Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits
Abstract
:1. Introduction
2. AGE Accumulation and Metabolic Diseases
3. Defense Mechanisms against Glycation
4. Nutrition and the Glycation Process
4.1. AGE Absorption through the Gastrointestinal Tract
4.2. Products Containing Increased Amounts of Age
4.3. Urbanization and AGE Accumulation
5. Limiting the Amount of AGE in the Body—Dietary Management
6. Strategies to Reduce the Impact of AGEs on the Body
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.-J. Advanced Glycation End Products (AGEs) May Be a Striking Link between Modern Diet and Health. Biomolecules 2019, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Lin, X.; Bu, C.; Zhang, X. Role of Advanced Glycation End Products in Mobility and Considerations in Possible Dietary and Nutritional Intervention Strategies. Nutr. Metab. 2018, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Warwas, M.; Piwowar, A.; Kopiec, G. Zaawansowane produkty glikacji (AGE) w organizmie—Powstawanie, losy, interakcja z receptorami i jej następstwa. Farm. Pol. 2010, 66, 585–590. [Google Scholar]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell. Longev. 2020, 2020, e3818196. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Kaur, A.; Thind, S.S.; Singh, B.; Raina, S. Advanced Glycation End-Products (AGEs): An Emerging Concern for Processed Food Industries. J. Food Sci. Technol. 2015, 52, 7561–7576. [Google Scholar] [CrossRef]
- Wierusz-Wysocka, B.; Araszkiewicz, A.; Schlaffke, J. Advanced glycation end products. A new biomarker of diabetes and late complications of disease? Clin. Diabetol. 2013, 2, 96–103. [Google Scholar]
- Egaña-Gorroño, L.; López-Díez, R.; Yepuri, G.; Ramirez, L.S.; Reverdatto, S.; Gugger, P.F.; Shekhtman, A.; Ramasamy, R.; Schmidt, A.M. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights from Human Subjects and Animal Models. Front. Cardiovasc. Med. 2020, 7, 37. [Google Scholar] [CrossRef]
- Pietkiewicz, J.; Seweryn, E.; Bartyś, A.; Gamian, A. Receptors for Advanced Glycation End Products and Their Physiological and Clinical Significance. Postępy Hig. Med. Dośw. 2008, 62, 511–523. [Google Scholar]
- Basta, G.; Lazzerini, G.; Massaro, M.; Simoncini, T.; Tanganelli, P.; Fu, C.; Kislinger, T.; Stern, D.M.; Schmidt, A.M.; De Caterina, R. Advanced Glycation End Products Activate Endothelium through Signal-Transduction Receptor RAGE: A Mechanism for Amplification of Inflammatory Responses. Circulation 2002, 105, 816–822. [Google Scholar] [CrossRef]
- Vlassara, H.; Brownlee, M.; Cerami, A. High-Affinity-Receptor-Mediated Uptake and Degradation of Glucose-Modified Proteins: A Potential Mechanism for the Removal of Senescent Macromolecules. Proc. Natl. Acad. Sci. USA 1985, 82, 5588–5592. [Google Scholar] [CrossRef]
- Araki, N.; Higashi, T.; Mori, T.; Shibayama, R.; Kawabe, Y.; Kodama, T.; Takahashi, K.; Shichiri, M.; Horiuchi, S. Macrophage Scavenger Receptor Mediates the Endocytic Uptake and Degradation of Advanced Glycation End Products of the Maillard Reaction. Eur. J. Biochem. 1995, 230, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.; Podrez, E.A.; Smith, J.D.; Hajjar, D.P.; Hazen, S.L.; Hoff, H.F.; Sharma, K.; Silverstein, R.L. Targeted Disruption of the Class B Scavenger Receptor CD36 Protects against Atherosclerotic Lesion Development in Mice. J. Clin. Investig. 2000, 105, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Pricci, F.; Leto, G.; Amadio, L.; Iacobini, C.; Romeo, G.; Cordone, S.; Gradini, R.; Barsotti, P.; Liu, F.-T.; Mario, U.D.; et al. Role of Galectin-3 as a Receptor for Advanced Glycosylation End Products. Kidney Int. 2000, 58, S31–S39. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, G.; Pricci, F.; Iacobini, C.; Leto, G.; Amadio, L.; Barsotti, P.; Frigeri, L.; Hsu, D.K.; Vlassara, H.; Liu, F.-T.; et al. Accelerated Diabetic Glomerulopathy in Galectin-3/AGE Receptor 3 Knockout Mice. FASEB J. 2001, 15, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Tan, A.X.; Vlassara, H. Antibacterial Activity of Lysozyme and Lactoferrin Is Inhibited by Binding of Advanced Glycation–Modified Proteins to a Conserved Motif. Nat. Med. 1995, 1, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Thornalley, P.J. Cell Activation by Glycated Proteins. AGE Receptors, Receptor Recognition Factors and Functional Classification of AGEs. Cell. Mol. Biol. 1998, 44, 1013–1023. [Google Scholar] [PubMed]
- Wautier, M.-P.; Chappey, O.; Corda, S.; Stern, D.M.; Schmidt, A.M.; Wautier, J.-L. Activation of NADPH Oxidase by AGE Links Oxidant Stress to Altered Gene Expression via RAGE. Am. J. Physiol.-Endocrinol. Metab. 2001, 280, E685–E694. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.M.; Hori, O.; Chen, J.X.; Li, J.F.; Crandall, J.; Zhang, J.; Cao, R.; Yan, S.D.; Brett, J.; Stern, D. Advanced Glycation Endproducts Interacting with Their Endothelial Receptor Induce Expression of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Cultured Human Endothelial Cells and in Mice. A Potential Mechanism for the Accelerated Vasculopathy of Diabetes. J. Clin. Investig. 1995, 96, 1395–1403. [Google Scholar] [CrossRef]
- Bierhaus, A.; Hofmann, M.A.; Ziegler, R.; Nawroth, P.P. AGEs and Their Interaction with AGE-Receptors in Vascular Disease and Diabetes Mellitus. I. The AGE Concept. Cardiovasc. Res. 1998, 37, 586–600. [Google Scholar] [CrossRef]
- Vlassara, H.; Palace, M.R. Diabetes and Advanced Glycation Endproducts. J. Intern. Med. 2002, 251, 87–101. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced Glycation End-Products: A Review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S. Role of Advanced Glycation End Products (AGEs) and Receptor for AGEs (RAGE) in Vascular Damage in Diabetes. Exp. Gerontol. 2011, 46, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Kuzan, A.; Chwiłkowska, A.; Kobielarz, M.J.; Pezowicz, C.; Gamian, A. Glikacja Białek Macierzy Zewnątrzkomórkowej i Jej Znaczenie w Miażdżycy. Postępy Hig. Med. Dośw. Dok. Elektron. 2012, 66, 804–809. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A. Molecular Mechanism of Non-Enzymic Glication of Proteins and Meaning of This Process in Diabetes. Prz. Kardiodiabetol. Cardio-Diabetol. Rev. 2007, 2, 253–258. [Google Scholar]
- Judyta, S. Ocena Zawartości Zaawansowanych Produktów Glikacji Białek w Skórze Metodą Autofluorescencji u Chorych Na Cukrzycę Typu 1; Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu: Poznań, Poland, 2013. [Google Scholar]
- Kłosiewicz-Latoszek, L.; Cybulska, B. Aterogenna Dyslipidemia—Problem Kliniczny. Forum Zaburzeń Metab. 2010, 1, 141–147. [Google Scholar]
- Obońska, K.; Grąbczewska, Z.; Fisz, J.; Kubica, J. Cukrzyca i Dysfunkcja Śródbłonka—Krótkie Spojrzenie Na Złożony Problem. Folia Cardiol. 2011, 6, 109–116. [Google Scholar]
- Maessen, D.E.; Brouwers, O.; Gaens, K.H.; Wouters, K.; Cleutjens, J.P.; Janssen, B.J.; Miyata, T.; Stehouwer, C.D.; Schalkwijk, C.G. Delayed Intervention with Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet—Induced Obese Mice. Diabetes 2015, 65, 956–966. [Google Scholar] [CrossRef]
- Zawada, A.E.; Naskret, D.; Niedźwiecki, P.; Grzymisławski, M.; Zozulińska-Ziółkiewicz, D.A.; Dobrowolska, A. Excess Body Fat Increases the Accumulation of Advanced Glycation End Products in the Skin of Patients with Type 1 Diabetes. Adv. Clin. Exp. Med. 2020, 29, 1193–1199. [Google Scholar] [CrossRef]
- Scheijen, J.L.J.M.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of Advanced Glycation Endproducts in Selected Food Items by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry: Presentation of a Dietary AGE Database. Food Chem. 2016, 190, 1145–1150. [Google Scholar] [CrossRef]
- Uribarri, J.; del Castillo, M.D.; de la Maza, M.P.; Filip, R.; Gugliucci, A.; Luevano-Contreras, C.; Macías-Cervantes, M.H.; Markowicz Bastos, D.H.; Medrano, A.; Menini, T.; et al. Dietary Advanced Glycation End Products and Their Role in Health and Disease. Adv. Nutr. 2015, 6, 461–473. [Google Scholar] [CrossRef]
- Beręsewicz, A.; Skierczyńska, A. Miażdżyca—Choroba Całego Życia i Całej Populacji Krajów Cywilizacji Zachodniej. Chor. Serca Naczyń 2006, 3, 1–6. [Google Scholar]
- Wang, J.C.; Bennett, M. Aging and Atherosclerosis. Circ. Res. 2012, 111, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial Ageing: From Endothelial Dysfunction to Vascular Calcification. J. Intern. Med. 2017, 281, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Fishman, S.L.; Sonmez, H.; Basman, C.; Singh, V.; Poretsky, L. The Role of Advanced Glycation End-Products in the Development of Coronary Artery Disease in Patients with and without Diabetes Mellitus: A Review. Mol. Med. 2018, 24, 59. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z. Crosstalk of Reactive Oxygen Species and NF-ΚB Signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New Insights into Oxidative Stress and Inflammation during Diabetes Mellitus-Accelerated Atherosclerosis. Redox Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef]
- Meerwaldt, R.; van der Vaart, M.G.; van Dam, G.M.; Tio, R.A.; Hillebrands, J.-L.; Smit, A.J.; Zeebregts, C.J. Clinical Relevance of Advanced Glycation Endproducts for Vascular Surgery. Eur. J. Vasc. Endovasc. Surg. 2008, 36, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Cepas, V.; Collino, M.; Mayo, J.C.; Sainz, R.M. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants 2020, 9, 142. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Pei, C.; Liu, B.; Li, M.; Fang, L.; Sun, Y.; Li, Y.; Meng, S. Hyperglycemia and Advanced Glycation End Products Regulate MiR-126 Expression in Endothelial Progenitor Cells. J. Vasc. Res. 2016, 53, 94–104. [Google Scholar] [CrossRef]
- Son, M.; Kang, W.C.; Oh, S.; Bayarsaikhan, D.; Ahn, H.; Lee, J.; Park, H.; Lee, S.; Choi, J.; Lee, H.S.; et al. Advanced Glycation End-Product (AGE)-Albumin from Activated Macrophage Is Critical in Human Mesenchymal Stem Cells Survival and Post-Ischemic Reperfusion Injury. Sci. Rep. 2017, 7, 11593. [Google Scholar] [CrossRef]
- Zununi Vahed, S.; Mostafavi, S.; Hosseiniyan Khatibi, S.M.; Shoja, M.M.; Ardalan, M. Vascular Calcification: An Important Understanding in Nephrology. Vasc. Health Risk Manag. 2020, 16, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J. Type-2 Diabetes Mellitus and Cardiovascular Disease. Future Cardiol. 2018, 14, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Timercan, T.; Şveţ, I.; Pantea, V.; Ambros, A.; Lîsîi, L. Advanced Glycation End Products in Isoproterenol-Induced Acute Myocardial Infarction. Med. Pharm. Rep. 2019, 92, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Hegab, Z.; Gibbons, S.; Neyses, L.; Mamas, M.A. Role of Advanced Glycation End Products in Cardiovascular Disease. World J. Cardiol. 2012, 4, 90–102. [Google Scholar] [CrossRef]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of Cardiovascular Disease in Type 2 Diabetes: A Systematic Literature Review of Scientific Evidence from across the World in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Araszkiewicz, A.; Naskret, D.; Zozulinska-Ziolkiewicz, D.; Pilacinski, S.; Uruska, A.; Grzelka, A.; Wegner, M.; Wierusz-Wysocka, B. Skin Autofluorescence Is Associated with Carotid Intima-Media Thickness, Diabetic Microangiopathy, and Long-Lasting Metabolic Control in Type 1 Diabetic Patients. Results from Poznan Prospective Study. Microvasc. Res. 2015, 98, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Kilhovd, B.K.; Berg, T.J.; Birkeland, K.I.; Thorsby, P.; Hanssen, K.F. Serum Levels of Advanced Glycation End Products Are Increased in Patients with Type 2 Diabetes and Coronary Heart Disease. Diabetes Care 1999, 22, 1543–1548. [Google Scholar] [CrossRef]
- Schleicher, E.D.; Wagner, E.; Nerlich, A.G. Increased Accumulation of the Glycoxidation Product N(Epsilon)-(Carboxymethyl)Lysine in Human Tissues in Diabetes and Aging. J. Clin. Investig. 1997, 99, 457–468. [Google Scholar] [CrossRef]
- Jin, X.; Yao, T.; Zhou, Z.; Zhu, J.; Zhang, S.; Hu, W.; Shen, C. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-ΚB Pathway. BioMed Res. Int. 2015, 2015, 732450. [Google Scholar] [CrossRef]
- Sprenger, C.C.; Plymate, S.R.; Reed, M.J. Aging-Related Alterations in the Extracellular Matrix Modulate the Microenvironment and Influence Tumor Progression. Int. J. Cancer 2010, 127, 2739–2748. [Google Scholar] [CrossRef]
- Yamagishi, S. Advanced Glycation End Products and Receptor—Oxidative Stress System in Diabetic Vascular Complications. Ther. Apher. Dial. 2009, 13, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Rigalleau, V.; Cougnard-Gregoire, A.; Nov, S.; Gonzalez, C.; Maury, E.; Lorrain, S.; Gin, H.; Barberger-Gateau, P. Association of Advanced Glycation End Products and Chronic Kidney Disease with Macroangiopathy in Type 2 Diabetes. J. Diabetes Complicat. 2015, 29, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Osawa, S.; Katakami, N.; Kuroda, A.; Takahara, M.; Sakamoto, F.; Kawamori, D.; Matsuoka, T.; Matsuhisa, M.; Shimomura, I. Skin Autofluorescence Is Associated with Early-Stage Atherosclerosis in Patients with Type 1 Diabetes. J. Atheroscler. Thromb. 2017, 24, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Araszkiewicz, A.; Naskret, D.; Niedzwiecki, P.; Samborski, P.; Wierusz-Wysocka, B.; Zozulinska-Ziolkiewicz, D. Increased Accumulation of Skin Advanced Glycation End Products Is Associated with Microvascular Complications in Type 1 Diabetes. Diabetes Technol. Ther. 2011, 13, 837–842. [Google Scholar] [CrossRef]
- Saito, M.; Kida, Y.; Kato, S.; Marumo, K. Diabetes, Collagen, and Bone Quality. Curr. Osteoporos. Rep. 2014, 12, 181–188. [Google Scholar] [CrossRef]
- Horikawa, T.; Hiramoto, K.; Goto, K.; Sekijima, H.; Ooi, K. Differences in the Mechanism of Type 1 and Type 2 Diabetes-Induced Skin Dryness by Using Model Mice. Int. J. Med. Sci. 2021, 18, 474–481. [Google Scholar] [CrossRef]
- Kumar, P.A.; Kumar, M.S.; Reddy, G.B. Effect of Glycation on Alpha-Crystallin Structure and Chaperone-like Function. Biochem. J. 2007, 408, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Hashim, Z.; Zarina, S. Advanced Glycation End Products in Diabetic and Non-Diabetic Human Subjects Suffering from Cataract. AGE 2011, 33, 377–384. [Google Scholar] [CrossRef]
- Hu, H.; Han, C.; Hu, X.; Ye, W.; Huang, W.; Smit, A.J. Elevated Skin Autofluorescence Is Strongly Associated with Foot Ulcers in Patients with Diabetes: A Cross-Sectional, Observational Study of Chinese Subjects. J. Zhejiang Univ. Sci. B 2012, 13, 372–377. [Google Scholar] [CrossRef]
- Papachristou, S.; Pafili, K.; Papanas, N. Skin AGEs and Diabetic Neuropathy. BMC Endocr. Disord. 2021, 21, 28. [Google Scholar] [CrossRef]
- Conway, B.N.; Aroda, V.R.; Maynard, J.D.; Matter, N.; Fernandez, S.; Ratner, R.E.; Orchard, T.J. Skin Intrinsic Fluorescence Correlates with Autonomic and Distal Symmetrical Polyneuropathy in Individuals with Type 1 Diabetes. Diabetes Care 2011, 34, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Vouillarmet, J.; Maucort-Boulch, D.; Michon, P.; Thivolet, C. Advanced Glycation End Products Assessed by Skin Autofluorescence: A New Marker of Diabetic Foot Ulceration. Diabetes Technol. Ther. 2013, 15, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Ortillon, J.; Hézard, N.; Belmokhtar, K.; Kawecki, C.; Terryn, C.; Fritz, G.; Kauskot, A.; Schmidt, A.M.; Rieu, P.; Nguyen, P.; et al. Receptor for Advanced Glycation End Products Is Involved in Platelet Hyperactivation and Arterial Thrombosis during Chronic Kidney Disease. Thromb. Haemost. 2020, 120, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bos, D.C.; de Ranitz-Greven, W.L.; de Valk, H.W. Advanced Glycation End Products, Measured as Skin Autofluorescence and Diabetes Complications: A Systematic Review. Diabetes Technol. Ther. 2011, 13, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Drenth, H.; Zuidema, S.U.; Krijnen, W.P.; Bautmans, I.; Smit, A.J.; van der Schans, C.; Hobbelen, H. Advanced Glycation End Products Are Associated with Physical Activity and Physical Functioning in the Older Population. J. Gerontol. Ser. A 2018, 73, 1545–1551. [Google Scholar] [CrossRef]
- Kotani, K.; Caccavello, R.; Sakane, N.; Yamada, T.; Taniguchi, N.; Gugliucci, A. Influence of Physical Activity Intervention on Circulating Soluble Receptor for Advanced Glycation End Products in Elderly Subjects. J. Clin. Med. Res. 2011, 3, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Guo, T.L. Dietary Advanced Glycation End-Products Elicit Toxicological Effects by Disrupting Gut Microbiome and Immune Homeostasis. J. Immunotoxicol. 2021, 18, 93–104. [Google Scholar] [CrossRef]
- Snelson, M.; Coughlan, M.T. Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients 2019, 11, 215. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Advanced Glycation End Products in the Pathogenesis of Chronic Kidney Disease. Kidney Int. 2018, 93, 803–813. [Google Scholar] [CrossRef]
- Nass, N.; Bartling, B.; Navarrete Santos, A.; Scheubel, R.J.; Börgermann, J.; Silber, R.E.; Simm, A. Advanced Glycation End Products, Diabetes and Ageing. Z. Gerontol. Geriatr. 2007, 40, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Bettiga, A.; Fiorio, F.; Di Marco, F.; Trevisani, F.; Romani, A.; Porrini, E.; Salonia, A.; Montorsi, F.; Vago, R. The Modern Western Diet Rich in Advanced Glycation End-Products (AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. Nutrients 2019, 11, 1748. [Google Scholar] [CrossRef] [PubMed]
- Miura, J.; Yamagishi, S.; Uchigata, Y.; Takeuchi, M.; Yamamoto, H.; Makita, Z.; Iwamoto, Y. Serum Levels of Non-Carboxymethyllysine Advanced Glycation Endproducts Are Correlated to Severity of Microvascular Complications in Patients with Type 1 Diabetes. J. Diabetes Complicat. 2003, 17, 16–21. [Google Scholar] [CrossRef]
- Ottum, M.S.; Mistry, A.M. Advanced Glycation End-Products: Modifiable Environmental Factors Profoundly Mediate Insulin Resistance. J. Clin. Biochem. Nutr. 2015, 57, 1–12. [Google Scholar] [CrossRef]
- Yamagishi, S.-I.; Matsui, T. Advanced Glycation End Products, Oxidative Stress and Diabetic Nephropathy. Oxid. Med. Cell. Longev. 2010, 3, 101–108. [Google Scholar] [CrossRef]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally Absorbed Reactive Glycation Products (Glycotoxins): An Environmental Risk Factor in Diabetic Nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C. Carboxymethyl-Lysine: Thirty Years of Investigation in the Field of AGE Formation. Food Funct. 2016, 7, 46–57. [Google Scholar] [CrossRef]
- Grunwald, S.; Krause, R.; Bruch, M.; Henle, T.; Brandsch, M. Transepithelial Flux of Early and Advanced Glycation Compounds across Caco-2 Cell Monolayers and Their Interaction with Intestinal Amino Acid and Peptide Transport Systems. Br. J. Nutr. 2006, 95, 1221–1228. [Google Scholar] [CrossRef]
- Geissler, S.; Hellwig, M.; Zwarg, M.; Markwardt, F.; Henle, T.; Brandsch, M. Transport of the Advanced Glycation End Products Alanylpyrraline and Pyrralylalanine by the Human Proton-Coupled Peptide Transporter HPEPT1. J. Agric. Food Chem. 2010, 58, 2543–2547. [Google Scholar] [CrossRef]
- FÖRSTER, A.; KÜHNE, Y.; HENLE, T.O. Studies on Absorption and Elimination of Dietary Maillard Reaction Products. Ann. N. Y. Acad. Sci. 2005, 1043, 474–481. [Google Scholar] [CrossRef]
- Roncero-Ramos, I.; Delgado-Andrade, C.; Tessier, F.J.; Niquet-Léridon, C.; Strauch, C.; Monnier, V.M.; Navarro, M.P. Metabolic Transit of Nε-Carboxymethyl-Lysine after Consumption of AGEs from Bread Crust. Food Funct. 2013, 4, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, J.L.J.M.; Hanssen, N.M.J.; van Greevenbroek, M.M.; Van der Kallen, C.J.; Feskens, E.J.M.; Stehouwer, C.D.A.; Schalkwijk, C.G. Dietary Intake of Advanced Glycation Endproducts Is Associated with Higher Levels of Advanced Glycation Endproducts in Plasma and Urine: The CODAM Study. Clin. Nutr. 2018, 37, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Assar, S.H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J.M. Determination of Nɛ-(Carboxymethyl)Lysine in Food Systems by Ultra Performance Liquid Chromatography-Mass Spectrometry. Amino Acids 2009, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Lotan, R.; Ganmore, I.; Shelly, S.; Zacharia, M.; Uribarri, J.; Beisswenger, P.; Cai, W.; Troen, A.M.; Schnaider Beeri, M. Long Term Dietary Restriction of Advanced Glycation End-Products (AGEs) in Older Adults with Type 2 Diabetes Is Feasible and Efficacious-Results from a Pilot RCT. Nutrients 2020, 12, 3143. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.-S.; Angoorani, P.; Asghari, G.; Mirmiran, P.; Azizi, F. Dietary Advanced Glycation End Products and Risk of Chronic Kidney Disease. J. Ren. Nutr. 2016, 26, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Gebauer, S.K.; Baer, D.J.; Sun, K.; Turner, R.; Silber, H.A.; Talegawkar, S.; Ferrucci, L.; Novotny, J.A. Dietary Intake of Advanced Glycation End Products Did Not Affect Endothelial Function and Inflammation in Healthy Adults in a Randomized Controlled Trial. J. Nutr. 2014, 144, 1037–1042. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Study on Fluorescence of Maillard Reaction Compounds in Breakfast Cereals. Mol. Nutr. Food Res. 2006, 50, 799–804. [Google Scholar] [CrossRef]
- Tan, A.L.Y.; Sourris, K.C.; Harcourt, B.E.; Thallas-Bonke, V.; Penfold, S.; Andrikopoulos, S.; Thomas, M.C.; O’Brien, R.C.; Bierhaus, A.; Cooper, M.E.; et al. Disparate Effects on Renal and Oxidative Parameters Following RAGE Deletion, AGE Accumulation Inhibition, or Dietary AGE Control in Experimental Diabetic Nephropathy. Am. J. Physiol.-Ren. Physiol. 2010, 298, F763–F770. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Fu, L. Dietary Advanced Glycation End-Products: Perspectives Linking Food Processing with Health Implications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2559–2587. [Google Scholar] [CrossRef]
- Kutlu, T. Dietary Glycotoxins and Infant Formulas. Turk. Arch. Pediatr. 2016, 51, 179–185. [Google Scholar] [CrossRef]
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Teissier, T.; Quersin, V.; Gnemmi, V.; Daroux, M.; Howsam, M.; Delguste, F.; Lemoine, C.; Fradin, C.; Schmidt, A.-M.; Cauffiez, C.; et al. Knockout of Receptor for Advanced Glycation End-Products Attenuates Age-Related Renal Lesions. Aging Cell 2019, 18, e12850. [Google Scholar] [CrossRef] [PubMed]
- Vitek, M.P.; Bhattacharya, K.; Glendening, J.M.; Stopa, E.; Vlassara, H.; Bucala, R.; Manogue, K.; Cerami, A. Advanced Glycation End Products Contribute to Amyloidosis in Alzheimer Disease. Proc. Natl. Acad. Sci. USA 1994, 91, 4766–4770. [Google Scholar] [CrossRef]
- Cai, W.; Uribarri, J.; Zhu, L.; Chen, X.; Swamy, S.; Zhao, Z.; Grosjean, F.; Simonaro, C.; Kuchel, G.A.; Schnaider-Beeri, M.; et al. Oral Glycotoxins Are a Modifiable Cause of Dementia and the Metabolic Syndrome in Mice and Humans. Proc. Natl. Acad. Sci. USA 2014, 111, 4940–4945. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-Y.; Li, S.; Wang, Y.; Tan, D.; Pan, M.-H.; Sang, S.; Ho, C.-T. Reactive Dicarbonyl Compounds and 5-(Hydroxymethyl)-2-Furfural in Carbonated Beverages Containing High Fructose Corn Syrup. Food Chem. 2008, 3, 1099–1105. [Google Scholar] [CrossRef]
- Degen, J.; Hellwig, M.; Henle, T. 1,2-Dicarbonyl Compounds in Commonly Consumed Foods. J. Agric. Food Chem. 2012, 60, 7071–7079. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110, 911–916.e12. [Google Scholar] [CrossRef] [Green Version]
- Vlassara, H.; Uribarri, J. Glycoxidation and Diabetic Complications: Modern Lessons and a Warning? Rev. Endocr. Metab. Disord. 2004, 5, 181–188. [Google Scholar] [CrossRef]
- Nursten, H.E. The Maillard Reaction: Chemistry, Biochemistry and Implications; Royal Society of Chemistry: London, UK, 2007; ISBN 978-1-84755-257-0. [Google Scholar]
- Delgado-Andrade, C.; Seiquer, I.; Navarro, M.P.; Morales, F.J. Maillard Reaction Indicators in Diets Usually Consumed by Adolescent Population. Mol. Nutr. Food Res. 2007, 51, 341–351. [Google Scholar] [CrossRef]
- Nowotny, K.; Schröter, D.; Schreiner, M.; Grune, T. Dietary Advanced Glycation End Products and Their Relevance for Human Health. Ageing Res. Rev. 2018, 47, 55–66. [Google Scholar] [CrossRef]
- Klepacka, A. Antyglycative properties of polyphenol extracts of plant origin. Postępy Fitoter. 2013. Available online: https://www.czytelniamedyczna.pl/4408,przeciwglikacyjne-waciwoci-ekstraktlw-rolinnych-bogatych-w-polifenole.html (accessed on 9 July 2022).
- Peyroux, J.; Sternberg, M. Advanced Glycation Endproducts (AGEs): Pharmacological Inhibition in Diabetes. Pathol. Biol. 2006, 54, 405–419. [Google Scholar] [CrossRef]
- Zuwała-Jagiełło, J. Terapia Chorób z Udziałem Końcowych Produktów Zaawansowanej Glikacji w Ich Patogenezie [Therapeutic Intervention in Diseases with Advanced Glycation End Products in Their Pathogenesis]. Pol. Merkur Lek. 2009, 27, 152–156. [Google Scholar]
- Bolton, W.K.; Cattran, D.C.; Williams, M.E.; Adler, S.G.; Appel, G.B.; Cartwright, K.; Foiles, P.G.; Freedman, B.I.; Raskin, P.; Ratner, R.E.; et al. Randomized Trial of an Inhibitor of Formation of Advanced Glycation End Products in Diabetic Nephropathy. Am. J. Nephrol. 2004, 24, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Wuerth, J.P.; Cartwright, K.; Bain, R.P.; Dippe, S.; Hershon, K.; Mooradian, A.D.; Spinowitz, B.S. Design and Baseline Characteristics for the Aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control. Clin. Trials 1999, 20, 493–510. [Google Scholar] [CrossRef]
- Rahbar, S.; Figarola, J.L. Novel Inhibitors of Advanced Glycation Endproducts. Arch. Biochem. Biophys. 2003, 419, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.P.; Greco, B.A.; Umanath, K.; Packham, D.; Fox, J.W.; Peterson, R.; Broome, B.R.; Greene, L.E.; Sika, M.; Lewis, J.B. Pyridoxamine Dihydrochloride in Diabetic Nephropathy (PIONEER-CSG-17): Lessons Learned from a Pilot Study. Nephron 2015, 129, 22–28. [Google Scholar] [CrossRef]
- Rowan, S.; Bejarano, E.; Taylor, A. Mechanistic Targeting of Advanced Glycation End-Products in Age-Related Diseases. Biochim. Biophys. Acta—Mol. Basis Dis. 2018, 1864, 3631–3643. [Google Scholar] [CrossRef]
- Nowak, A.; Zielonka, J.; Turek, M.; Klimowicz, A. Wpływ przeciwutleniaczy zawartych w owocach na proces fotostarzenia się skóry. Postępy Fitot. 2014, 6, 94–99. [Google Scholar]
- Gheribi, E. Polyphenols compounds in fruits and vegetables. Med. Rodz. 2011, 4, 111–115. [Google Scholar]
- Piątkowska, E.; Kopeć, A.; Leszczyńska, T. Antocyjany—Charakterystyka, występowanie i oddziaływanie na organizm człowieka. Żywn. Nauka Technol. Jakość 2011, 4, 24–35. [Google Scholar]
- Mazza, G.J. Anthocyanins and Heart Health. Ann. Ist. Super. Sanita 2007, 43, 369–374. [Google Scholar] [PubMed]
- Theobald, H.; Bygren, L.O.; Carstensen, J.; Engfeldt, P. A Moderate Intake of Wine Is Associated with Reduced Total Mortality and Reduced Mortality from Cardiovascular Disease. J. Stud. Alcohol. 2000, 61, 652–656. [Google Scholar] [CrossRef]
- Stępień, M.; Bogdański, P.; Suliburska, J.; Jabłecka, A.; Pupek-Musialik, D. Wpływ Resweratrolu Na Cukrzycę i Choroby Sercowo-Naczyniowe. Forum Zaburzeń Metab. 2012, 3, 154–159. [Google Scholar]
- Babu, P.V.A.; Sabitha, K.E.; Shyamaladevi, C.S. Effect of Green Tea Extract on Advanced Glycation and Cross-Linking of Tail Tendon Collagen in Streptozotocin Induced Diabetic Rats. Food Chem. Toxicol. 2008, 46, 280–285. [Google Scholar] [CrossRef]
- Babu, P.V.A.; Sabitha, K.E.; Shyamaladevi, C.S. Therapeutic Effect of Green Tea Extract on Advanced Glycation and Cross-Linking of Collagen in the Aorta of Streptozotocin Diabetic Rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 351–357. [Google Scholar] [CrossRef]
- Wu, J.-W.; Hsieh, C.-L.; Wang, H.-Y.; Hui-Yin, C. Inhibitory Effects of Guava (Psidium guajava L.) Leaf Extracts and Its Active Compounds on the Glycation Process of Protein. Food Chem. 2009, 113, 78–84. [Google Scholar] [CrossRef]
- Naowaboot, J.; Pannangpetch, P.; Kukongviriyapan, V.; Kongyingyoes, B.; Kukongviriyapan, U. Antihyperglycemic, Antioxidant and Antiglycation Activities of Mulberry Leaf Extract in Streptozotocin-Induced Chronic Diabetic Rats. Plant Foods Hum. Nutr. 2009, 64, 116–121. [Google Scholar] [CrossRef]
- Miroliaei, M.; Khazaei, S.; Moshkelgosha, S.; Shirvani, M. Inhibitory Effects of Lemon Balm (Melissa officinalis, L.) Extract on the Formation of Advanced Glycation End Products. Food Chem. 2011, 129, 267–271. [Google Scholar] [CrossRef]
- Shah, M.A.; Muhammad, H.; Mehmood, Y.; Khalil, R.; Ul-Haq, Z.; Panichayupakaranant, P. Superoxide Scavenging and Antiglycation Activity of Rhinacanthins-Rich Extract Obtained from the Leaves of Rhinacanthus Nasutus. Pharmacogn. Mag. 2017, 13, 652–658. [Google Scholar] [CrossRef]
- Gugliucci, A.; Bastos, D.H.M.; Schulze, J.; Souza, M.F.F. Caffeic and Chlorogenic Acids in Ilex Paraguariensis Extracts Are the Main Inhibitors of AGE Generation by Methylglyoxal in Model Proteins. Fitoterapia 2009, 80, 339–344. [Google Scholar] [CrossRef]
- Lunceford, N.; Gugliucci, A. Ilex Paraguariensis Extracts Inhibit AGE Formation More Efficiently than Green Tea. Fitoterapia 2005, 76, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Dugé de Bernonville, T.; Guyot, S.; Paulin, J.-P.; Gaucher, M.; Loufrani, L.; Henrion, D.; Derbré, S.; Guilet, D.; Richomme, P.; Dat, J.F.; et al. Dihydrochalcones: Implication in Resistance to Oxidative Stress and Bioactivities against Advanced Glycation End-Products and Vasoconstriction. Phytochemistry 2010, 71, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Morimitsu, Y.; Yoshida, K.; Esaki, S.; Hirota, A. Protein Glycation Inhibitors from Thyme (Thymus vulgaris). Biosci. Biotechnol. Biochem. 1995, 59, 2018–2021. [Google Scholar] [CrossRef] [PubMed]
- El-Moselhy, M.A.; Taye, A.; Sharkawi, S.S.; El-Sisi, S.F.I.; Ahmed, A.F. The Antihyperglycemic Effect of Curcumin in High Fat Diet Fed Rats. Role of TNF-α and Free Fatty Acids. Food Chem. Toxicol. 2011, 49, 1129–1140. [Google Scholar] [CrossRef]
- Gutierres, V.O.; Pinheiro, C.M.; Assis, R.P.; Vendramini, R.C.; Pepato, M.T.; Brunetti, I.L. Curcumin-Supplemented Yoghurt Improves Physiological and Biochemical Markers of Experimental Diabetes. Br. J. Nutr. 2012, 108, 440–448. [Google Scholar] [CrossRef]
- Chilelli, N.C.; Ragazzi, E.; Valentini, R.; Cosma, C.; Ferraresso, S.; Lapolla, A.; Sartore, G. Curcumin and Boswellia Serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients 2016, 8, 745. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, A. Curcumin Eliminates the Effect of Advanced Glycation End-Products (AGEs) on the Divergent Regulation of Gene Expression of Receptors of AGEs by Interrupting Leptin Signaling. Lab. Investig. J. Tech. Methods Pathol. 2014, 94, 503–516. [Google Scholar] [CrossRef]
- Galiniak, S.; Biesiadecki, M.; Czubat, B.; Bartusik-Aebisher, D. Anti-Glycation Activity of Curcumin. Postępy Hig. Med. Dośw. 2019, 73, 182–188. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Leiva Balich, L.; Concha, M.J.; Mizón, C.; Bunout Barnett, D.; Barrera Acevedo, G.; Hirsch Birn, S.; Jiménez Jaime, T.; Henríquez, S.; Uribarri, J.; et al. Reduction of Serum Advanced Glycation End-Products with a Low Calorie Mediterranean Diet. Nutr. Hosp. 2015, 31, 2511–2517. [Google Scholar] [CrossRef]
- Thornalley, P.J. The Glyoxalase System: New Developments towards Functional Characterization of a Metabolic Pathway Fundamental to Biological Life. Biochem. J. 1990, 269, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nagai, R.; Matsumoto, K.; Ling, X.; Suzuki, H.; Araki, T.; Horiuchi, S. Glycolaldehyde, a Reactive Intermediate for Advanced Glycation End Products, Plays an Important Role in the Generation of an Active Ligand for the Macrophage Scavenger Receptor. Diabetes 2000, 49, 1714–1723. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Li, Q.; Zhang, Y.C.; Ma, G.; Feng, Y.; Zhu, Q.; Dai, Q.; Chen, Z.; Yao, Y.; Chen, L.; et al. Advanced Glycation Endproducts Increase EPC Apoptosis and Decrease Nitric Oxide Release via MAPK Pathways. Biomed. Pharmacother. 2010, 64, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sato, E.; Fujiwara, N.; Kawagoe, Y.; Takeuchi, M.; Maeda, S.; Yamagishi, S. Atorvastatin Reduces Proteinuria in Non-Diabetic Chronic Kidney Disease Patients Partly via Lowering Serum Levels of Advanced Glycation End Products (AGEs). Oxid. Med. Cell. Longev. 2010, 3, 304–307. [Google Scholar] [CrossRef]
- Kheirouri, S.; Alizadeh, M.; Maleki, V. Zinc against Advanced Glycation End Products. Clin. Exp. Pharmacol. Physiol. 2018, 45, 491–498. [Google Scholar] [CrossRef]
- Shah, M.A.; Jakkawanpitak, C.; Sermwittayawong, D.; Panichayupakaranant, P. Rhinacanthins-Rich Extract Enhances Glucose Uptake and Inhibits Adipogenesis in 3T3-L1 Adipocytes and L6 Myotubes. Pharmacogn. Mag. 2018, 13, S817–S821. [Google Scholar] [CrossRef]
High Level of AGE | Low Level of AGE |
---|---|
Foods rich in protein | Low-fat products |
Foods rich in fat | High-carbohydrates products |
Baked and grilled food | Raw products |
Fraying products | Products cooked in low temperature |
Animal products |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawada, A.; Machowiak, A.; Rychter, A.M.; Ratajczak, A.E.; Szymczak-Tomczak, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients 2022, 14, 3982. https://doi.org/10.3390/nu14193982
Zawada A, Machowiak A, Rychter AM, Ratajczak AE, Szymczak-Tomczak A, Dobrowolska A, Krela-Kaźmierczak I. Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients. 2022; 14(19):3982. https://doi.org/10.3390/nu14193982
Chicago/Turabian StyleZawada, Agnieszka, Alicja Machowiak, Anna Maria Rychter, Alicja Ewa Ratajczak, Aleksandra Szymczak-Tomczak, Agnieszka Dobrowolska, and Iwona Krela-Kaźmierczak. 2022. "Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits" Nutrients 14, no. 19: 3982. https://doi.org/10.3390/nu14193982
APA StyleZawada, A., Machowiak, A., Rychter, A. M., Ratajczak, A. E., Szymczak-Tomczak, A., Dobrowolska, A., & Krela-Kaźmierczak, I. (2022). Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients, 14(19), 3982. https://doi.org/10.3390/nu14193982