Telomere Length and Mitochondrial DNA Copy Number Variations in Patients with Obesity: Effect of Diet-Induced Weight Loss—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Lifestyle Intervention
2.3. Measurements
2.4. Telomere Length and Mitochondrial DNA Copy Number Determination
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Miao, K.; Wang, H.; Ding, H.; Wang, D.W. Association between Telomere Length and Type 2 Diabetes Mellitus: A Meta-Analysis. PLoS ONE 2013, 8, e79993. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Raschenberger, J.; Heydon, E.E.; Tsimikas, S.; Haun, M.; Mayr, A.; Weger, S.; Witztum, J.L.; Butterworth, A.S.; Willeit, J.; et al. Leucocyte Telomere Length and Risk of Type 2 Diabetes Mellitus: New Prospective Cohort Study and Literature-Based Meta-Analysis. PLoS ONE 2014, 9, e112483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Dong, X.; Cao, L.; Sun, Y.; Qiu, Y.; Zhang, Y.; Cao, R.; Covasa, M.; Zhong, L. Association between telomere length and diabetes mellitus: A meta-analysis. J. Int. Med. Res. 2016, 44, 1156–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasnienkov, D.S.; Khalangot, M.D.; Kravchenko, V.I.; Kovtun, V.A.; Guryanov, V.G.; Chizhova, V.P.; Korkushko, O.V.; Shatilo, V.B.; Kukharsky, V.M.; Vaiserman, A.M. Hyperglycemia attenuates the association between telomere length and age in Ukrainian population. Exp. Gerontol. 2018, 110, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, H.; Shaheen, F.; Kalscheuer, H.; Schmid, S.M.; Oster, H.; Lehnert, H. The Telomeric Complex and Metabolic Disease. Genes 2017, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Khalangot, M.; Krasnienkov, D.; Vaiserman, A. Telomere length in different metabolic categories: Clinical associations and modification potential. Exp. Biol. Med. 2020, 245, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Bodelon, C.; Savage, S.A.; Gadalla, S.M. Telomeres in Molecular Epidemiology Studies. Prog. Mol. Biol. Transl. Sci. 2014, 125, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Gavia-García, G.; Rosado-Pérez, J.; Arista-Ugalde, T.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology 2021, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Himbert, C.; Thompson, H.; Ulrich, C.M. Effects of Intentional Weight Loss on Markers of Oxidative Stress, DNA Repair and Telomere Length—A Systematic Review. Obes. Facts 2017, 10, 648–665. [Google Scholar] [CrossRef]
- García-Calzón, S.; Zalba, G.; Ruiz-Canela, M.; Shivappa, N.; Hébert, J.R.; Martínez, J.A.; Fitó, M.; Gómez-Gracia, E.; Martínez-González, M.A.; Marti, A. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: Cross-sectional and longitudinal analyses over 5 years. Am. J. Clin. Nutr. 2015, 102, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Mundstock, E.; Sarria, E.E.; Zatti, H.; Louzada, F.M.; Grun, L.K.; Jones, M.; Guma, F.T.C.R.; Memoriam), J.M.; Epifanio, M.; Stein, R.; et al. Effect of obesity on telomere length: Systematic review and meta-analysis. Obesity 2015, 23, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- Son, D.H.; Ha, H.S.; Park, H.M.; Kim, H.Y.; Lee, Y.J. New markers in metabolic syndrome. Adv. Clin. Chem. 2022, 110, 37–71. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Blomberg, B.B.; Paganelli, R. Aging, Obesity, and Inflammatory Age-Related Diseases. Front. Immunol. 2017, 8, 1745. [Google Scholar] [CrossRef] [PubMed]
- Correia-Melo, C.; Hewitt, G.; Passos, J.F. Telomeres, oxidative stress and inflammatory factors: Partners in cellular senescence? Longev. Healthspan 2014, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, D.; Nan, H.; Kværner, A.S.; De Vivo, I.; Chan, A.T.; Hu, Z.; Shen, H.; Giovannucci, E.; Song, M. Longitudinal associations of lifetime adiposity with leukocyte telomere length and mitochondrial DNA copy number. Eur. J. Epidemiol. 2018, 33, 485–495. [Google Scholar] [CrossRef]
- Meng, S.; Wu, S.; Liang, L.; Liang, G.; Giovannucci, E.; De Vivo, I.; Nan, H. Leukocyte mitochondrial DNA copy number, anthropometric indices, and weight change in US women. Oncotarget 2016, 7, 60676–60686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, Z.; Yang, Y.; Cao, S.; Lyu, S.; Duan, W. Association Between Weight Change and Leukocyte Telomere Length in U.S. Adults. Front. Endocrinol. 2021, 12, 650988. [Google Scholar] [CrossRef]
- Welendorf, C.; Nicoletti, C.F.; Pinhel, M.A.D.S.; Noronha, N.; de Paula, B.M.F.; Nonino, C.B. Obesity, weight loss, and influence on telomere length: New insights for personalized nutrition. Nutrition 2019, 66, 115–121. [Google Scholar] [CrossRef]
- Carulli, L.; Anzivino, C.; Baldelli, E.; Zenobii, M.; Rocchi, M.; Bertolotti, M. Telomere length elongation after weight loss intervention in obese adults. Mol. Genet. Metab. 2016, 118, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Salpea, K.D.; Humphries, S.E. Telomere length in atherosclerosis and diabetes. Atherosclerosis 2010, 209, 35–38. [Google Scholar] [CrossRef]
- Reichert, S.; Stier, A. Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett. 2017, 13, 20170463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRocca, T.J.; Seals, D.R.; Pierce, G.L. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech. Ageing Dev. 2010, 131, 165–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.K.; Kim, D.E.; Cho, S.H.; Kim, J.-H. Association between Leukocyte Mitochondrial DNA Copy Number and Regular Exercise in Postmenopausal Women. Korean J. Fam. Med. 2016, 37, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Müezzinler, A.; Zaineddin, A.K.; Brenner, H. Body mass index and leukocyte telomere length in adults: A systematic review and meta-analysis. Obes. Rev. 2014, 15, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. Development of a Rating Scale for Primary Depressive Illness. Br. J. Soc. Clin. Psychol. 1967, 6, 278–296. [Google Scholar] [CrossRef]
- Hamilton, M. The Assessment of Anxiety States by Rating. Psychol. Psychother. Theory Res. Pract. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Gormally, J.; Black, S.; Daston, S.; Rardin, D. The assessment of binge eating severity among obese persons. Addict. Behav. 1982, 7, 47–55. [Google Scholar] [CrossRef]
- Taylor, H.L.; Jacobs, D.R., Jr.; Schucker, B.; Knudsen, J.; Leon, A.S.; Debacker, G. Questionnaire for the assessment of leisure time physical activities. J. Chronic. Dis. 1978, 31, 741–755. [Google Scholar] [CrossRef]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Dershem, R.; Chu, X.; Wood, G.C.; Benotti, P.; Still, C.D.; Rolston, D.D. Changes in telomere length 3–5 years after gastric bypass surgery. Int. J. Obes. 2017, 41, 1718–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviv, A.; Chen, W.; Gardner, J.P.; Kimura, M.; Brimacombe, M.; Cao, X.; Srinivasan, S.R.; Berenson, G.S. Leukocyte Telomere Dynamics: Longitudinal Findings Among Young Adults in the Bogalusa Heart Study. Am. J. Epidemiol. 2009, 169, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovatta, I.; De Mello, V.D.F.; Kananen, L.; Lindström, J.; Eriksson, J.G.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Peltonen, M.; Tuomilehto, J.; Uusitupa, M. Leukocyte Telomere Length in the Finnish Diabetes Prevention Study. PLoS ONE 2012, 7, e34948. [Google Scholar] [CrossRef] [PubMed]
- Svenson, U.; Nordfjäll, K.; Baird, D.; Roger, L.; Osterman, P.; Hellenius, M.L.; Roos, G. Blood Cell Telomere Length Is a Dynamic Feature. PLoS ONE 2011, 6, e21485. [Google Scholar] [CrossRef]
- García-Calzón, S.; Moleres, A.; Gómez-Martinez, S.; Diaz, L.E.; Bueno, G.; Campoy, C.; Martinez, J.A.; Marcos, A.; Azcona-Sanjulián, M.C.; Zalba, G.; et al. Association of telomere length with IL-6 levels during an obesity treatment in adolescents: Interaction with the-174G/C polymorphism in the IL-6 gene. Pediatr. Obes. 2017, 12, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Welendorf, C.R.; Nicoletti, C.F.; Noronha, N.Y.; Ferreira, F.C.; Wolf, L.S.; de Souza Pinhel, M.A.; Pinhanelli, V.C.; de Oliveira, C.C.; de Oliveira, B.A.P.; Dos Santos Martins, L.; et al. The Impact of Gastric Bypass on Telomere Length and Shelterin Complex Gene Expression: 6 Months Prospective Study. Obes. Surg. 2021, 31, 2599–2606. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, S.; Dong, S.; Li, J.; Yan, Y.; Zhang, T.; Chen, W. Association Between Body Weight and Telomere Length Is Predominantly Mediated Through C-Reactive Protein. J. Clin. Endocrinol. Metab. 2021, 106, e4634–e4640. [Google Scholar] [CrossRef]
- von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27, 339–344. [Google Scholar] [CrossRef]
- Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants Inhibit Nuclear Export of Telomerase Reverse Transcriptase and Delay Replicative Senescence of Endothelial Cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Filograna, R.; Mennuni, M.; Alsina, D.; Larsson, N. Mitochondrial DNA copy number in human disease: The more the better? FEBS Lett. 2021, 595, 976–1002. [Google Scholar] [CrossRef]
- Agius, R.; Pace, N.P.; Fava, S. Reduced leukocyte mitochondrial copy number in metabolic syndrome and metabolically healthy obesity. Front. Endocrinol. 2022, 13, 886957. [Google Scholar] [CrossRef] [PubMed]
T0 | T12 | p-Value | |
---|---|---|---|
Age (years) | 50.7 ± 11.5 | - | |
Weight (Kg) | 99.7 ± 12.9 | 93.1 ± 13.5 | <0.001 |
Heigt (cm) | 158.9 ± 8.8 | - | - |
Waist (cm) | 117.8 ± 8.8 | 112.4 ± 11.9 | 0.007 |
BMI (Kg/m2) | 39.5 ± 3.8 | 36.8 ± 4.2 | <0.001 |
Daily calories (kcal/die) | 1890 ± 398.2 | 1449 ± 232.1 | <0.001 |
Fat Mass (%) | 45.5 ± 6.1 | 44.2 ± 6.4 | 0.007 |
Fat Free Mass (%) | 54.5 ± 6.1 | 55.7 ± 6.4 | 0.009 |
Fasting Glucose (mg/dL) | 88.8 ± 15.7 | 90.2 ± 8.8 | 0.680 |
HbA1c (mmol/mol) | 38.8 ± 6.1 | 37.4 ± 3.9 | 0.151 |
HOMA (mmol/L × μU/m) | 3.7 ± 2.8 | 3.7 ± 3.1 | 0.875 |
Fasting Insulin (μU/mL) | 16.5 ± 11.3 | 16.2 ± 12.7 | 0.895 |
Total Cholesterol (mg/dL) | 189.6 ± 28.5 | 198.7 ± 34.7 | 0.220 |
Triglycerides (mg/dL) | 114.7 ± 63.4 | 95.5 ± 42.4 | 0.067 |
HDL (mg/dL) | 52.1 ± 13.2 | 57.4 ± 19.5 | 0.076 |
hs-CRP (mg/L) | 8.0 ± 5.6 | 5.2 ± 3.8 | 0.008 |
Diastolic blood pressure (mmHg) | 82.6 ± 11.5 | 84.4 ± 12.1 | 0.484 |
Systolic blood pressure (mmHg) | 134.4 ± 16.1 | 125.8 ± 12.7 | 0.052 |
MDA (µg/L) | 40.1 ± 25.5 | 51.9 ± 42.1 | 0.418 |
TAC (µM/L) | 139.0 ± 80.5 | 166.3 ± 90.1 | 0.302 |
mtDNA copy number (n) | 2439.2 ± 519.8 | 1266.23 ± 943.9 | 0.098 |
Telomeres Length (kpb) | 2.32 ± 0.49 | 1.41 ± 0.30 | 0.138 |
H-TL (T0) | H-TL (T12) | p-Value | L-TL (T0) | L-TL (T12) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 48 ± 11.5 | - | - | 53.5 ± 11.5 | - | - |
Weight (Kg) | 98.3 ± 13.4 | 92.3 ± 14.1 | 0.001 | 101.3 ± 13 | 94.1 ± 13.7 | <0.001 |
Heigt (cm) | 158.5 ± 9.1 | - | - | 159.2 ± 9.1 | - | - |
Waist (cm) | 116.2 ± 9.4 | 112.3 ± 12.7 | 0.16 | 119.5 ± 8.2 | 113.6 ± 9.6 | 0.01 |
BMI (Kg/m2) | 39.1 ± 3.5 | 36.7 ± 4.4 | 0.001 | 39.9 ± 3.9 | 37.1 ± 4.3 | <0.001 |
Fat Mass (%) | 46.3 ± 5.9 | 45.1 ± 6.5 | 0.11 | 44.6 ± 6.5 | 43.2 ± 6.5 | 0.02 |
Fat Free Mass (%) | 53.7 ± 5.9 | 54.9 ± 6.5 | 0.11 | 55.4 ± 6.5 | 56.7 ± 6.5 | 0.02 |
Fasting Glucose (mg/dL) | 85.9 ± 10.7 | 89.8 ± 10.6 | 0.18 | 92.1 ± 7.0 | 90.8 ± 5.6 | 0.91 |
HbA1c (mmol/mol) | 37.4 ± 4.5 | 37.2 ± 3.6 | 0.80 | 40.3 ± 7.6 | 37.7 ± 4.4 | 0.11 |
HOMA (mmol/L × μU/m) | 2.6 ± 1.2 | 2.6 ± 1.4 | 0.91 | 4.8 ± 1.2 | 4.9 ± 1.3 | 0.89 |
Fasting insulin (μU/mL) | 12.3 ± 5.5 | 12.0 ± 7.1 | 0.89 | 21.1 ± 4.4 | 20.1 ± 6.7 | 0.97 |
Total Cholesterol (mg/dL) | 187.9 ± 28.5 | 196.9 ± 40.5 | 0.27 | 191.5 ± 30.3 | 200.8 ± 28.9 | 0.65 |
Triglycerides (mg/dL) | 96.7 ± 31.1 | 94.8 ± 30.1 | 0.46 | 135.1 ± 37.3 | 97.7 ± 27.2 | 0.05 |
HDL (mg/dL) | 57.1 ± 11.9 | 64 ± 12.5 | 0.19 | 46.5 ± 10.8 | 63.5 ± 12.7 | 0.06 |
hs-CRP (mg/L) | 9.36 ± 6.5 | 5.47 ± 3.7 | 0.02 | 6.58 ± 4.1 | 4.96 ± 3.5 | 0.04 |
Diastolic blood pressure (mmHg) | 86.1 ± 11.5 | 86.6 ± 13.5 | 0.93 | 83.6 ± 11.5 | 81.8 ± 10.7 | 0.35 |
Systolic blood pressure (mmHg) | 136.7 ± 20.5 | 127.8 ± 12.1 | 0.23 | 131.8 ± 9.9 | 123.7 ± 14.1 | 0.01 |
MDA (µg/L) | 27.6 ± 4.9 | 60.4 ± 22.1 | 0.12 | 54.3 ± 30.2 | 41.6 ± 8.2 | 0.37 |
TAC (µM/L) | 151.8 ± 31.7 | 145.2 ± 38.9 | 0.19 | 126.2 ± 36.3 | 187.2 ± 35.7 | 0.01 |
mtDNA copy (n) | 3553.81 ± 780.1 | 1238.9 ± 438.7 | 0.07 | 1185.4 ± 324.2 | 1296.8 ± 326.8 | 0.19 |
Telomeres Length (kbp) | 3.47 ± 0.8 | 1.33 ± 0.8 | 0.11 | 1.02 ± 0.4 | 1.51 ± 0.3 | 0.02 |
H-TL (Delta T12–T0) | L-TL (Delta T12–T0) | p-Value | |
---|---|---|---|
Weight (Kg) | −6.1 ± 4.6 | −8.1 ± 2.7 | 0.03 |
Waist (cm) | −3.8 ± 6.8 | −6.1 ± 4.9 | 0.05 |
BMI (Kg/m2) | −2.3 ± 1.7 | −3.0 ± 0.9 | 0.05 |
Fat Mass (%) | −1.22 ± 1.5 | −1.42 ± 1.3 | 0.04 |
Fat Free Mass (%) | +54.9 ± 5.3 | +57.8 ± 6.5 | 0.04 |
Fasting Glucose (mg/dL) | +3.8 ± 6.5 | −1.3 ± 5.5 | 0.52 |
HbA1c (mmol/mol) | −0.22 ± 2.24 | −2.5 ± 4.3 | 0.20 |
HOMA (mmol/L × μU/m) | −0.03 ± 1.11 | 0.1 ± 1.02 | 0.52 |
Fasting insulin (μU/mL) | −0.36 ± 4.9 | 0.04 ± 3.9 | 0.72 |
Total Cholesterol (mg/dL) | +9.0 ± 20.1 | +9.4 ± 24.1 | 0.91 |
Triglycerides (mg/dL) | −11.9 ± 15.2 | −27.3 ± 35.1 | 0.44 |
HDL (mg/dL) | +6.8 ± 12.6 | +3.5 ± 3.8 | 0.54 |
hs-CRP (mg/L) | −3.8 ± 3.4 | −1.6 ± 2.8 | 0.68 |
Diastolic blood pressure (mmHg) | +0.5 ± 14.3 | +1.9 ± 6.5 | 0.60 |
Systolic blood pressure (mmHg) | −8.9 ± 12.5 | −8.1 ± 7.5 | 0.50 |
MDA (µg/L) | +17.2 ± 22.5 | −15.2 ± 34.1 | 0.07 |
TAC (µM/L) | +36.4 ± 24.1 | +58.5 ± 18.6 | 0.04 |
mtDNA copy (n) | −2314.8 ± 724.2 | +111.5 ± 478.5 | <0.001 |
Telomeres Length (kbp) | −2.15 ± 1.13 | +0.57 ± 1.23 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cancello, R.; Rey, F.; Carelli, S.; Cattaldo, S.; Fontana, J.M.; Goitre, I.; Ponzo, V.; Merlo, F.D.; Zuccotti, G.; Bertoli, S.; et al. Telomere Length and Mitochondrial DNA Copy Number Variations in Patients with Obesity: Effect of Diet-Induced Weight Loss—A Pilot Study. Nutrients 2022, 14, 4293. https://doi.org/10.3390/nu14204293
Cancello R, Rey F, Carelli S, Cattaldo S, Fontana JM, Goitre I, Ponzo V, Merlo FD, Zuccotti G, Bertoli S, et al. Telomere Length and Mitochondrial DNA Copy Number Variations in Patients with Obesity: Effect of Diet-Induced Weight Loss—A Pilot Study. Nutrients. 2022; 14(20):4293. https://doi.org/10.3390/nu14204293
Chicago/Turabian StyleCancello, Raffaella, Federica Rey, Stephana Carelli, Stefania Cattaldo, Jacopo Maria Fontana, Ilaria Goitre, Valentina Ponzo, Fabio Dario Merlo, Gianvincenzo Zuccotti, Simona Bertoli, and et al. 2022. "Telomere Length and Mitochondrial DNA Copy Number Variations in Patients with Obesity: Effect of Diet-Induced Weight Loss—A Pilot Study" Nutrients 14, no. 20: 4293. https://doi.org/10.3390/nu14204293
APA StyleCancello, R., Rey, F., Carelli, S., Cattaldo, S., Fontana, J. M., Goitre, I., Ponzo, V., Merlo, F. D., Zuccotti, G., Bertoli, S., Capodaglio, P., Bo, S., & Brunani, A. (2022). Telomere Length and Mitochondrial DNA Copy Number Variations in Patients with Obesity: Effect of Diet-Induced Weight Loss—A Pilot Study. Nutrients, 14(20), 4293. https://doi.org/10.3390/nu14204293