Alleviation of Dyslipidemia via a Traditional Balanced Korean Diet Represented by a Low Glycemic and Low Cholesterol Diet in Obese Women in a Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size Calculation
2.3. Study Design
2.4. Diets
2.5. Anthropometric Parameters, Blood Pressure Measurements, and Blood Collection
2.6. Metabolomic Analysis Using Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-QTOF-MS)
2.7. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Food and Nutrient Consumption
3.3. Anthropometric and Biochemical Measurements at the End of the Intervention
3.4. Analysis of Serum Metabolites via UPLC-QTOF-MS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidell, J.C.; Halberstadt, J. The Global Burden of Obesity and the Challenges of Prevention. Ann. Nutr. Metab. 2015, 66 (Suppl. 2), 7–12. [Google Scholar] [CrossRef]
- Nam, G.E.; Park, H.S. Perspective on Diagnostic Criteria for Obesity and Abdominal Obesity in Korean Adults. J. Obes. Meta. Syndr. 2018, 27, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kang, S. Association between Polygenetic Risk Scores of Low Immunity and Interactions between These Scores and Moderate Fat Intake in a Large Cohort. Nutrients 2021, 13, 2849. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.; Lee, B.K.; Ahn, J. A Healthy Diet Rich in Calcium and Vitamin C Is Inversely Associated with Metabolic Syndrome Risk in Korean Adults from the KNHANES 2013–2017. Nutrients 2021, 13, 1312. [Google Scholar] [CrossRef]
- Guo, X.; Warden, B.A.; Paeratakul, S.; Bray, G.A. Healthy Eating Index and obesity. Eur. J. Clin. Nutr. 2004, 58, 1580–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, J.G.; Filion, K.B.; Atallah, R.; Eisenberg, M.J. Systematic Review of the Mediterranean Diet for Long-Term Weight Loss. Am. J. Med. 2016, 129, 407–415.e404. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Ackerman, D.; Talley, J.D.; Johnstone, J.; Kupersmith, J. Manifestations of coronary atherosclerosis in young trauma victims--an autopsy study. J. Am. Coll. Cardiol. 1993, 22, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Unno, T.; Kang, S.; Park, S. A Korean-Style Balanced Diet Has a Potential Connection with Ruminococcaceae Enterotype and Reduction of Metabolic Syndrome Incidence in Korean Adults. Nutrients 2021, 13, 495. [Google Scholar] [CrossRef]
- Park, S.; Kang, S. A Western-style diet interacts with genetic variants of the LDL receptor to hyper-LDL cholesterolemia in Korean adults. Public Health Nutr. 2021, 24, 2964–2974. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.; Lee, B.K.; Ahn, J. Association of the Healthy Eating Index with Estimated Cardiovascular Age in Adults from the KNHANES 2013-2017. Nutrients 2020, 12, 2912. [Google Scholar] [CrossRef] [PubMed]
- Park, S. Association between polygenetic risk scores related to sarcopenia risk and their interactions with regular exercise in a large cohort of Korean adults. Clin. Nutr. 2021, 40, 5355–5364. [Google Scholar] [CrossRef]
- Park, S.; Yang, H.J.; Kim, M.J.; Hur, H.J.; Kim, S.-H.; Kim, M.-S. Interactions between Polygenic Risk Scores, Dietary Pattern, and Menarche Age with the Obesity Risk in a Large Hospital-Based Cohort. Nutrients 2021, 13, 3772. [Google Scholar] [CrossRef]
- Shin, P.K.; Kim, M.S.; Park, S.J.; Kwon, D.Y.; Kim, M.J.; Yang, H.J.; Kim, S.H.; Kim, K.; Chun, S.; Lee, H.J.; et al. A Traditional Korean Diet Alters the Expression of Circulating MicroRNAs Linked to Diabetes Mellitus in a Pilot Trial. Nutrients 2020, 12, 2558. [Google Scholar] [CrossRef] [PubMed]
- Shin, P.K.; Park, S.J.; Kim, M.S.; Kwon, D.Y.; Kim, M.J.; Kim, K.; Chun, S.; Lee, H.J.; Choi, S.W. A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study. Nutrients 2020, 12, 2468. [Google Scholar] [CrossRef]
- Monfort-Pires, M.; Ferreira, S.R. Inflammatory and metabolic responses to dietary intervention differ among individuals at distinct cardiometabolic risk levels. Nutrition 2017, 33, 331–337. [Google Scholar] [CrossRef]
- Shin, P.K.; Chun, S.; Kim, M.S.; Kwon, D.Y.; Kim, M.J.; Kim, K.; Lee, H.J.; Choi, S.W. Traditional Korean Diet Can Alter the Urine Organic Acid Profile. J. Nutr. Health 2020, 53, 231–240. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.S.; Lee, M.S.; Park, Y.S.; Lee, H.J.; Kang, S.-a.; Lee, H.S.; Lee, K.-E.; Yang, H.J.; Kim, M.J.; et al. Korean diet: Characteristics and historical background. J. Ethn. Foods 2016, 3, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Choi, H.; Lee, S.; Park, J.; Kim, B.; Paik, H.Y.; Siong, Y. Establishing a Table of Glycemic Index Values for Common Korean Foods and an Evaluation of the Dietary Glycemic Index among the Korean Adult Population. Korean J. Nutr. 2012, 45, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Kim, N.S.; Lee, B.K.; Park Kim, S. Trends in the Intake of Fatty Acids and Their Food Source According to Obese Status Among Korean Adult Population Using KNHANES 2007-2017. Food Nutr. Bull. 2020, 41, 77–88. [Google Scholar] [CrossRef]
- Soeliman, F.A.; Azadbakht, L. Weight loss maintenance: A review on dietary related strategies. J. Res. Med. Sci. 2014, 19, 268–275. [Google Scholar]
- Poulimeneas, D.; Anastasiou, C.A.; Santos, I.; Hill, J.O.; Panagiotakos, D.B.; Yannakoulia, M. Exploring the relationship between the Mediterranean diet and weight loss maintenance: The MedWeight study. Br. J. Nutr. 2020, 124, 874–880. [Google Scholar] [CrossRef]
- Lee, K.W.; Cho, M.S. The traditional Korean dietary pattern is associated with decreased risk of metabolic syndrome: Findings from the Korean National Health and Nutrition Examination Survey, 1998–2009. J. Med. Food 2014, 17, 43–56. [Google Scholar] [CrossRef]
- Oh, C.; No, J. The Quality of a Traditional Dietary Pattern in Relation to Metabolic Syndrome in Elderly South Koreans. J. Obes. Metab. Syndr. 2018, 27, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juanola-Falgarona, M.; Salas-Salvadó, J.; Ibarrola-Jurado, N.; Rabassa-Soler, A.; Díaz-López, A.; Guasch-Ferré, M.; Hernández-Alonso, P.; Balanza, R.; Bulló, M. Effect of the glycemic index of the diet on weight loss, modulation of satiety, inflammation, and other metabolic risk factors: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 100, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rougemont, A.; Normand, S.; Nazare, J.A.; Skilton, M.R.; Sothier, M.; Vinoy, S.; Laville, M. Beneficial effects of a 5-week low-glycaemic index regimen on weight control and cardiovascular risk factors in overweight non-diabetic subjects. Br. J. Nutr. 2007, 98, 1288–1298. [Google Scholar] [CrossRef]
- Fleming, P.; Godwin, M. Low-glycaemic index diets in the management of blood lipids: A systematic review and meta-analysis. Fam. Pract. 2013, 30, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Møller, J.B.; Pedersen, M.; Tanaka, H.; Ohsugi, M.; Overgaard, R.V.; Lynge, J.; Almind, K.; Vasconcelos, N.M.; Poulsen, P.; Keller, C.; et al. Body composition is the main determinant for the difference in type 2 diabetes pathophysiology between Japanese and Caucasians. Diabetes Care 2014, 37, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabák, A.G.; Jokela, M.; Akbaraly, T.N.; Brunner, E.J.; Kivimäki, M.; Witte, D.R. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: An analysis from the Whitehall II study. Lancet 2009, 373, 2215–2221. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, P.; Zhang, X.; Pekkala, S.; Autio, R.; Kong, L.; Yang, Y.; Keinänen-Kiukaanniemi, S.; Alen, M.; Cheng, S. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women. Sci. Rep. 2016, 6, 24540. [Google Scholar] [CrossRef]
- Vangipurapu, J.; Stancáková, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine Amino Acids Are Associated With Decreased Insulin Secretion and Elevated Glucose Levels in a 7.4-Year Follow-up Study of 5,181 Finnish Men. Diabetes 2019, 68, 1353–1358. [Google Scholar] [CrossRef]
- Godsland, I.F.; Rosankiewicz, J.R.; Proudler, A.J.; Johnston, D.G. Plasma Total Homocysteine Concentrations Are Unrelated to Insulin Sensitivity and Components of the Metabolic Syndrome in Healthy Men1. J. Clin. Endocrinol. Metab. 2001, 86, 719–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, V.A.; Fink, L.M.; Kern, P.A. Insulin sensitivity and plasma homocysteine concentrations in non-diabetic obese and normal weight subjects. Atherosclerosis 2003, 167, 105–109. [Google Scholar] [CrossRef]
- Huijberts, M.S.; Becker, A.; Stehouwer, C.D. Homocysteine and vascular disease in diabetes: A double hit? Clin. Chem. Lab. Med. 2005, 43, 993–1000. [Google Scholar] [CrossRef]
- Najib, S.; Sánchez-Margalet, V. Homocysteine thiolactone inhibits insulin signaling, and glutathione has a protective effect. J. Mol. Endocrinol. 2001, 27, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Homocysteine and glutathione peroxidase-1. Antioxid. Redox Signal. 2007, 9, 1923–1940. [Google Scholar] [CrossRef] [PubMed]
- Mietus-Snyder, M.L.; Shigenaga, M.K.; Suh, J.H.; Shenvi, S.V.; Lal, A.; McHugh, T.; Olson, D.; Lilienstein, J.; Krauss, R.M.; Gildengoren, G.; et al. A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. FASEB J. 2012, 26, 3515–3527. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.K.; Koh-Banerjee, P.; Franz, M.; Sampson, L.; Grønbæk, M.; Rimm, E.B. Whole grains, bran, and germ in relation to homocysteine and markers of glycemic control, lipids, and inflammation. Am. J. Clin. Nutr. 2006, 83, 275–283. [Google Scholar] [CrossRef]
- Chamberlain, J.A.; Dugué, P.-A.; Bassett, J.K.; Hodge, A.M.; Brinkman, M.T.; Joo, J.E.; Jung, C.-H.; Makalic, E.; Schmidt, D.F.; Hopper, J.L.; et al. Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. Am. J. Clin. Nutr. 2018, 108, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Lee, H.S.; Chang, H.J.; Koh, S.B.; Lee, J.W. Association of dietary lipid intake with low-density lipoprotein cholesterol levels: Analysis of two independent population-based studies. Eur. J. Nutr. 2020, 59, 2557–2567. [Google Scholar] [CrossRef]
- Gupta, L.; Khandelwal, D.; Kalra, S.; Gupta, P.; Dutta, D.; Aggarwal, S. Ketogenic diet in endocrine disorders: Current perspectives. J. Postgrad. Med. 2017, 63, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Tozzi, R.; Risi, R.; Tuccinardi, D.; Mariani, S.; Basciani, S.; Spera, G.; Lubrano, C.; Gnessi, L. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes. Rev. 2020, 21, e13024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, E.; Shalaurova, I.; Matyus, S.P.; Oskardmay, D.N.; Otvos, J.D.; Dullaart, R.P.F.; Connelly, M.A. Ketone Bodies Are Mildly Elevated in Subjects with Type 2 Diabetes Mellitus and Are Inversely Associated with Insulin Resistance as Measured by the Lipoprotein Insulin Resistance Index. J. Clin. Med. 2020, 9, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Control Diet (n = 52) | K-Diet (n = 52) | p-Value 2 |
---|---|---|---|
Age (years) | 38.7 ± 5.62 1 | 38.7 ± 5.55 | 1.0000 |
Weight (kg) | 65.3 ± 6.39 | 65.5 ± 6.32 | 0.8825 |
Body mass index (kg/m2) | 25.4 ± 1.78 | 25.5 ± 1.74 | 0.8333 |
Waist circumferences (cm) | 80.3 ± 5.55 | 80.4 ± 5.62 | 0.8935 |
Lean body mass (kg) | 22.0 ± 2.36 | 21.9 ± 2.24 | 0.7432 |
Fat mass (%) | 38.2 ± 3.92 | 38.2 ± 4.32 | 0.9919 |
Systolic blood pressure (mmHg) | 114 ± 11.4 | 117 ± 11.1 | 0.2070 |
Diastolic blood pressure (mmHg) | 74.0 ± 7.93 | 73.7 ± 7.21 | 0.8091 |
White blood cell (×103/uL) | 5.66 ± 1.30 | 5.85 ± 1.44 | 0.4622 |
Platelet (×103/uL) | 25.4 ± 4.62 | 25.0 ± 4.83 | 0.7437 |
Serum triglyceride (mg/dL) | 96.4 ± 53.9 | 100 ± 54.7 | 0.7172 |
Serum total cholesterol (mg/dL) | 183 ± 31.9 | 186 ± 30.7 | 0.5955 |
Serum HDL-C (mg/dL) | 61.1 ± 16.4 | 60.5 ± 14.0 | 0.8474 |
Serum LDL-C (mg/dL) | 102 ± 28.5 | 105 ± 30.0 | 0.5975 |
Fasting plasma glucose (mg/dL) | 97.8 ± 7.21 | 97.6 ± 6.99 | 0.8482 |
Fasting plasma Insulin (mU/L) | 9.86 ± 3.61 | 10.4 ± 3.89 | 0.8075 |
HOMA-IR | 2.40 ± 1.03 | 2.52 ± 1.01 | 0.5493 |
HOMA-B | 104 ± 36.3 | 111 ± 37.7 | 0.3299 |
Serum CRP (mg/dL) | 1.71 ± 1.89 | 1.94 ± 1.97 | 0.4871 |
Food Group | Control Diet (n = 52) | K-Diet (n = 52) | p-Value 2 |
---|---|---|---|
Total grains | 195 ± 8.61 1 | 240 ± 18.5 | <0.0001 |
Whole grains | 1.7 ± 0.11 | 197 ± 16.2 | <0.0001 |
Vegetables | 278 ± 11.4 | 395 ± 20.6 | <0.0001 |
Fruits | 69.7 ± 1.73 | 75.4 ± 1.44 | <0.0001 |
Kimchi | 109 ± 12.8 | 171 ± 30.2 | <0.0001 |
Fermented soybeans | 12.0 ± 0.42 | 22.2 ± 1.19 | <0.0001 |
Soybeans and tofu | 16.8 ± 1.24 | 76.8 ± 4.20 | <0.0001 |
Fishes and seafood | 26.1 ± 1.47 | 57.8 ± 5.07 | <0.0001 |
Meats | 30.9 ± 1.18 | 12.9 ± 0.26 | <0.0001 |
Seaweeds | 4.8 ± 0.41 | 7.4 ± 0.58 | <0.0001 |
Nuts | 2.3 ± 0.01 | 7.4 ± 0.27 | <0.0001 |
Perilla | 0.3 ± 0.06 | 5.7 ± 0.47 | <0.0001 |
Glycemic index of the meal | 68.1 ± 2.89 | 50.3 ± 3.55 | <0.0001 |
Glycemic load of the meal | 192 ± 1.21 | 145 ± 1.53 | <0.0001 |
Nutrient | Control Diet (n = 52) | K-Diet (n = 52) | p-Value 2 |
---|---|---|---|
Energy (kcal) | 1859 ± 60.5 1 | 1834 ± 106 | 0.1385 |
Carbohydrates (En%) | 62.9 ± 0.40 | 66.5 ± 0.50 | <0.0001 |
Dietary fiber (g) | 21.3 ± 0.83 | 36.7 ± 2.22 | <0.0001 |
Protein (En%) | 13.0 ± 0.10 | 14.0 ± 0.17 | <0.0001 |
Plant protein (En%) | 7.35 ± 0.07 | 10.3 ± 0.09 | <0.0001 |
Animal protein (En%) | 5.68 ± 0.09 | 3.69 ± 0.13 | <0.0001 |
Fat (En%) | 24.1 ± 0.33 | 19.5 ± 0.36 | <0.0001 |
Saturated fatty acids (En%) | 6.3 ± 0.48 | 2.45 ± 0 | <0.0001 |
MUFA (En%) | 5.3 ± 0.48 | 2.94 ± 0 | <0.0001 |
PUFA (En%) | 5.3 ± 0.48 | 4.91 ± 0.49 | NS |
Plant fat (En%) | 14.5 ± 0.17 | 15.6 ± 0.27 | <0.0001 |
Animal fat (En%) | 9.54 ± 0.03 | 3.88 ± 0.02 | <0.0001 |
Cholesterol (mg) | 272 ± 7.84 | 146 ± 9.32 | <0.0001 |
Calcium (mg) | 490 ± 19.9 | 544 ± 38.4 | <0.0001 |
Iron (mg) | 17.3 ± 0.78 | 18.9 ± 1.36 | <0.0001 |
Sodium (mg) | 3632 ± 148 | 3573 ± 226 | 0.1136 |
Potassium (mg) | 2531 ± 95.4 | 3432 ± 196 | <0.0001 |
Vitamin A (μg RE) | 497 ± 20.8 | 648 ± 39.7 | <0.0001 |
Thiamin (mg) | 1.69 ± 0.06 | 2.15 ± 0.12 | <0.0001 |
Riboflavin (mg) | 1.37 ± 0.05 | 1.28 ± 0.13 | <0.0001 |
Niacin (mg) | 14.6 ± 0.54 | 23.1 ± 1.59 | <0.0001 |
Vitamin C (mg) | 112 ± 4.08 | 124 ± 6.28 | <0.0001 |
Folate (μg) | 503 ± 21.9 | 670 ± 48.4 | <0.0001 |
Variable | Control Diet (n = 52) | Changes 1 by Control Diet | K-Diet (n = 52) | Changes by K-Diet | p-Value 2 |
---|---|---|---|---|---|
Body mass index (kg/m2) | 25.1 ± 1.81 3 | −0.32 ± 0.43 *** 4 | 24.6 ± 0.25 | −0.76 ± 0.58 *** 5 | 0.1158 |
Waist circumferences (cm) | 79.1 ± 5.26 | −1.08 ± 4.33 | 77.6 ± 0.73 | −2.62 ± 4.69 *** | 0.1084 |
Muscle mass (%) | 33.7 ± 2.60 | −0.11 ± 0.87 | 33.5 ± 0.38 | −0.20 ± 0.79 | 0.7826 |
Fat mass (%) | 37.4 ± 4.11 | −0.88 ± 2.02 ** | 36.9 ± 0.56 | −1.12 ± 1.73 ** | 0.4618 |
Systolic blood pressure (mmHg) | 112 ± 10.5 | −2.77 ± 12.8 | 113 ± 1.44 | −4.50 ± 10.9 ** | 0.4738 |
Diastolic blood pressure (mmHg) | 74.2 ± 6.63 | −0.08 ± 8.43 | 73.8 ± 0.91 | −0.12 ± 8.08 | 0.7679 |
White blood cells (×103/uL) | 5.3 ± 1.30 | −0.38 ± 1.08 | 5.21 ± 0.18 | −0.64 ± 1.23 *** | 0.5827 |
Platelet (×103/uL) | 24.5 ± 4.83 | −0.92 ± 3.10 * | 24.0 ± 0.66 | −1.08 ± 2.74 ** | 0.5244 |
Serum triglyceride (mg/dL) | 93.2 ± 40.4 | −6.58 ± 3.46 | 76.8 ± 5.6 | −26.35 ± 43.6 *** | 0.0177 |
Serum total cholesterol (mg/dL) | 168 ± 27.9 | −12.8 ± 20.0 *** | 155 ± 3.84 | −30.02 ± 19.1 *** | 0.0067 |
Serum HDL-C (mg/dL) | 54.8 ± 11.3 | −5.98 ± 10.4 *** | 51.3 ± 1.55 | −8.92 ± 10.6 *** | 0.0693 |
Serum LDL-C (mg/dL) | 94.3 ± 24.8 | −5.52 ± 16.6 * | 88.3 ± 3.41 | −15.88 ± 16.5 *** | 0.1288 |
Serum non-HDL (mg/dL) | 112 ± 26.0 | −6.79 ± 17.5 ** | 104 ± 3.58 | −21.10 ± 17.6 *** | 0.0435 |
Fasting plasma glucose (mg/dL) | 94.0 ± 6.92 | −3.75 ± 7.43 *** | 93.7 ± 0.96 | −3.73 ± 6.63 *** | 0.7593 |
Fasting plasma Insulin (mU/L) | 7.96 ± 3.53 | −2.09 ± 3.25 *** | 7.24 ± 0.48 | −3.20 ± 3.39 *** | 0.2136 |
HOMA-IR | 1.87 ± 0.94 | −0.58 ± 0.87 *** | 1.71 ± 0.13 | −0.83 ± 0.87 *** | 0.2576 |
HOMA-B | 94.1 ± 35.1 | −12.0 ± 36.5 * | 84.3 ± 4.83 | −28.0 ± 36.7 *** | 0.0997 |
QUICKI | 0.36 ± 0.02 | 0.02 ± 0.02 | 0.36 ± 0.00 | 0.03 ± 0.02 | 0.0885 |
Serum C-reactive protein (mg/dL) | 1.29 ± 1.66 | −0.52 ± 2.52 | 1.44 ± 0.22 | −0.54 ± 6.71 | 0.5134 |
Classification | Control Diet | Changes 1 by Control Diet | VIP 2 | K-Diet | Changes 1 by K-Diet | VIP 2 | p-Value 3 | |
---|---|---|---|---|---|---|---|---|
Amino acid | Valine | 50.3 ± 4.01 4 | −9.7 ± 8.01 | 0.29 | 39.8 ± 4.00 | −10.5 ± 11.8 | 0.37 | 0.0190 |
Leucine | 302 ± 8.52 | −33.0 ± 84.7 *** 5 | 0.24 | 269 ± 8.47 | −57.6 ± 51.1 *** 6 | 0.43 | 0.0049 | |
Isoleucine | 12.3 ± 0.74 | −3.7 ± 3.1 *** | 0.12 | 14.2 ± 0.73 | −2.6 ± 8.3 * | 0.05 | 0.0747 | |
BCAA | 363 ± 9.48 | −27.1 ± 24.1 * | 0.35 | 323 ± 9.34 | −29.2 ± 33.2 *** | 0.42 | 0.0040 | |
γ-glutamyl isoleucine | 58.8 ± 4.73 | −2.7 ± 48.5 | 0.03 | 44.4 ± 9.39 | −35.9 ± 66.8 *** | 0.39 | 0.0389 | |
Glutamate | 15.3 ± 1.97 | 3.7 ± 19.3 | 0.06 | 8.15 ± 1.97 | −8.4 ± 24.2 * | 0.17 | 0.0187 | |
Glutamine | 229 ± 5.63 | 12.1 ± 59.3 | 0.1 | 225 ± 5.60 | 16.7. ± 36.7 * | 0.2 | 0.5433 | |
Arginine | 467 ± 38.4 | 28.1 ± 36.3 | 0.09 | 385 ± 38.3 | −74.9 ± 20.6 *** | 0.69 | 0.1223 | |
Tyrosine | 940 ± 23.3 | −31.9 ± 10.1 | 0.14 | 845 ± 23.2 | −40.6 ± 66.6 ** | 0.44 | 0.0047 | |
Tryptophan | 8331 ± 169 | −4.71 ± 47.8 | 0.01 | 7462 ± 168 | −21.9 ± 30.2 *** | 1.58 | 0.0003 | |
Glycine | 21.8 ± 0.62 | −0.5 ± 5.4 | 0.01 | 19.2 ± 0.62 | −3.3 ± 4.8 *** | 0.09 | 0.0051 | |
L-homocysteine | 58.2 ± 11.5 | −39.3 ± 69.4 *** | 0.40 | 19.2 ± 11.4 | −70.7 ± 85.0 *** | 0.61 | 0.0168 | |
Creatine | 2403 ± 119.7 | 71.7 ± 15.4 | 0.14 | 2169 ± 119 | −112.0 ± 29.0 ** | 1.28 | 0.1043 | |
Glutathione | 26.8 ± 3.77 | −3.47 ± 40.5 | 0.04 | 41.8 ± 3.76 | 12.0 ± 33.9 * | 0.16 | 0.0088 | |
Carnitines | Carnitine | 11,181 ± 584 | 383.0 ± 100.5 * | 1.66 | 9593 ± 854 | −258.1 ± 118 | 2.06 | 0.0663 |
Acylcarnitine | 38,910 ± 2621 | 933 ± 338 * | 5.17 | 39,400 ± 2612 | 743 ± 416 * | 3.33 | 0.8901 | |
Ratio of carnitine and acylcarnitine | 0.309 ± 0.017 | −0.08 ± 0.2 *** | 0.10 | 0.287 ± 0.017 | −0.10 ± 0.2 ** | 0.10 | 0.3048 | |
Nucleosides | Uric acid | 12,578 ± 338 | 185 ± 195 | 0.47 | 11,561 ± 336 | −137 ± 127 | 0.73 | 0.0249 |
Uridine | 119 ± 3.41 | −14.6 ± 37.7 ** | 0.16 | 107 ± 3.39 | −26.2 ± 34.1 *** | 0.33 | 0.0144 | |
Organic acid | 2-Ketobutyric acid | 229 ± 11.39 | 44.0 ± 24.2 * | 0.27 | 199 ± 11.41 | −19.2 ± 28.6 | 0.26 | 0.0789 |
Pyruvic acid | 231 ± 5.55 | −0.9 ± 10.5 * | 0.0 | 217.8 ± 5.52 | 18.8 ± 37.8 ** | 0.17 | 0.068 | |
3-Hydroxybutyric acid | 6.23 ± 1.93 | 3.12 ± 12.2 | 0.06 | 16.2 ± 1.92 | 12.2 ± 15.9 *** | 0.17 | 0.0009 | |
Isocitric acid | 6041 ± 154 | 84.5 ± 70.0 *** | 0.01 | 5857 ± 153 | 51.2 ± 105 * | 0.96 | 0.3296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.J.; Park, S.; Yang, H.J.; Shin, P.-K.; Hur, H.J.; Park, S.-J.; Lee, K.-H.; Hong, M.; Kim, J.H.; Choi, S.-W.; et al. Alleviation of Dyslipidemia via a Traditional Balanced Korean Diet Represented by a Low Glycemic and Low Cholesterol Diet in Obese Women in a Randomized Controlled Trial. Nutrients 2022, 14, 235. https://doi.org/10.3390/nu14020235
Kim MJ, Park S, Yang HJ, Shin P-K, Hur HJ, Park S-J, Lee K-H, Hong M, Kim JH, Choi S-W, et al. Alleviation of Dyslipidemia via a Traditional Balanced Korean Diet Represented by a Low Glycemic and Low Cholesterol Diet in Obese Women in a Randomized Controlled Trial. Nutrients. 2022; 14(2):235. https://doi.org/10.3390/nu14020235
Chicago/Turabian StyleKim, Min Jung, Sunmin Park, Hye Jeong Yang, Phil-Kyung Shin, Haeng Jeon Hur, Seon-Joo Park, Kyun-Hee Lee, Moonju Hong, Jin Hee Kim, Sang-Woon Choi, and et al. 2022. "Alleviation of Dyslipidemia via a Traditional Balanced Korean Diet Represented by a Low Glycemic and Low Cholesterol Diet in Obese Women in a Randomized Controlled Trial" Nutrients 14, no. 2: 235. https://doi.org/10.3390/nu14020235
APA StyleKim, M. J., Park, S., Yang, H. J., Shin, P. -K., Hur, H. J., Park, S. -J., Lee, K. -H., Hong, M., Kim, J. H., Choi, S. -W., Lee, H. -J., & Kim, M. -S. (2022). Alleviation of Dyslipidemia via a Traditional Balanced Korean Diet Represented by a Low Glycemic and Low Cholesterol Diet in Obese Women in a Randomized Controlled Trial. Nutrients, 14(2), 235. https://doi.org/10.3390/nu14020235