Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sociodemographic Variables
2.4. Body Mass Index Levels
2.5. Diagnosis of Metabolic Syndrome
2.6. Instruments
2.6.1. Adherence to the Mediterranean Diet
2.6.2. Body Mass Index Assessment
2.6.3. Measurement of Diagnostic Parameters of Metabolic Syndrome
2.7. Statistical Analysis
3. Results
3.1. Adherence to the Mediterranean Diet
3.2. Prevalence of Nutritional Status According to the Body Mass Index Levels
3.3. Prevalence of Metabolic Syndrome
3.4. Association between the Degree of Adherence to the Mediterranean Diet and Metabolic Syndrome Prevalence
3.5. Association between Body Mass Index Levels with the Prevalence of Metabolic Syndrome and the Degree of Adherence to the Mediterranean Diet
3.6. Association between the Components of the MEDAS-14 Questionnaire and Metabolic Syndrome Prevalence
4. Discussion
4.1. Adherence to the Mediterranean Diet
4.2. Prevalence of Metabolic Syndrome
4.3. Association between Adherence to the Mediterranean Diet and the Prevalence of Metabolic Syndrome
4.4. Association between the Components of the MEDAS-14 Questionnaire and the Prevalence of Metabolic Syndrome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Population Structure Indicators at National Level; Eurostat: Luxembourg, 2022. Available online: https://www.ec.europa.eu/eurostat/databrowser/view/DEMO_PJANIND__custom_964289/bookmark/table?lang=en&bookmarkld=599174db-325f-429b-87ba-6af6b18e9ca9 (accessed on 12 April 2022).
- World Bank Group. Población de 65 Años de Edad y Más (% del Total); World Bank Group: Washington, DC, USA, 2022; Available online: https://www.datos.bancomundial.org/indicator/SP.POP.65UP.TO (accessed on 12 April 2022).
- Instituto Cántabro de Estadística (ICANE). Padrón Municipal de Habitantes de 2021: Por Grupos Quinquenales y Sexo; ICANE: Santander, Spain, 2022. Available online: https://www.icane.es/data/municipal-register-quinquennial-age-group-gender/results (accessed on 12 April 2022).
- Medina, F.X. Mediterranean diet, culture and heritage: Challenges for a new conception. Public Health Nutr. 2009, 12, 1618–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean diet on chronic non-communicable diseases and longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef] [PubMed]
- Fundación Dieta Mediterránea. Barcelona: Fundación Dieta Mediterránea. Available online: https://dietamediterranea.com/en/ (accessed on 15 April 2022).
- Barbouti, A.; Goulas, V. Dietary antioxidants in the Mediterranean diet. Antioxidants 2021, 10, 1213. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A. Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshakl, L.; Morze, J.; Hoffman, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health. Biofactors 2013, 39, 335–342. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The effect of the Mediterranean diet on metabolic health: A systematic review and meta-analysis of controlled trials in adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Institut Hospital del Mar d’Investigations Médiques (IMIM); IMIM-Hospital del Mar: Barcelona, Spain, 2012; Available online: https://imim.cat/ofertadeserveis/software-public/granmo/ (accessed on 25 April 2022).
- Martínez de la Iglesia, J.; Dueñas Herrero, R.; Onís Vilches, M.C.; Aguado Taberné, C.; Albert Colomer, C.; Luque Luque, R. Adaptación y validación al castellano del cuestionario de Pfeiffer (SPMSQ) para detectar la existencia de deterioro cognitivo en personas mayores de 65 años. Med. Clin. 2001, 117, 129–134. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of Metabolic Syndrome; IDF: Brussels, Belgium, 2005; Available online: https://www.sites.pitt.edu/~super1/Metabolic/IDF1.pdf (accessed on 25 April 2022).
- Sociedad Española para el Estudio de la Obesidad (SEEDO). Consenso SEEDO’2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clin. 2000, 115, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Tainta, A.; San Julián, B.; Martínez-González, M.A. PREDIMED Date el Gusto de Comer Sano; EUNSA (UNIVERSIDAD DE NAVARRA): Pamplona, Spain, 2015; ISBN 978-84-313-3076-7. [Google Scholar]
- Chumlea, W.; Roche, A.; Steinbaugh, M. Estimating stature from knee height for persons 60 to 90 years of age. J. Am. Geriatr. Soc. 1985, 33, 116–120. [Google Scholar] [CrossRef] [PubMed]
- León-Muñoz, L.M.; Guallar-Castillón, P.; Graciani, A.; López-García, E.; Mesas, A.E.; Aguilera, M.T.; Banegas, J.R.; Rodríguez-Artalejo, F. Adherence to the Mediterranean diet pattern has declined in Spanish adults. J. Nutr. 2012, 142, 1843–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Morales, I.; Torres Amengual, M.; Martínez-Fernández, C.A.; Luque Vara, T. La Dieta Mediterránea en distintos grupos de edad. Eur. J. Health Res. 2016, 2, 73–81. [Google Scholar] [CrossRef]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean diet among adults in Mediterranean countries: A systematic literature review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Lartey, A. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2017, 21, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Insausti, H.; Jiménez-Onsurbe, M.; Donat-Vargas, C.; Rey-García, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-processed food consumption is associated with abdominal obesity: A prospective cohort study in older adults. Nutrients 2020, 12, 2368. [Google Scholar] [CrossRef]
- Mendonca, R.D.; Pimenta, A.M.; Gea, A. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef] [Green Version]
- Mendonca, R.D.; Lopes, A.C.; Pimenta, A.M.; Gea, A.; Martínez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens. 2017, 30, 358–360. [Google Scholar] [CrossRef] [Green Version]
- Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-garcía, J.; Moreno-Franco, B.; Akesson, A.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. High consumption of ultra-processed food is associated with incident dyslipidemia: A prospective study of older adults. J. Nutr. 2021, 151, 2390–2398. [Google Scholar] [CrossRef]
- Levy, R.B.; Rauber, F.; Chang, K.; Louzada, M.L.; Monteiro, C.A.; Millett, C.; Vamos, E.P. Ultra-processed food consumption and type 2 diabetes incidence: A prospective cohort study. Clin. Nutr. 2021, 40, 3608–3614. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Alles, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthiesen, J.; Fagt, S.; Biltoft-Jensen, A.P.; Beck, A.M.; Ovesen, L. Size makes a difference. Public Health Nutr. 2003, 6, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Mendez, M.A.; Ng, S.W.; Popkin, B.M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 2015, 101, 1251–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rodríguez, E.; Aparicio, A.; López-Sobaler, A.M.; Ortega, R.M. Percepción del peso corporal y medidas adoptadas para su control en población española. Nutr. Hosp. 2009, 24, 580–587. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Meat consumption and risk of metabolic syndrome: Results from the Korean population and a meta-analysis of observational studies. Nutrients 2018, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willet, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.M.; Kesse-Guyot, E.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; Roche, H.M. High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. J. Nutr. 2012, 142, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Rajpathak, S.N.; Grandall, J.P.; Wylie-Rosett, J.; Kabat, G.C.; Rohan, T.E.; Hu, F.B. The role of iron in type 2 diabetes in humans. Biochi. Biophys. Acta. 2009, 1790, 671–681. [Google Scholar] [CrossRef]
- Risch, H.A. Pancreatic cancer: Helicobacter pylori colonization, N-nitrosamine exposures, and ABO blood group. Mol. Carcinog. 2012, 51, 109–118. [Google Scholar] [CrossRef]
- Azadbakht, L.; Esmaillzadeh, A. Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J. Nutr. 2009, 139, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Informe de Consumo Alimentario en España 2020; MAPA: Madrid, Spain, 2021; Available online: https://www.mapa.gob.es/es/alimentacion/temas/consumo-tendencias/informe-anual-consumo-2020_baja-res_tcm30-562704.pdf (accessed on 12 May 2022).
- Zhang, Y.; Zhang, D.Z. Associations of vegetable and fruit consumption with metabolic syndrome. A meta-analysis of observational studies. Public. Health Nutr. 2018, 21, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Kim, J.Y.; Kang, H.T.; Han, K.H.; Shim, J.Y. Effect of fruits and vegetables on metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2015, 66, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and vascular health. Front. Pharmacol. 2018, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analysis of observational studies and randomized trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Mahjoud, S.; Masrour-Roudsari, J. Role of oxidative stress in pathogenesis of metabolic syndrome. Caspian J. Intern. Med. 2012, 3, 386–396. [Google Scholar]
- Senkus, K.E.; Tan, L.; Crowe-White, K.M. Lycopene and metabolic syndrome: A systematic review of the literature. Adv. Nutr. 2019, 10, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Ovas, M.I.; Ruíz-Gutierrez, V.; de la Torre, R.; Kafatos, A.; Lamuela-Raventos, R.M.; Osada, J.; Owen, R.W.; Visioli, F. Minor components of olive oil: Evidence to date of health benefits in humans. Nutr. Rev. 2006, 64, s20–s30. [Google Scholar]
- Hohmann, C.D.; Cramer, H.; Michalsen, A.; Kessler, C.; Steckhan, N.; Choi, K.; Dobos, G. Effects of high phenolic olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Phytomedicine 2015, 22, 631–640. [Google Scholar] [CrossRef]
- Velasco, J.; Holgado, F.; Márquez-Ruíz, G.; Ruíz-Méndez, M.V. Concentrates of triterpenic acids obtained from crude olive pomace oils: Characterizacion and evaluation of their potential antioxidant activity. J. Sci. Food Agric. 2018, 98, 4837–4844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarapis, K.; George, E.S.; Marx, W.; Mayr, H.L.; Willcox, J.; Esmaili, T.; Powell, K.L.; Folasire, O.S.; Lohning, A.E.; Garg, M.; et al. Extra virgin olive oil high in polyphenols improves antioxidant status in adults: A double-blind, randomized, controlled, cross-over study (OLIVAUS). Eur. J. Nutr. 2022, 61, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rodriguez, E.; Biel-Glesson, S.; Fernandez-Navarro, J.R.; Calleja, M.A.; Espejo-Calvo, J.A.; Gil-Extremera, B.; de la Torre, R.; Fito, M.; Covas, M.I.; Vilchez, P.; et al. Effects of virgin olive oils differing in their bioactive compound contents on biomarkers of oxidative stress and inflammation in healthy adults: A randomized double-blind controlled trial. Nutrients 2019, 11, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, R.; Bouzas, C.; Tur, J. Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: Systematic review and meta-analysis. Free Radic. Biol. Med. 2021, 172, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Cubas-Basterrechea, G.; González-Antón, C.; Vega-Hazas, C.; Elío Pascual, I.; Muñoz-Cacho, P. Adherencia a la guía de alimentación saludable de la Sociedad Española de Nutrición Comunitaria (SENC) (2018) en personas mayores no institucionalizadas de Santander, España. Nutr. Hosp. 2020, 37, 933–943. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. 2014, 15, 392–407. [Google Scholar] [CrossRef]
- Papanikolau, Y.; Fulgoni, V.L., III. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: Results from the National Health and Nutrition Examination Survey 1999–2002. J. Am. Coll. Nutr. 2008, 27, 569–576. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejía, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Mollard, R.C.; Luhovyy, B.L.; Panahi, S.; Nunez, M.; Hanley, A.; Anderson, G.H. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br. J. Nutr. 2012, 108, S111–S122. [Google Scholar] [CrossRef] [Green Version]
- Mullen, A.; Loscher, C.E.; Roche, H.M. Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages. J. Nutr. Biochem. 2010, 21, 444–450. [Google Scholar] [CrossRef]
- Ramel, A.; Jonsdottir, M.T.; Thorsdottir, I. Consumption of cod and weight loss in young overweight and obese adults on an energy reduced diet for 8-weeks. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 690–696. [Google Scholar] [CrossRef]
- El Khoury, D.; Anderson, G.H. Recent advances in dietary proteins and lipid metabolism. Curr. Opin. Lipidol. 2013, 24, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.T.; Guo, J.F.; Mei, S.L.; Zhang, M.X.; Hu, Z.Y.; Zhong, C.K.; Zeng, C.Y.; Liu, X.H.; Ma, Q.H.; Li, B.Y.; et al. Vitamin D deficiency in relation to the risk of metabolic syndrome in middle-aged and elderly patients with type 2 diabetes mellitus. J. Nutr. Sci. Vitaminol. 2016, 62, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tørris, C.; Molin, M.; Småstuen, M.C. Fish consumption and its possible preventive role on the development and prevalence of metabolic syndrome- a systematic review. Diabetol. Metab. Syndr. 2014, 6, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raatz, S.K.; Silverstein, J.T.; Jahns, L.; Picklo, M.J. Issues of fish consumption for cardiovascular disease risk reduction. Nutrients 2013, 5, 1081–1097. [Google Scholar] [CrossRef]
- Aranceta, J. (Ed.) Guía de la Alimentación Saludable para Atención Primaria y Colectivos Ciudadanos; Sociedad Española de Nutrición Comunitaria (SENC)-Planeta: Madrid, Spain, 2018. [Google Scholar]
- Trichopoulou, A.; Bamia, C.; Trichopoulos, D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 2009, 338, b2337. [Google Scholar] [CrossRef] [Green Version]
- Jani, B.D.; McQueenie, R.; Nicholl, B.I.; Field, R.; Hanlon, P.; Gallacher, K.I.; Mair, F.S.; Lewsey, J. Association between patterns of alcohol consumption (beverage type, frequency and consumption with food) and risk of adverse health outcomes: A prospective cohort study. BMC Med. 2021, 19, 8. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Kouli, G.M.; Magriplis, E.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Beer, wine consumption, and 10-year CVD incidence: The ATTICA study. Eur. J. Clin. Nutr. 2019, 73, 1015–1023. [Google Scholar] [CrossRef]
- Ohishi, T.; Fukutomi, R.; Shoji, Y.; Goto, S.; Isemura, M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules 2021, 26, 453. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Zhang, Y. Specific types of alcoholic beverage consumption and risk of type 2 diabetes: A systematic review and meta-analysis. J. Diabetes Investig. 2017, 8, 56–58. [Google Scholar] [CrossRef] [Green Version]
- Cubas-Basterrechea, G.; Elío, I.; Sumalla-Cano, S.; Aparicio-Obregón, S.; González-Antón, C.T.; Muñoz-Cacho, P. The regular consumption of nuts is associated with a lower prevalence of abdominal obesity and metabolic syndrome in older people from the north of Spain. Int. J. Environ. Res. Public Health 2022, 19, 1256. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola-Jurado, N.; Bulló, N.; Guasch-Ferré, M.; Ros, E.; Martínez-González, M.A.; Corella, D.; Fiol, M.; Wärnberg, J.; Estruch, R.; Román, P.; et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: The PREDIMED study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G.; et al. Impact of a Mediterranean dietary pattern and its components on cardiovascular risk factors, glucose control, and body weight in people with type 2 diabetes: A real-life study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Guallar-Castillón, P.; Pérez, R.F.; López García, E.; León-Muñoz, L.M.; Aguilera, M.T.; Graciani, A.; Gutiérrez-Fisac, J.L.; Banegas, J.R.; Rodríguez-Artalejo, F. Magnitud y manejo del síndrome metabólico en España 2008–2010: Estudio ENRICA. Rev. Española Cardiol. 2014, 67, 367–373. [Google Scholar] [CrossRef]
- Ortíz-Rodríguez, M.A.; Yañez-Velasco, L.; Carnevale, A.; Romero-Hidalgo, S.; Bernal, D.; Aguilar-Salinas, C.; Rojas, R.; Villa, A.; Tur, J.A. Prevalence of metabolic syndrome among elderly Mexicans. Arch. Gerontol. Geriatr. 2017, 73, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kongpakpaisarn, K.; Bohra, C. Trends in the prevalence of metabolic syndrome and its components in the United States 2007–2014. Int. J. Cardiol. 2018, 259, 216–219. [Google Scholar] [CrossRef]
- Slagter, S.N.; Van Waateringe, R.P.; Van Beek, A.P.; Van der Klauw, M.M.; Wolffenbutel, B.H.R.; Van Vliet-Ostaptchouk, J.V. Sex, BMI and age differences in metabolic syndrome: The Dutch Lifelines Cohort Study. Endocr. Connect. 2017, 6, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Carr, M.C.; Murdoch, S.J.; Mitchell, E.; Woods, N.F.; Wener, M.H.; Chandler, W.L.; Boyko, E.J.; Brunzell, J.D. Adipokines, inflammation, and visceral adiposity across the menopausal transition: A prospective study. J. Clin. Endocrinol. Metab. 2009, 94, 1104–1110. [Google Scholar] [CrossRef] [Green Version]
- Babio, N.; Bulló, M.; Basora, J.; Martínez-González, M.A.; Fernández-Ballart, F.; Márquez-Sandoval, F.; Molina, C.; Salas-Salvadó, J.; Nureta-PREDIMED Investigators. Adherence to the Mediterranean diet and risk of metabolic syndrome and its components. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 563–570. [Google Scholar] [CrossRef]
- Akter, S.; Nanri, A.; Pham, N.M.; Kurotani, K.; Mizoue, T. Dietary patterns and metabolic syndrome in a Japanese working population. Nutr. Metab. 2013, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvadó, J.; Guasch-Ferré, M.; Lee, C.H.; Estruch, R.; Clish, C.B.; Ros, E. Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome123. J. Nutr. 2016, 146, 920S–927S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagetta, D.; Maruca, A.; Lupia, A.; Mesiti, F.; Catalano, R.; Romeo, I.; Moraca, F.; Ambrosio, F.A.; Costa, G.; Artese, A.; et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur. J. Med. Chem. 2020, 186, 111903. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Camafort, M. Dieta Mediterránea y perfil lipídico plasmático. Rev. Esp. Cardiol. 2015, 68, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary strategies for metabolic síndrome: A comprehensive review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Dean, M.; Raats, M.M.; Grunert, K.G.; Lumbers, M. Factors influencing eating a varied diet in old age. Public Health Nutr. 2009, 12, 2421–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Ibañez, N.; Bueno-Cavanillas, A.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Zomeño, M.D.; García de la Hera, M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Dietary intake in population with metabolic syndrome: Is the prevalence of inadequate intake influenced by geographical area? Cross-sectional analysis from PREDIMED-Plus study. Nutrients 2018, 10, 1661. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpour-Niazi, S.; Mirmiran, P.; Mirzaei, S.; Azizi, F. Cereal, fruit and vegetable fibre intake and the risk of metabolic syndrome: A prospective study in the Tehran Lipid and Glucose Study. J. Hum. Nutr. Diet. 2015, 28, 236–245. [Google Scholar] [CrossRef]
- Kim, J.; Choi, Y.H. Physical activity, dietary vitamin C, and metabolic syndrome in the Korean adults: The Korea National Health and Nutrition Examination Survey 2008 to 2012. Public Health. 2016, 135, 30–37. [Google Scholar] [CrossRef]
- Um, Y.J.; Oh, S.W.; Lee, C.M.; Kwon, H.T.; Joh, H.K.; Kim, Y.J.; Kim, H.J.; Ahn, S.H. Dietary fat intake and the risk of metabolic syndrome in Korean adults. Korean J. Fam. Med. 2015, 36, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, K.G.; Kadi, F.; Nilsson, A. Consumption of vegetables is associated with systemic inflammation in older adults. Nutrients 2022, 14, 1765. [Google Scholar] [CrossRef]
NMetS n = 158 (59.8%) | MetS n = 106 (40.2%) | ||
---|---|---|---|
n (%) | n (%) | p-Value 1 | |
Adherence to the MedDiet | |||
Good (MEDAS-14 score ≥ 9) Low (MEDAS-14 score ≤ 8) | 66 (68.7) 92 (54.8) | 30 (31.3) 76 (45.2) | 0.026 |
Adherence MedDiet (MEDAS-14 questionnaire) | |||
1. Do you use olive oil as your main source of cooking fat? | 156 (60.2) | 103 (39.8) | 0.361 |
2. Do you consume 4 or more tablespoons of oil per day (including oil used for frying, dressing, and meals away from home? | 63 (60.0) | 42 (40.0) | 0.967 |
3. Do you consume 2 or more servings of vegetables per day? Count side and half portions as ½ point; a full portion is 200 g. Consume <2 servings of vegetables /day | 34 (75.6) 124 (56.6) | 11 (24.4) 95 (43.4) | 0.018 |
4. Do you eat 3 or more pieces of fruit (including freshly squeezed juice) per day? | 98 (62.8) | 58 (37.2) | 0.236 |
5. Do you eat less than 1 serving per day of red meat, hamburgers, or sausages? One portion: 100–150 g. | 148 (59.9) | 99 (40.1) | 0.929 |
6. Do you consume less than 1 serving (12 g) of butter, margarine, or cream per day? | 135 (60.0) | 90 (40.0) | 0.904 |
7. Do you consume less than 1 serving of carbonated and/or sweetened beverages per day? | 140 (60.9) | 90 (39.1) | 0.379 |
8. Do you drink wine? Do you drink 7 or more glasses (100 mL) per week? | 50 (59.5) | 34 (40.5) | 0.941 |
9. Do you consume 3 or more servings (150 g) of legumes per week? | 60 (63.2) | 35 (36.8) | 0.411 |
10. Do you consume 3 or more portions of fish/seafood per week (100–150 g of fish, 4–5 pieces, or 200 g of seafood)? | 83 (62.4) | 50 (37.6) | 0.393 |
11. Do you consume less than 2 servings per week of commercial (not homemade) pastries, such as biscuits and cakes? | 83 (59.7) | 56 (40.3) | 0.962 |
12. Do you eat nuts 3 or more times a week (1 portion: 30 g)? Consume nuts <3 times/week | 74 (69.8) 84 (53.2) | 32 (30.2) 74 (46.8) | 0.007 |
13. Do you prefer to eat chicken, turkey, or rabbit instead of beef, pork, hamburgers, or sausages? | 95 (61.7) | 59 (38.3) | 0.471 |
14. Do you eat cooked vegetables, pasta, rice, or other foods with sofrito (tomato sauce simmered with olive oil, garlic, and onion and/or leek) 2 or more times a week? | 30 (54.5) | 25 (45.5) | 0.367 |
NMetS n = 158 (59.8%) | MetS n = 106 (40.2%) | ||||
---|---|---|---|---|---|
n (%) | n (%) | p-Value 1 | OR (95%CI) | p-Value 2 | |
Good adherence to the MedDiet (≥9 MEDAS-14) | 66 (68.7) | 30 (31.3) | 0.026 | 0.027 | |
Low adherence to the MedDiet (≤8 MEDAS-14) | 92 (54.8) | 76 (45.2) | 1.817 (1.072–3.081) | ||
≥2 servings vegetables/day | 34 (75.6) | 11 (24.4) | 0.018 | 0.021 | |
<2 servings vegetables/day | 124 (56.6) | 95 (43.4) | 2.369 (1.141–4.916) | ||
BMI categories: | <0.001 | <0.001 | |||
Normal weight | 53 (82.8) | 11 (17.2) | |||
Overweight | 80 (60.6) | 52 (39.4) | 3.132 (1.498–6.546) | ||
Obese | 25 (36.8) | 43 (63.2) | 8.287 (3.667–18.728) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cubas-Basterrechea, G.; Elío, I.; Alonso, G.; Otero, L.; Gutiérrez-Bardeci, L.; Puente, J.; Muñoz-Cacho, P. Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain. Nutrients 2022, 14, 4536. https://doi.org/10.3390/nu14214536
Cubas-Basterrechea G, Elío I, Alonso G, Otero L, Gutiérrez-Bardeci L, Puente J, Muñoz-Cacho P. Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain. Nutrients. 2022; 14(21):4536. https://doi.org/10.3390/nu14214536
Chicago/Turabian StyleCubas-Basterrechea, Gloria, Iñaki Elío, Guzmán Alonso, Luis Otero, Luis Gutiérrez-Bardeci, Jesús Puente, and Pedro Muñoz-Cacho. 2022. "Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain" Nutrients 14, no. 21: 4536. https://doi.org/10.3390/nu14214536
APA StyleCubas-Basterrechea, G., Elío, I., Alonso, G., Otero, L., Gutiérrez-Bardeci, L., Puente, J., & Muñoz-Cacho, P. (2022). Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain. Nutrients, 14(21), 4536. https://doi.org/10.3390/nu14214536