzerland). Q. Int. 2016, 404, 56–68. [Google Scholar] [CrossRef]
- Rösch, M.; Ehrmann, O.; Herrmann, L.; Schulz, E.; Bogenrieder, A.; Goldammer, J.P.; Hall, M.; Page, H.; Schier, W. An Experimental Approach to Neolithic Shifting Cultivation. Veg. Hist. Archaeobot. 2002, 11, 143–154. [Google Scholar] [CrossRef]
- Hosch, S.L. Ackerbau und Sammelwirtschaft in der Neolithischen Seeufersiedlung Arbon Bleiche 3 (3384-3370 v. Chr.), Kanton Thurgau, Schweiz. Ph.D. Thesis, University of Basel, Basel, Switzerland, 2004. [Google Scholar]
- Suter, P.J.; Schibler, J. Ernährung während der Jungsteinzeit am Bielersee: Modell und Hypothesen. In Studien zum Siedlungswesen im Jungneolithikum; Beier, H.J., Ed.; Beiträge zur Ur- und Frühgeschichte Mitteleuropas 10; Beier & Beran: Weissbach, Switzerland, 1996; pp. 23–42. [Google Scholar]
- Bogaard, A.; Outram, A.K. Palaeodiet and beyond: Stable Isotopes in Bioarchaeology. World Archaeol. 2013, 45, 333–337. [Google Scholar] [CrossRef]
- Pollard, A.M. Isotopes and Impact: A Cautionary Tale. Antiquity 2011, 85, 631–638. [Google Scholar] [CrossRef]
- Meller, H.; Hahn, H.P.; Jung, R.; Risch, R. (Eds.) Rich and Poor—Competing for Resources in Prehistoric Societies. 8; Tagungen des Landesmuseums für Vorgeschichte Halle Vol 14/I/II; Landesamt fuer Denkmalpflege und Archaeologie Sachsen-Anhalt, Landesmuseum fuer Vorgeschichte: Halle, Germany, 2016. [Google Scholar]
- Münster, A.; Knipper, C.; Oelze, V.M.; Nicklisch, N.; Stecher, M.; Schlenker, B.; Ganslmeier, R.; Fragata, M.; Friederich, S.; Dresely, V.; et al. 4000 Years of Human Dietary Evolution in Central Germany, from the First Farmers to the First Elites. PLoS ONE 2018, 13, e0194862. [Google Scholar] [CrossRef]
- Ervynck, A.; Van Neer, W.; Hüster-Plogmann, H.; Schibler, J. Beyond Affluence: The Zooarchaeology of Luxury. World Archaeol. 2003, 34, 428–441. [Google Scholar] [CrossRef]
- Knipper, C.; Held, P.; Fecher, M.; Nicklisch, N.; Meyer, C.; Schreiber, H.; Zich, B.; Metzner-Nebelsick, C.; Hubensack, V.; Hansen, L. Superior in Life—Superior in Death: Dietary Distinction of Central European Prehistoric and Medieval Elites. Curr. Anthropol. 2015, 56, 579–589. [Google Scholar] [CrossRef]
- Knipper, C.; Meyer, C.; Jacobi, F.; Roth, C.; Fecher, M.; Stephan, E.; Schatz, K.; Hansen, L.; Posluschny, A.; Höppner, B.; et al. Social Differentiation and Land Use at an Early Iron Age “Princely Seat”: Bioarchaeological Investigations at the Glauberg (Germany). J. Archaeol. Sci. 2014, 41, 818–835. [Google Scholar] [CrossRef]
- Knipper, C.; Pichler, S.L.; Rissanen, H.; Stopp, B.; Kühn, M.; Spichtig, N.; Röder, B.; Schibler, J.; Lassau, G.; Alt, K.W. What Is on the Menu in a Celtic Town? Iron Age Diet Reconstructed at Basel-Gasfabrik, Switzerland. Archaeol. Anthropol. Sci. 2017, 9, 1307–1326. [Google Scholar] [CrossRef]
- Meller, H.; Risch, R.; Gronenborn, D. (Eds.) Surplus without the State. Political Forms in Prehistory; Tagungen des Landesmuseums für Vorgeschichte Halle, Vol. 18; Landesamt fuer Denkmalpflege und Archaeologie Sachsen-Anhalt, Landesmuseum fuer Vorgeschichte: Halle, Germany, 2018. [Google Scholar]
- Kiple, E. The Cambridge World History of Food; Cambridge University Press: Cambridge, UK, 2000; Volume 1/2. [Google Scholar]
- Montanari, M. Medieval Tastes: Food, Cooking, and the Table; Columbia University Press: New York, NY, USA, 2015; ISBN 978-0-231-53908-1. [Google Scholar]
- Stopp, B. Archäozoologische Untersuchung der Tierknochen aus Gruben der spätlatènezeitlichen Siedlung Basel-Gasfabrik. Mater. Zur Archäologie Basel 2008, 20A, 249–292. [Google Scholar]
- Boessneck, J.; von den Driesch, A.; Meyer-Lemppenau, U.; Wechsel von Ohlen, E. Die Tierknochenfunde aus dem Oppidum von Manching; Steiner: Wiesbaden, Germany, 1971. [Google Scholar]
- Sievers, S. Manching: Die Keltenstadt; Wiss. Buchges.: Darmstadt, Germany, 2003. [Google Scholar]
- Weiss Adamson, M. Food in Medieval Times; Greenwood Publishing Group: Westport, CT, USA, 2004. [Google Scholar]
- Sirocko, F. Wetter, Klima, Menschheitsentwicklung: Von der Eiszeit bis ins 21. Jahrhundert; Wiss. Buchges.: Darmstadt, Germany, 2009. [Google Scholar]
- Fagan, B. The Little Ice Age. How Climate Make History 1300–1850; Basic Books: New York, NY, USA, 2000. [Google Scholar]
- Armelagos, G.J.; Brown, P.J.; Turner, B. Evolutionary, Historical and Political Economic Perspectives on Health and Disease. Soc. Sci. Med. 2005, 61, 755–765. [Google Scholar] [CrossRef]
- Larsen, C.S. The Agricultural Revolution as Environmental Catastrophe: Implications for Health and Lifestyle in the Holocene. Q. Int. 2006, 150, 12–20. [Google Scholar] [CrossRef]
- Ruff, C.B.; Holt, B.; Niskanen, M.; Sladek, V.; Berner, M.; Garofalo, E.; Garvin, H.M.; Hora, M.; Junno, J.-A.; Schuplerova, E.; et al. Gradual Decline in Mobility with the Adoption of Food Production in Europe. Proc. Nat. Acad. Sci. USA 2015, 112, 7147–7152. [Google Scholar] [CrossRef]
- Dobson, M. Murderous Contagion: A Human History of Disease; Quercus: London, UK, 2015. [Google Scholar]
- Bos, K.I.; Kühnert, D.; Herbig, A.; Esquivel-Gomez, L.R.; Valtueña, A.A.; Barquera, R.; Giffin, K.; Lankapalli, A.K.; Nelson, E.A.; Sabin, S.; et al. Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Ann. Rev. Microbiol. 2019, 73, 639–666. [Google Scholar] [CrossRef]
- Han, B.A.; Kramer, A.M.; Drake, J.M. Global Patterns of Zoonotic Disease in Mammals. Trends Parasitol. 2016, 32, 565–577. [Google Scholar] [CrossRef]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic Host Diversity Increases in Human-Dominated Ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Nicklisch, N.; Maixner, F.; Ganslmeier, R.; Friederich, S.; Dresely, V.; Meller, H.; Zink, A.; Alt, K.W. Rib Lesions in Skeletons from Early Neolithic Sites in Central Germany: On the Trail of Tuberculosis at the Onset of Agriculture. Am. J. Phys. Anthropol. 2012, 149, 391–404. [Google Scholar] [CrossRef]
- Rascovan, N.; Sjögren, K.-G.; Kristiansen, K.; Nielsen, R.; Willerslev, E.; Desnues, C.; Rasmussen, S. Emergence and Spread of Basal Lineages of Yersinia Pestis during the Neolithic Decline. Cell 2019, 176, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Krause-Kyora, B.; Susat, J.; Key, F.M.; Kühnert, D.; Bosse, E.; Immel, A.; Rinne, C.; Kornell, S.-C.; Yepes, D.; Franzenburg, S. Neolithic and Medieval Virus Genomes Reveal Complex Evolution of Hepatitis B. Elife 2018, 7, e36666. [Google Scholar] [CrossRef] [PubMed]
- Fournié, G.; Pfeiffer, D.U.; Bendrey, R. Early Animal Farming and Zoonotic Disease Dynamics: Modelling Brucellosis Transmission in Neolithic Goat Populations. Royal Soc. Open Sci. 2017, 4, 160943. [Google Scholar] [CrossRef]
- Key, F.M.; Posth, C.; Esquivel-Gomez, L.R.; Hübler, R.; Spyrou, M.A.; Neumann, G.U.; Furtwängler, A.; Sabin, S.; Burri, M.; Wissgott, A.; et al. Emergence of Human-Adapted Salmonella Enterica Is Linked to the Neolithization Process. Nat. Ecol. Evol. 2020, 4, 324–333. [Google Scholar] [CrossRef]
- Pichler, S.L.; Pümpin, C.; Brönnimann, D.; Rentzel, P. Life in the Proto-Urban Style: The Identification of Parasite Eggs in Micromorphological Thin Sections from the Basel-Gasfabrik Late Iron Age Settlement, Switzerland. J. Archaeol Sci. 2014, 43, 55–65. [Google Scholar] [CrossRef]
- Pruimboom, L.; Muskiet, F.A. Intermittent Living; the Use of Ancient Challenges as a Vaccine against the Deleterious Effects of Modern Life—A Hypothesis. Med. Hypotheses 2018, 120, 28–42. [Google Scholar] [CrossRef]
- de Cabo, R.; Carmona-Gutierrez, D.; Bernier, M.; Hall, M.N.; Madeo, F. The Search for Antiaging Interventions: From Elixirs to Fasting Regimens. Cell 2014, 157, 1515–1526. [Google Scholar] [CrossRef]
- Kaati, G.; Bygren, L.O.; Pembrey, M.; Sjöström, M. Transgenerational Response to Nutrition, Early Life Circumstances and Longevity. Eur. J. Hum. Genet. 2007, 15, 784–790. [Google Scholar] [CrossRef]
- Kaspar, D.; Hastreiter, S.; Irmler, M.; Hrabé de Angelis, M.; Beckers, J. Nutrition and Its Role in Epigenetic Inheritance of Obesity and Diabetes across Generations. Mamm. Genome 2020, 31, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Alt, K.W.; Zesch, S.; Garrido-Pena, R.; Knipper, C.; Szécsényi-Nagy, A.; Roth, C.; Tejedor-Rodríguez, C.; Held, P.; García-Martínez-De-Lagrán, Í.; Navitainuck, D.; et al. Community in Life and Death: The Late Neolithic Megalithic Tomb at Alto de Reinoso (Burgos, Spain). PLoS ONE 2016, 11, e0146176. [Google Scholar] [CrossRef]
- Nicklisch, N.; Ganslmeier, R.; Siebert, A.; Friederich, S.; Meller, H.; Alt, K.W. Holes in Teeth–Dental Caries in Neolithic and Early Bronze Age Populations in Central Germany. Ann. Anat. 2016, 203, 90–99. [Google Scholar] [CrossRef]
- Cohen, M.N.; Armelagos, G.J. Paleopathology at the Origins of Agriculture; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Carli-Thiele, P. Spuren von Mangelerkrankungen an Steinzeitlichen Kinderskeletten; Erich Goltze: Göttingen, Germany, 1996. [Google Scholar]
- Larsen, C.S. Biological Changes in Human Populations with Agriculture. Ann. Rev. Anthropol. 1995, 24, 185–213. [Google Scholar] [CrossRef]
- Tayles, N.; Domett, K.; Nelsen, K. Agriculture and Dental Caries? The Case of Rice in Prehistoric Southeast Asia. World Archaeol. 2000, 32, 68–83. [Google Scholar] [CrossRef]
- Caselitz, P. Caries—Ancient Plague of Humankind. In Dental Anthropology: Fundamentals, Limits and Prospects; Alt, K.W., Rösing, F.W., Teschler-Nicola, M., Eds.; Springer: Vienna, Austria, 1998; pp. 203–226. ISBN 978-3-7091-7496-8. [Google Scholar]
- Eaton, S.B.; Konner, M. Paleolithic Nutrition: A Consideration of Its Nature and Current Implications. N. Engl. J. Med. 1985, 312, 283–289. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Lemke, D.; Klement, R.J.; Paul, S.; Spitz, J. The Paleolithic Diet and Its Significance for the Prevention and Treatment of Chronic Diseases. Aktuelle Ernaehrungsmedizin 2016, 41, 437–449. [Google Scholar]
- Gerbault, P.; Walker, C.; Brown, K.; Yonova-Doing, E.; Thomas, M.G. The Evolution of Lactose Tolerance in Dairying Populations. In The Oxford Handbook of the Archaeology of Diet; Lee-Thorp, J., Katzenberg, M.A., Eds.; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-175688-7. [Google Scholar]
- Jeong, C.; Wilkin, S.; Amgalantugs, T.; Bouwman, A.S.; Taylor, W.T.T.; Hagan, R.W.; Bromage, S.; Tsolmon, S.; Trachsel, C.; Grossmann, J.; et al. Bronze Age Population Dynamics and the Rise of Dairy Pastoralism on the Eastern Eurasian Steppe. Proc. Nat. Acad. Sci. USA 2018, 115, 11248–11255. [Google Scholar] [CrossRef]
- Melnik, B.C. Lifetime Impact of Cow’s Milk on Overactivation of MTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021, 11, 404. [Google Scholar] [CrossRef]
- Boyden, S.V. The Impact of Civilization on the Biology of Man; Australian National University Press: Canberra, Australia, 1970. [Google Scholar]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef]
- Eaton, J.; Iannotti, L. Genome-nutrition divergence: Evolving understanding of the malnutrition spectrum. Nutr. Rev. 2017, 75, 934–950. [Google Scholar] [CrossRef]
- Booth, F.W.; Laye, M.J.; Lees, S.J.; Rector, R.S.; Thyfault, J.P. Reduced physical activity and risk of chronic disease: The biology behind the consequences. Eur. J. Appl. Physiol. 2008, 102, 381–390. [Google Scholar] [CrossRef]
- Matthews, C.E.; Moore, S.C.; Sampson, J.; Blair, A.; Xiao, Q.; Keadle, S.K.; Hollenbeck, A.; Park, Y. Mortality benefits for replacing sitting time with different physical activities. Med. Sci. Sports Exerc. 2015, 47, 1833–1840. [Google Scholar] [CrossRef]
- Hodkinson, A.; Kontopantelis, E.; Adeniji, C.; van Marwijk, H.; McMillan, B.; Bower, P.; Panagioti, M. Accelerometer- and pedometer-based physical activity interventions among adults with cardiometabolic conditions. A systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e1912895. [Google Scholar] [CrossRef] [PubMed]
- Mummert, A.; Esche, E.; Robinson, J.; Armelagos, G.J. Stature and robusticity during the agricultural transition: Evidence from the bioarchaeological record. Econ. Hum. Biol. 2011, 9, 284–301. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.E. The Story of the Human Body. Evolution, Health, and Disease; Pantheon Books: New York, NY, USA, 2013. [Google Scholar]
- Childe, V.G. Man Makes Himself; Watts and Comp.: London, UK, 1936. [Google Scholar]
- Briavoinne, N. De l’Industrie En Belgique: Causes de Décadence et de Prospérité, Vol 2; Dubois: Bruxelles, Belgium, 1839. [Google Scholar]
- Allen, R.C. The Industrial Revolution: A Very Short Introduction; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Johnson, R.J.; Segal, M.S.; Sautin, Y.; Nakagawa, T.; Feig, D.I.; Kang, D.-H.; Gersch, M.S.; Benner, S.; Sánchez-Lozada, L.G. Potential Role of Sugar (Fructose) in the Epidemic of Hypertension, Obesity and the Metabolic Syndrome, Diabetes, Kidney Disease, and Cardiovascular Disease. Am. J. Clin. Nutr. 2007, 86, 899–906. [Google Scholar] [CrossRef]
- Hörnlimann, B.; Riesner, D.; Kretzschmar, H.A. Prions in Humans and Animals; Walter de Gruyter: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Crawford, D.H. Deadly Companions: How Microbes Shaped Our History; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Oldstone, M.B. Viruses, Plagues, and History: Past, Present, and Future; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Gräfe, D.; Ehlers, B.; Mäde, D.; Ellerbroek, L.; Seidler, T.; Johne, R. Detection and Genome Characterization of Bovine Polyomaviruses in Beef Muscle and Ground Beef Samples from Germany. Int. J. Food Microbiol. 2017, 241, 168–172. [Google Scholar] [CrossRef]
- Zur Hausen, H.; Bund, T.; de Villiers, E.-M. Specific Nutritional Infections Early in Life as Risk Factors for Human Colon and Breast Cancers Several Decades Later. Int. J. Cancer 2019, 144, 1574–1583. [Google Scholar] [CrossRef]
- Bund, T.; Nikitina, E.; Chakraborty, D.; Ernst, C.; Gunst, K.; Boneva, B.; Tessmer, C.; Volk, N.; Brobeil, A.; Weber, A.; et al. Analysis of Chronic Inflammatory Lesions of the Colon for BMMF Rep Antigen Expression and CD68 Macrophage Interactions. Proc. Nat. Acad. Sci. USA 2021, 118, e2025830118. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Gross, M.D.; Tapsell, L.C. Food Synergy: An Operational Concept for Understanding Nutrition. Am. J. Clin. Nutr. 2009, 89, 1543–1548. [Google Scholar] [CrossRef]
- Du, M.; Tugendhaft, A.; Erzse, A.; Hofman, K.J. Sugar-Sweetened Beverage Taxes: Industry Response and Tactics. Yale J. Biol. Med. 2018, 91, 185–190. [Google Scholar]
- Ganten, D.; Niehaus, J. Die Gesundheitsformel: Die Großen Zivilisationskrankheiten Verstehen und Verhindern; Knaus: München, Germany, 2014. [Google Scholar]
- Alt, K.W. Ursprung und Entwicklung der Zivilisationskrankheiten. In Ein Neues Ganzes. Alles Ist Mit Allem Vernetzt; Jahrbuch Danube Private University; Quintessence Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- Lindeberg, S. Food and Western Disease: Health and Nutrition from an Evolutionary Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Milton, K. A Hypothesis to Explain the Role of Meat-Eating in Human Evolution. Evol. Anthropol. 1999, 8, 11–21. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, S.V. The Gut Microbiome: Relationships with Disease and Opportunities for Therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.L.; Xia, K.; Azcarate-Peril, M.A.; Goldman, B.D.; Ahn, M.; Styner, M.A.; Thompson, A.L.; Geng, X.; Gilmore, J.H.; Knickmeyer, R.C. Infant Gut Microbiome Associated with Cognitive Development. Biol. Psychiatry 2018, 83, 148–159. [Google Scholar] [CrossRef]
- Clemente, J.C.; Pehrsson, E.C.; Blaser, M.J.; Sandhu, K.; Gao, Z.; Wang, B.; Magris, M.; Hidalgo, G.; Contreras, M.; Noya-Alarcón, Ó.; et al. The Microbiome of Uncontacted Amerindians. Sci. Adv. 2015, 1, e1500183. [Google Scholar] [CrossRef]
- Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; et al. Dietary Intervention Impact on Gut Microbial Gene Richness. Nature 2013, 500, 585–588. [Google Scholar] [CrossRef]
- Almeida, A.; Mitchell, A.; Boland, M.; Forster, S.; Gloor, G.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A New Genomic Blueprint of the Human Gut Microbiota. Nature 2019, 568, 499–504. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Francis, H.M.; Attuquayefio, T.; Gupta, D.; Yeomans, M.R.; Oaten, M.J.; Davidson, T. Hippocampal-Dependent Appetitive Control Is Impaired by Experimental Exposure to a Western-Style Diet. R. Soc. Open Sci. 2020, 7, 191338. [Google Scholar] [CrossRef]
- Wuketits, F.M. The Theory of Biological Evolution: Historical and Philosophical Aspects. In Handbook of Evolution: The Evolution of Living Systems; Wuketits, F.M., Antweiler, C., Ayala, J.J., Eds.; Wiley-VHC: Weinheim, Germany, 2005; pp. 57–85. [Google Scholar]
- Raichlen, D.A.; Pontzer, H.; Zderic, T.W.; Harris, J.A.; Mabulla, A.Z.; Hamilton, M.T.; Wood, B.M. Sitting, Squatting, and the Evolutionary Biology of Human Inactivity. Proc. Nat. Acad. Sci. USA 2020, 117, 7115–7121. [Google Scholar] [CrossRef]
- Englard, S.; Seifter, S. The Biochemical Functions of Ascorbic Acid. Ann. Rev. Nutr. 1986, 6, 365–406. [Google Scholar] [CrossRef]
- Drouin, G.; Godin, J.-R.; Pagé, B. The Genetics of Vitamin C Loss in Vertebrates. Curr. Genom. 2011, 12, 371–378. [Google Scholar] [CrossRef]
- Shatin, R. Man and His Cultigens. An Inquiry Into the Ecology of Chronic Diseases possibly Affecting 3% of the Population. Sci. Aust. 1964, 1, 34–39. [Google Scholar]
- Nesse, R.M.; Williams, G.C. Why We Get Sick: The New Science of Evolutionary Medicine; Vintage Books: New York, NY, USA, 1995. [Google Scholar]
- Manheimer, E.W.; van Zuuren, E.J.; Fedorowicz, Z.; Pijl, H. Paleolithic Nutrition for Metabolic Syndrome: Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2015, 102, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Brüne, M.; Schiefenhövel, W. The Oxford Handbook of Evolutionary Medicine; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- World Health Organization. Non-Communicable Diseases; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 28 June 2022).
- Daar, A.S.; Singer, P.A.; Persad, D.L.; Pramming, S.K.; Matthews, D.R.; Beaglehole, R.; Bernstein, A.; Borysiewicz, L.K.; Colagiuri, S.; Ganguly, N.; et al. Grand Challenges in Chronic Non-Communicable Diseases. Nature 2007, 450, 494–496. [Google Scholar] [CrossRef]
- Sharp, G.C.; Relton, C.L. Epigenetics and Noncommunicable Diseases. Epigenomics 2017, 9, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.J.; Purcell, R.V.; Adams, A.T.; Lam, Y.K.; Ring, P.M.; Anderson, J.R.; Osborne, A.J. A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Front. Genet. 2022, 13, 831866. [Google Scholar] [CrossRef]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of Ultra-Processed Foods and Cancer Risk: Results from NutriNet-Santé Prospective Cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Türp, J.C.; Spranger, H. Non-Communicable Disease and Their Significance for Dental Medicine. Swiss Dent. J. 2016, 126, 473–489. [Google Scholar]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding Dental Caries as a Non-Communicable Disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef]
- Sampaio-Maia, B.; Caldas, I.M.; Pereira, M.L.; Pérez-Mongiovi, D.; Araujo, R. The Oral Microbiome in Health and Its Implication in Oral and Systemic Diseases. Adv. Appl. Microbiol. 2016, 97, 171–210. [Google Scholar]
- Woelber, J.P.; Al-Ahmad, A.; Alt, K.W. On the Pathogenicity of the Oral Biofilm: A Critical Review from a Biological, Evolutionary, and Nutritional Point of View. Nutrients 2022, 14, 2174. [Google Scholar] [CrossRef]
- Seitz, M.W.; Listl, S.; Bartols, A.; Schubert, I.; Blaschke, K.; Haux, C.; Van Der Zande, M.M. Current Knowledge on Correlations Between Highly Prevalent Dental Conditions and Chronic Diseases: An Umbrella Review. Prev. Chronic Dis. 2019, 16, 180641. [Google Scholar] [CrossRef]
- Watt, R.G.; Daly, B.; Allison, P.; Macpherson, L.M.D.; Venturelli, R.; Listl, S.; Weyant, R.J.; Mathur, M.R.; Guarnizo-Herreño, C.C.; Celeste, R.K.; et al. Ending the Neglect of Global Oral Health: Time for Radical Action. Lancet 2019, 394, 261–272. [Google Scholar] [CrossRef]
- World Health Organization. Oral Health: Achieving Better Oral Health as Part of the Universal Health Coverage and Non-Communicable Disease Agendas towards 2030; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Glick, M.; Williams, D.M.; Ben Yahya, I.; Cheung, W.W.M.; Bondioni, E.; Clark, P.; Listl, S.; Raj Mathur, M.; Mossey, P.; Ogawa, H.; et al. FDI Vision 2030: Delivering Optimal Oral Health for All; FDI World Dental Federation: Geneva, Switzerland, 2021. [Google Scholar]
- Frassetto, L.A.; Schloetter, M.; Mietus-Synder, M.; Morris, R.C.; Sebastian, A. Metabolic and Physiologic Improvements from Consuming a Paleolithic, Hunter-Gatherer Type Diet. Eur. J. Clin. Nutr. 2009, 63, 947–955. [Google Scholar] [CrossRef]
- Masharani, U.; Sherchan, P.; Schloetter, M.; Stratford, S.; Xiao, A.; Sebastian, A.; Nolte Kennedy, M.; Frassetto, L. Metabolic and Physiologic Effects from Consuming a Hunter-Gatherer (Paleolithic)-Type Diet in Type 2 Diabetes. Eur. J. Clin. Nutr. 2015, 69, 944–948. [Google Scholar] [CrossRef]
- Bligh, F.; Godsland, I.F.; Frost, G.; Hunter, K.J.; Murray, P.; Macaulay, K.; Hyliands, D.; Talbot, D.C.S.; Casey, J.; Mulder, T.P.J.; et al. Plant-Rich Mixed Meals Based on Palaeolithic Diet Principles Have a Dramatic Impact on Incretin, Peptide YY and Satiety Response, but Show Little Effect on Glucose and Insulin Homeostasis: An Acute-Effects Randomised Study. Br. J. Nutr. 2015, 113, 574–584. [Google Scholar] [CrossRef]
- Cassidy, C.M. Nutrition and Health in Agriculturalist and Hunter-Gatherers: A Case Study of Two Prehistoric Populations. In Nutritional Anthropology: Contemporary Approaches to Diet and Culture; Jerome, J.W., Kandel, R.F., Pelto, G.H., Eds.; Redgrave Publishing Company: Pleasantville, NJ, USA, 1980; pp. 117–145. [Google Scholar]
- Ségurel, L.; Bon, C. On the Evolution of Lactase Persistence in Humans. Ann. Rev. Genom. Hum. Genet. 2017, 18, 297–319. [Google Scholar] [CrossRef]
- Jüptner, H. Tropenmedizinische Untersuchung der Eipo im zentralen Bergland von Irian Jaya (West-Neuguinea), Indonesien; Reimer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Gluckman, P.; Beedle, A.; Buklijas, T.; Low, F.; Hanson, M. Principles of Evolutionary Medicine; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Torday, J.S.; Blackstone, N.W.; Rehan, V.K. Evidence-Based Evolutionary Medicine; Wiley-Blackwell: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.; Ahmed, Z.; Younas, S. COVID-19 and Comorbidities: Deleterious Impact on Infected Patients. J. Infect. Public Health 2020, 13, 1833–1839. [Google Scholar] [CrossRef]
- Wuketits, F.M. Der Affe in Uns: Warum Die Kultur an Unserer Natur zu Scheitern Droht; Hirzel: Stuttgart, Germany, 2002. [Google Scholar]
- Tomasello, M. The Cultural Origins of Human Cognition; Harvard University Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Hastorf, C.A.; Foxhall, L. The Social Archaeology of Food. Thinking About Eating from Prehistory to the Present; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar]
- Setzwein, M. Ernährung—Körper—Geschlecht: Zur Sozialen Konstruktion von Geschlecht im kulinarischen Kontext; Vs Verlag: Wiesbaden, Germany, 2004. [Google Scholar]
- Ganten, D.; Nesse, R. The Evolution of Evolutionary Molecular Medicine: Genomics Are Transforming Evolutionary Biology into a Science with New Importance for Modern Medicine. J. Mol. Med. 2012, 90, 467–470. [Google Scholar] [CrossRef]
- Omran, A.R. The Epidemiologic Transition: A Theory of the Epidemiology of Population Change. Milbank Q. 2005, 83, 731–757. [Google Scholar] [CrossRef]
- Santosa, A.; Wall, S.; Fottrell, E.; Högberg, U.; Byass, P. The Development and Experience of Epidemiological Transition Theory over Four Decades: A Systematic Review. Glob. Health Action 2014, 7, 23574. [Google Scholar] [CrossRef]
- Mercer, A.J. Updating the Epidemiological Transition Model. Epidemiol. Infect. 2018, 146, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Nesse, R.M.; Ganten, D.; Gregory, T.R.; Omenn, G.S. Evolutionary Molecular Medicine. J. Mol. Med. 2012, 90, 509–522. [Google Scholar] [CrossRef]
- Bartha, V.; Exner, L.; Schweikert, D.; Woelber, J.P.; Vach, K.; Meyer, A.-L.; Basrai, M.; Bischoff, S.C.; Meller, C.; Wolff, D. Effect of the Mediterranean Diet on Gingivitis: A Randomized Controlled Trial. J. Clin. Periodontol. 2022, 49, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Jockel-Schneider, Y.; Goßner, S.K.; Petersen, N.; Stölzel, P.; Hägele, F.; Schweiggert, R.M.; Haubitz, I.; Eigenthaler, M.; Carle, R.; Schlagenhauf, U. Stimulation of the Nitrate-Nitrite-NO-Metabolism by Repeated Lettuce Juice Consumption Decreases Gingival Inflammation in Periodontal Recall Patients: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. J. Clin. Periodontol. 2016, 43, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Woelber, J.P.; Vach, K. The Emerging Field of Nutritional Dentistry. Nutrients 2022, 14, 2076. [Google Scholar] [CrossRef] [PubMed]
- Haub, C. How many people have ever lived on earth? Popul. Today 1995, 23, 4–5. [Google Scholar] [PubMed]
- Kremer, M. Population growth and technological change: One Million B.C. to 1990. Q. J. Econ. 1993, 108, 681–716. [Google Scholar] [CrossRef]
- Alt, K.W.; Knörr, J.; Nehlich, O. Man ist, was man isst! Ernährung als Ausdruck kultureller und geschlechtlicher Sozialisation. In Kumpf, Kalotte, Pfeilschaftglätter. Zwei Leben für die Archäologie; Falkenstein, F., Schade-Lindig, S., Zeeb-Lanz, A., Eds.; Internationale Archäologie, Studia Honoraria, Rhaden: Westfalen, Germany, 2008; pp. 21–36. [Google Scholar]
- Cook, N.D. Epidemas y dinámica geográfica. In El Primer Contacto y la Formación de Nuevas Sociedades; Pease, F., Moya Pons, F., Eds.; Vol. II Historia general de América Latina; Ediciones UNESCO, Editorial Trotta: Paris, France, 2000; pp. 301–317. [Google Scholar]
- Ehrlich, P.R. The Population Bomb; Ballantine Books: New York, NY, USA, 1968. [Google Scholar]
- Bricker, D.; Ibbitson, J. Empty Planet; The Shock of Global Population Decline: New York, NY, USA, 2019. [Google Scholar]
- Alt, K.W.; Rossbach, A. Nothing in nature is as consistent as change. In Comparative Dental Morphology; Koppe, T., Meyer, G., Alt, K.W., Eds.; Karger: Basel, Switzerland, 2009; pp. 190–196. [Google Scholar]
- Perlman, R.L. Evolution and Medicin; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Hummel, R.; Akveld, N.A.E.; Bruers, J.J.M.; Van der Sanden, W.J.M.; Su, N.; Van der Heijden, G. Caries Progression Rates Revisited: A Systematic Review. J. Dent. Res. 2019, 98, 746–754. [Google Scholar] [CrossRef]
- Metress, J.F.; Conway, T. Standardized System for Recording Dental Caries in Prehistoric Skeletons. J. Dent. Res. 1975, 54, 908. [Google Scholar] [CrossRef]
- Hillson, S. Recording Dental Caries in Archaeological Human Remains. Int. J. Osteoarchaeol. 2001, 11, 249–289. [Google Scholar] [CrossRef]
- Whittaker, D.K.; Molleson, T.; Bennett, R.B.; Ap Edwards, I.; Jenkins, P.R.; Llewelyn, J.H. The Prevalence and Distribution of Dental Caries in a Romano-British Population. Arch. Oral Biol. 1981, 26, 237–245. [Google Scholar] [CrossRef]
- Nicklisch, N.; Oelze, V.M.; Schierz, O.; Meller, H.; Alt, K.W. A Healthier Smile in the Past? Dental Caries and Diet in Early Neolithic Farming Communities from Central Germany. Nutrients 2022, 14, 1831. [Google Scholar] [CrossRef] [PubMed]
- Alt, K.W. Karies in Vergangenheit und Gegenwart. Zur Epidemiologie einer Volksseuche. In Pein und Plagen. Aspekte Einer Historischen Epidemiologie; Edition Archaea Gelsenkirchen/Schwelm: Schwelm, Germany, 2001; pp. 156–213. [Google Scholar]
- Alt, K.W. Prosthetics, Periodontal Therapy and Conservative Dentistry in the Eighteenth Century: Archeological Findings from Grand Sacconex, Geneva, Switzerland. Bull. Hist. Dent. 1994, 42, 67–70. [Google Scholar] [PubMed]
Wild Primates | Pleistocene Hunter-Gatherers | Neolithic Period | Bronze Age/Middle Ages | Post Industrial Revolution | |
---|---|---|---|---|---|
Way of Life | mobile hordes | nomadic; small egalitarian groups | sedentary; agricultural groups; profound social and cultural change | sedentary; agricultural societies; increasing social differentiation and first elites; rise in violence | sedentary; industrial societies; social stratification; large disparities in wealth |
Economy | exploitation of wild resources | systematic exploitation of wild resources including aquatic foods | production based economies; crop cultivation and animal husbandry; decreasing role of wild foods | production based economies; metalworking; advancement of farming and animal husbandry; hunting as privilege of nobility | global economy with marked interdependencies; genetic engineering of foodstuffs; diets; strong income-dependency of food choices |
Dietary Description | variety of seasonally available plant food supplemented by small animals | variety of seasonally available plant food supplemented by hunting and fishing; low processed foods; occasional periods of famine | intense consumption of cereals supplemented by vegetables and domestic animals; low proportion of meat; few wild animals; few dairy products; low processed food | cereal species diversification; extension of horticultural crops; more meat consumption; more dairy; mainly low processed food | global diets; cheap meat from factory farming is popular; bread from white flour is staple food; primarily highly processed food; healthy foodstuffs are costly; organic farming is expanding; diverse food fads |
Food Preparation | none | processing with stone and bone tools; fire use; fermentation of vegetable and animal foodstuffs | fireplaces for cooking and baking; ceramic cooking vessels | ovens for cooking and baking; metal items for food preparation and consumption | increasingly industrialized cooking; choice between grandma’s kitchen and molecular cuisine |
Medical Significance | ideally biologically adapted; use of medicinal plants; very low rates of caries | ideally biologically adapted; low birth rate; low population density; communicable diseases low; chronic non-communicable disease absent; very low rates of caries | high proportion of starchy foods; high birth rate; population density increases; close contact between humans and animals; increase in communicable and degenerative diseases; first civilization diseases; increase in oral diseases | high proportion of starchy foods; high birth rate and population density; rise in infectious diseases; epidemics; continued increase in civilization diseases; further increase in oral diseases | population overshoot; chronic non-communicable diseases as main cause of premature death; global pandemics; increase in mal- and undernutrition; high rates of caries and periodontal diseases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alt, K.W.; Al-Ahmad, A.; Woelber, J.P. Nutrition and Health in Human Evolution–Past to Present. Nutrients 2022, 14, 3594. https://doi.org/10.3390/nu14173594
Alt KW, Al-Ahmad A, Woelber JP. Nutrition and Health in Human Evolution–Past to Present. Nutrients. 2022; 14(17):3594. https://doi.org/10.3390/nu14173594
Chicago/Turabian StyleAlt, Kurt W., Ali Al-Ahmad, and Johan Peter Woelber. 2022. "Nutrition and Health in Human Evolution–Past to Present" Nutrients 14, no. 17: 3594. https://doi.org/10.3390/nu14173594
APA StyleAlt, K. W., Al-Ahmad, A., & Woelber, J. P. (2022). Nutrition and Health in Human Evolution–Past to Present. Nutrients, 14(17), 3594. https://doi.org/10.3390/nu14173594