Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms
Abstract
:1. Introduction
2. Study Aim
3. Material and Methods
3.1. Patients
3.2. Research Methods
- -
- Information gathered during interview with patients and their family;
- -
- Results of laboratory tests, including measurements of: total IgE (tIgE) and specific IgE (sIgE) for selected food allergens;
- -
- Diagnostic elimination test and food challenge.
3.3. Statistical Analysis
4. Results
4.1. Most Common Clinical Manifestations
4.2. Severity of Clinical Symptoms Depending on the Number of Systems Affected
4.3. Severity of AD Assessed with SCORAD
4.4. Levels of Selected IP Markers—Comparison of All Children with FA and Reference Group and Depending on the Immune Pathomechanism of FA
4.4.1. Relationship between the Levels of Selected IP Markers and Clinical Manifestations in Children with IgE-Mediated and Non-IgE-Mediated FA
4.4.2. Relationship between the Levels of Selected IP Markers and Gastrointestinal Symptoms—Comparison of Children with IgE-Mediated and Non-IgE-Mediated FA
4.5. Dependent Variables Influencing the Risk of Increased Zonulin and LPS Levels in the Analysed Groups of Children
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, R.K.; Gill, B.; Kumari, S. Food allergy and atopic disease: Pathogenesis, diagnosis, prediction of high risk, and prevention. Ann. Allergy 1993, 71, 495–504. [Google Scholar]
- Sampson, H.A. Update on food allergy. J. Allergy Clin. Immunol. 2004, 113, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Osterballe, M.; Hansen, T.K.; Mortz, C.G.; Høst, A.; Bindslev-Jensen, C. The prevalence of food hypersensitivity in an unselected population of children and adults. Pediatr. Allergy Immunol. 2005, 16, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Rona, R.J.; Keil, T.; Summers, C.; Gislason, D.; Zuidmeer, L.; Sodergren, E.; Sigurdardottir, S.T.; Lindner, T.; Goldhahn, K.; Dahlstrom, J.; et al. The prevalence of food allergy: A meta-analysis. J. Allergy Clin. Immunol. 2007, 120, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Björkstén, B.; Crevel, R.; Hischenhuber, C.; Løvik, M.; Samuels, F.; Strobel, S.; Taylor, S.L.; Wal, J.M.; Ward, R. Criteria for identifying allergenic foods of public health importance. Regul. Toxicol. Pharmacol. 2008, 51, 2–52. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.L.; Adams, H.N.; Gorard, D.A. Review article: The diagnosis and management of food allergy and food intolerances. Aliment. Pharmacol. Ther. 2015, 41, 3–25. [Google Scholar] [CrossRef]
- Høst, A.; Husby, S.; Osterballe, O. A prospective study of cow’s milk allergy in exclusively breast-fed infants. Incidence, pathogenetic role of early inadvertent exposure to cow’s milk formula, and characterization of bovine milk protein in human milk. Acta Pediatr. Scand. 1988, 77, 663–670. [Google Scholar] [CrossRef]
- Sampson, H.A.; Aceves, S.; Bock, S.A.; James, J.; Jones, S.; Lang, D.; Nadeau, K.; Nowak-Wegrzyn, A.; Oppenheimer, J.; Perry, T.T.; et al. Food allergy: A practice parameter update-2014. J. Allergy Clin. Immunol. 2014, 134, 1016–1025.e43. [Google Scholar] [CrossRef]
- McBride, D.; Keil, T.; Grabenhenrich, L.; Dubakiene, R.; Drasutiene, G.; Fiocchi, A.; Dahdah, L.; Sprikkelman, A.B.; Schoemaker, A.A.; Roberts, G.; et al. The EuroPrevall birth cohort study on food allergy: Baseline characteristics of 12,000 newborns and their families from nine European countries. Pediatr. Allergy Immunol. 2012, 23, 230–239. [Google Scholar] [CrossRef]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Special Committee on Food Allergy. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr. Allergy Immunol. 2010, 21, 1–125. [Google Scholar] [CrossRef] [Green Version]
- Simons, F.E.; Ebisawa, M.; Sanchez-Borges, M.; Thong, B.Y.; Worm, M.; Tanno, L.K.; Lockey, R.F.; El-Gamal, Y.M.; Brown, S.G.; Park, H.S.; et al. 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ. J. 2015, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Umetsu, D.T.; DeKruyff, R.H. The regulation of allergy and asthma. Immunol. Rev. 2006, 212, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Sabra, A.; Bellanti, J.A.; Rais, J.M.; Castro, H.J.; de Inocencio, J.M.; Sabra, S. IgE and non-IgE food allergy. Ann. Allergy Asthma Immunol. 2003, 90 (Suppl. S3), 71–76. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Sampson, H.A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 2014, 133, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Maeda, N.; Yang, F.; Barnett, D.R.; Bowman, B.H.; Smithies, O. Duplication within the haptoglobin Hp2 gene. Nature 1984, 309, 131–135. [Google Scholar] [CrossRef]
- McNeil, E.; Capaldo, C.T.; Macara, I.G. Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell 2006, 17, 1922–1932. [Google Scholar] [CrossRef] [Green Version]
- Goldblum, S.E.; Rai, U.; Tripathi, A.; Thakar, M.; De Leo, L.; Di Toro, N.; Not, T.; Ramachandran, R.; Puche, A.C.; Hollenberg, M.D.; et al. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J. 2011, 25, 144–158. [Google Scholar] [CrossRef] [Green Version]
- El Asmar, R.; Panigrahi, P.; Bamford, P.; Berti, I.; Not, T.; Coppa, G.V.; Catassi, C.; Fasano, A. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 2002, 123, 1607–1615. [Google Scholar] [CrossRef]
- Drago, S.; El Asmar, R.; Di Pierro, M.; Grazia Clemente, M.; Tripathi, A.; Sapone, A.; Thakar, M.; Iacono, G.; Carroccio, A.; D’Agate, C.; et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 2006, 41, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef] [Green Version]
- Lammers, K.M.; Lu, R.; Brownley, J.; Lu, B.; Gerard, C.; Thomas, K.; Rallabhandi, P.; Shea-Donohue, T.; Tamiz, A.; Alkan, S.; et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 2008, 135, 194–204.e3. [Google Scholar] [CrossRef] [Green Version]
- Esnafoglu, E.; Cırrık, S.; Ayyıldız, S.N.; Erdil, A.; Ertürk, E.Y.; Daglı, A.; Noyan, T. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects. J. Pediatr. 2017, 188, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Benoit, R.; Rowe, S.; Watkins, S.C.; Boyle, P.; Garrett, M.; Alber, S.; Wiener, J.; Rowe, M.I.; Ford, H.R. Pure endotoxin does not pass across the intestinal epithelium in vitro. Shock 1998, 10, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.C. Endotoxemia: Methods of detection and clinical correlates. Clin. Microbiol. Rev. 1995, 8, 268–292. [Google Scholar] [CrossRef]
- Andreasen, A.S.; Krabbe, K.S.; Krogh-Madsen, R.; Taudorf, S.; Pedersen, B.K.; Møller, K. Human endotoxemia as a model of systemic inflammation. Curr. Med. Chem. 2008, 15, 1697–1705. [Google Scholar] [CrossRef]
- Bożek, A.; Reich, A. Assessment of the severity of atopic dermatitis. Dermatol. Rev. 2016, 103, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.; De Koker, C.; Dziubak, R.; Venter, C.; Dominguez-Ortega, G.; Cutts, R.; Yerlett, N.; Skrapak, A.K.; Fox, A.T.; Shah, N. Malnutrition in children with food allergies in the UK. J. Hum. Nutr. Diet. 2014, 27, 227–235. [Google Scholar] [CrossRef]
- Rowicka, G.; Strucińska, M.; Riahi, A.; Weker, H. Diet and Nutritional Status of Children with Cow’s Milk Protein Allergy, Treated with a Milk-Free Diet. Int. J. Allergy Medicat. 2017, 3, 25. [Google Scholar]
- Vieira, M.C.; Morais, M.B.; Spolidoro, J.V.; Toporovski, M.S.; Cardoso, A.L.; Araujo, G.T.; Nudelman, V.; Fonseca, M.C. A survey on clinical presentation and nutritional status of infants with suspected cow’ milk allergy. BMC Pediatr. 2010, 10, 25. [Google Scholar] [CrossRef]
- Nadeau, K.J.; Maahs, D.M.; Daniels, S.R.; Eckel, R.H. Childhood obesity and cardiovascular disease: Links and prevention strategies. Nat. Rev. Cardiol. 2011, 8, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Clein, N.W. Cow’s milk allergy in infants. Pediatr. Clin. N. Am. 1954, 1, 949–962. [Google Scholar] [CrossRef]
- Wróblewska, B.; Szyc, A.M.; Markiewicz, L.H.; Zakrzewska, M.; Romaszko, E. Increased prevalence of eating disorders as a biopsychosocial implication of food allergy. PLoS ONE 2018, 13, e0198607. [Google Scholar] [CrossRef]
- Schlapbach, C.; Simon, D. Update on skin allergy. Allergy 2014, 69, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Garmhausen, D.; Hagemann, T.; Bieber, T.; Dimitriou, I.; Fimmers, R.; Diepgen, T.; Novak, N. Characterization of different courses of atopic dermatitis in adolescent and adult patients. Allergy 2013, 68, 498–506. [Google Scholar] [CrossRef]
- Weidinger, S.; Novak, N. Atopic dermatitis. Lancet 2016, 387, 1109–1122. [Google Scholar] [CrossRef]
- Björkstén, B.; Naaber, P.; Sepp, E.; Mikelsaar, M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin. Exp. Allergy 1999, 29, 342–346. [Google Scholar] [CrossRef]
- Bisgaard, H.; Li, N.; Bonnelykke, K.; Chawes, B.L.; Skov, T.; Paludan-Müller, G.; Stokholm, J.; Smith, B.; Krogfelt, K.A. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 2011, 128, 646–652.e5. [Google Scholar] [CrossRef]
- Kalliomäki, M.; Kirjavainen, P.; Eerola, E.; Kero, P.; Salminen, S.; Isolauri, E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 2001, 107, 129–134. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.R.; Delzenne, N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007, 50, 2374–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, V.; Poroyko, V.; Kim, T.J.; Devkota, S.; Fu, S.; Liu, D.; Tumanov, A.V.; Koroleva, E.P.; Deng, L.; Nagler, C.; et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat. Immunol. 2012, 13, 947–953. [Google Scholar] [CrossRef]
- Sheen, Y.H.; Jee, H.M.; Kim, D.H.; Ha, E.K.; Jeong, I.J.; Lee, S.J.; Baek, H.S.; Lee, S.W.; Lee, K.J.; Lee, K.S.; et al. Serum zonulin is associated with presence and severity of atopic dermatitis in children, independent of total IgE and eosinophil. Clin. Exp. Allergy 2018, 48, 1059–1062. [Google Scholar] [CrossRef]
- Kalach, N.; Rocchiccioli, F.; de Boissieu, D.; Benhamou, P.H.; Dupont, C. Intestinal permeability in children: Variation with age and reliability in the diagnosis of cow’s milk allergy. Acta Paediatr. 2001, 90, 499–504. [Google Scholar] [CrossRef]
- Järvinen, K.M.; Konstantinou, G.N.; Pilapil, M.; Arrieta, M.C.; Noone, S.; Sampson, H.A.; Meddings, J.; Nowak-Węgrzyn, A. Intestinal permeability in children with food allergy on specific elimination diets. Pediatr. Allergy Immunol. 2013, 24, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Nowak-Węgrzyn, A.; Sicherer, S.H.; Noone, S.; Moshier, E.L.; Sampson, H.A. Dietary baked milk accelerates the resolution of cow’s milk allergy in children. J. Allergy Clin. Immunol. 2011, 128, 125–131.e2. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.A.; Sampson, H.A.; Sicherer, S.H.; Noone, S.; Moshier, E.L.; Godbold, J.; Nowak-Węgrzyn, A. Dietary baked egg accelerates resolution of egg allergy in children. J. Allergy Clin. Immunol. 2012, 130, 473–480.e1. [Google Scholar] [CrossRef] [Green Version]
- Ventura, M.T.; Polimeno, L.; Amoruso, A.C.; Gatti, F.; Annoscia, E.; Marinaro, M.; Di Leo, E.; Matino, M.G.; Buquicchio, R.; Bonini, S.; et al. Intestinal permeability in patients with adverse reactions to food. Dig. Liver Dis. 2006, 38, 732–736. [Google Scholar] [CrossRef]
- Van Elburg, R.M.; Fetter, W.P.; Bunkers, C.M.; Heymans, H.S. Intestinal permeability in relation to birth weight and gestational and postnatal age. Arch. Dis. Child Fetal Neonatal Ed. 2003, 88, F52–F55. [Google Scholar] [CrossRef] [Green Version]
- Kuitunen, M.; Saukkonen, T.; Ilonen, J.; Akerblom, H.K.; Savilahti, E. Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 2002, 35, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, M.C. Macromolecular absorption of food antigens in health and disease. Ann. Allergy 1984, 53, 597–601. [Google Scholar] [PubMed]
- Corpeleijn, W.E.; van Elburg, R.M.; Kema, I.P.; van Goudoever, J.B. Assessment of intestinal permeability in (premature) neonates by sugar absorption tests. Methods Mol. Biol. 2011, 763, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Barbara, G.; Burman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, S.; Matsui, M.; Shirouzu, Y.; Fujita, H.; Yamana, H.; Shirouzu, K. Effects of glutamine supplements and radiochemotherapy on systemic immune and gut barrier function in patients with advanced esophageal cancer. Ann. Surg. 1998, 227, 485–491. [Google Scholar] [CrossRef]
- Brandtzaeg, P. The gut as communicator between environment and host: Immunological consequences. Eur. J. Pharmacol. 2011, 668 (Suppl. S1), S16–S32. [Google Scholar] [CrossRef]
- Raftery, T.; Martineau, A.R.; Greiller, C.L.; Ghosh, S.; McNamara, D.; Bennett, K.; Meddings, J.; O’Sullivan, M. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study. United Eur. Gastroenterol. J. 2015, 3, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Eslamian, G.; Ardehali, S.H.; Hajimohammadebrahim-Ketabforoush, M.; Shariatpanahi, Z.V. Association of intestinal permeability with admission vitamin D deficiency in patients who are critically ill. J. Investig. Med. 2020, 68, 397–402. [Google Scholar] [CrossRef]
- Assa, A.; Vong, L.; Pinnell, L.J.; Avitzur, N.; Johnson-Henry, K.C.; Sherman, P.M. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J. Infect. Dis. 2014, 210, 1296–1305. [Google Scholar] [CrossRef]
Clinical Symptoms | Group | p | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 vs. 4 | 2 vs. 3 | |
Allergy Total | IgE-Mediated FA | Non-IgE-Mediated FA | Reference Group | |||
n = 74 | n = 49 | n = 25 | n = 29 | |||
Gastrointestinal | 53 (71%) | 33 (67%) | 20 (80%) | 26 (90%) | 0.05 | 0.1 |
n (%) | ||||||
Respiratory | 6 (8%) | 3 (6%) | 3 (12%) | 1 (3%) | 0.3 | 0.4 |
n (%) | ||||||
Skin conditions | 58 (78%) | 35 (71%) | 23 (92%) | 0 | n/a | <0.001 |
n (%) | ||||||
Other | 43 (54%) | 28 (57%) | 15 (60%) | 10 (34%) | <0.05 | 0.1 |
n (%) |
Marker | Allergy Total | Reference Group | p | IgE-Mediated FA | Non-IgE-Mediated FA | p | |
---|---|---|---|---|---|---|---|
n = 74 | n = 29 | n = 49 | n = 25 | ||||
Zonulin (ng/mL) | Mean ± SD | 35 ± 13 | 23 ± 13 | <0.0001 | 33 ± 12 | 39 ± 14 | <0.05 |
Median | 34 | 19 | 32 | 38 | |||
IQR | 27–43 | 13 ± 34 | 27–40 | 29–47 | |||
LPS (ng/mL) | Mean ± SD | 904 ± 258 | 675 ± 385 | <0.0001 | 896 ± 253 | 919 ± 271 | 0.5 |
Median | 919 | 601 | 907 | 1005 | |||
IQR | 755–1111 | 402–845 | 755–1071 | 773–1147 |
Marker | IgE-Mediated FA | p | Non-IgE-Mediated FA | p | |||
Gastrointestinal Symptoms | Gastrointestinal Symptoms | ||||||
Yes (n = 33) | No (n = 16) | Yes (n = 20) | No (n = 5) | ||||
Zonulin (ng/mL) | Mean ± SD | 32 ± 12 | 35 ± 12 | 0.4 | 39 ± 12 | 41 ± 20 | 0.9 |
Median | 32 | 35 | 37 | 42 | |||
IQR | 25–41 | 28–40 | 31–46 | 24–47 | |||
LPS (ng/Ml) | Mean ± SD | 864 ± 290 | 961 ±140 | 0.2 | 931 ± 291 | 873 ± 188 | 0.3 |
Median | 872 | 935 | 1070 | 812 | |||
IQR | 720–1071 | 869–1073 | 716–1170 | 804–1005 | |||
Marker | IgE-Mediated FA | p | Non-IgE-Mediated FA | p | |||
Respiratory Symptoms | Respiratory Symptoms | ||||||
Yes (n = 3) | No (n = 46) | Yes (n = 3) | No (n = 22) | ||||
Zonulin (ng/Ml) | Mean ± SD | 26 ± 12 | 33 ± 12 | 0.1 | 31 ± 4 | 40 ± 14 | 0.1 |
Median | 25 | 33 | 29 | 42 | |||
IQR | 21–32 | 27–41 | 29–36 | 33–47 | |||
LPS (ng/mL) | Mean ± SD | 529 ± 379 | 920 ± 229 | 0.1 | 1047 ± 128 | 902 ± 282 | 0.5 |
Median | 665 | 926 | 1053 | 951 | |||
IQR | 101–823 | 781–1076 | 916–1173 | 658–1147 | |||
Marker | IgE-Mediated FA | p | Non-IgE-Mediated FA | p | |||
Skin Conditions | Skin Conditions | ||||||
Yes (n = 35) | No (n = 14) | Yes (n = 23) | No (n = 2) | ||||
Zonulin (ng/mL) | Mean ± SD | 33 ± 12 | 32 ± 12 | 0.8 | 40 ± 14 | 33 ± 5 | 0.5 |
Median | 32 | 30 | 41 | 33 | |||
IQR | 26–39 | 27–43 | 2–47.0 | 29–37 | |||
LPS (ng/mL) | Mean ± SD | 1031 ± 224 | 824 ± 241 | <0.01 | 1057 ± 199 | 908 ± 658 | 0.3 |
Median | 1094 | 854 | 1057 | 1005 | |||
IQR | 898–1160 | 731–969 | 916–1198 | 261–1252 | |||
Marker | IgE-Mediated FA | p | Non-IgE-Mediated FA | p | |||
Other Symptoms | Other Symptoms | ||||||
Yes (n = 28) | No (n = 21) | Yes (n = 15) | No (n = 10) | ||||
Zonulin (ng/mL) | Mean ± SD | 30 ± 11 | 36 ± 12 | 0.1 | 38 ± 13 | 42 ± 14 | 0.3 |
Median | 31 | 36 | 36 | 43 | |||
IQR | 23–39 | 27–43 | 29–45 | 33–48 | |||
LPS (ng/mL) | Mean ± SD | 865 ± 283 | 937 ± 207 | 0.1 | 921 ± 309 | 917 ± 218 | 0.5 |
Median | 854 | 964 | 1053 | 951 | |||
IQR | 690–1100 | 872–1071 | 773–1173 | 658–1112 |
Marker | Gastrointestinal Symptoms | ||||||
---|---|---|---|---|---|---|---|
Yes | p | No | p | ||||
IgE-Mediated FA | Non-IgE- Mediated FA | IgE-Mediated FA | Non-IgE- Mediated FA | ||||
n = 33 | n = 20 | n = 16 | n = 5 | ||||
Zonulin (ng/mL) | Mean ± SD | 32 ± 12 | 38.8 ± 12.2 | <0.01 | 35 ± 12 | 41 ± 20 | 0.4 |
Median | 32 | 37.4 | 35 | 42 | |||
IQR | 25–41 | 31.0 ± 45.7 | 28–40 | 24–47 | |||
LPS (ng/mL) | Mean ± SD | 864 ± 290 | 931.1 ± 290.0 | 0.1 | 961 ± 140 | 873 ± 188 | 0.7 |
Median | 872 | 1070.0 | 935 | 812 | |||
IQR | 720–1071 | 715.7–1169.5 | 869–1073 | 804–1005 |
Dependent Variable | Group | OR (95% CI) |
---|---|---|
Increased zonulin level (ng/mL) | Reference group | 1 |
non-IgE-mediated FA | 12.5 (2.4–64) | |
IgE-mediated FA | 4.4 (0.9–21.2) | |
Increased LPS level (ng/mL) | Reference group | 1 |
non-IgE-mediated FA | 10.6 (2.1–54.6) | |
IgE-mediated FA | 4.9 (1–23.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewiem, M.; Grzybowska-Chlebowczyk, U. Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms. Nutrients 2022, 14, 4385. https://doi.org/10.3390/nu14204385
Niewiem M, Grzybowska-Chlebowczyk U. Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms. Nutrients. 2022; 14(20):4385. https://doi.org/10.3390/nu14204385
Chicago/Turabian StyleNiewiem, Monika, and Urszula Grzybowska-Chlebowczyk. 2022. "Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms" Nutrients 14, no. 20: 4385. https://doi.org/10.3390/nu14204385
APA StyleNiewiem, M., & Grzybowska-Chlebowczyk, U. (2022). Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms. Nutrients, 14(20), 4385. https://doi.org/10.3390/nu14204385