Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Screening of Relevant Studies
2.1.1. Search Criteria
2.1.2. Data Extraction for Analysis
2.1.3. Study Risk of Bias and Quality Appraisal Assessment
3. Results
3.1. General Data Extraction
3.2. Cross-Sectional Study Designs
3.3. Intervention Study Designs
3.3.1. Probiotics
Single-Species Probiotic Intervention
Multi-Species Probiotic Intervention
Paraprobiotic
3.3.2. Prebiotic
3.4. Risk of Bias and Quality Appraisal Assessment
4. Discussion
4.1. Summary of Main Results
4.2. Proposed Mechanisms of Action
4.3. Limitations
4.4. Recommendations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin. North Am. 2017, 46, 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Mohajeri, M.H.; Brummer, R.J.M.; Rastall, R.A.; Weersma, R.K.; Harmsen, H.J.M.; Faas, M.; Eggersdorfer, M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018, 57, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, J.A.; McVey Neufeld, K.A. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The microbiota-gut-brain axis: From motility to mood. Gastroenterology 2021, 160, 1486–1501. [Google Scholar] [CrossRef]
- Appleton, J. The gut-brain axis: Influence of microbiota on mood and mental health. Integr. Med. 2018, 17, 28–32. [Google Scholar]
- Skonieczna-Zydecka, K.; Jakubczyk, K.; Maciejewska-Markiewicz, D.; Janda, K.; Kazmierczak-Siedlecka, K.; Kaczmarczyk, M.; Loniewski, I.; Marlicz, W. Gut biofactory-neurocompetent metabolites within the gastrointestinal tract. A scoping review. Nutrients 2020, 12, 3369. [Google Scholar] [CrossRef]
- Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y.; Kostyuk, G.P.; Danilenko, V.N.; Chekhonin, V.P. Bacterial metabolites of human gut microbiota correlating with depression. Int. J. Mol. Sci. 2020, 21, 9234. [Google Scholar] [CrossRef]
- Sylvia, K.E.; Demas, G.E. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors. Horm. Behav. 2018, 99, 41–49. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Osadchiy, V.; Labus, J.S.; Gupta, A.; Jacobs, J.; Ashe-McNalley, C.; Hsiao, E.Y.; Mayer, E.A. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS ONE 2018, 13, e0201772. [Google Scholar] [CrossRef] [Green Version]
- Solari, E.; Marcozzi, C.; Negrini, D.; Moriondo, A. Interplay between gut lymphatic vessels and microbiota. Cells 2021, 10, 2584. [Google Scholar] [CrossRef] [PubMed]
- He, W.; You, J.; Wan, Q.; Xiao, K.; Chen, K.; Lu, Y.; Li, L.; Tang, Y.; Deng, Y.; Yao, Z.; et al. The anatomy and metabolome of the lymphatic system in the brain in health and disease. Brain Pathol. 2020, 30, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef] [Green Version]
- Karl, J.P.; Margolis, L.M.; Madslien, E.H.; Murphy, N.E.; Castellani, J.W.; Gundersen, Y.; Hoke, A.V.; Levangie, M.W.; Kumar, R.; Chakraborty, N.; et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G559–G571. [Google Scholar] [CrossRef] [Green Version]
- Staudacher, H.M.; Loughman, A. Gut health: Definitions and determinants. Lancet Gastroenterol. Hepatol. 2021, 6, 269. [Google Scholar] [CrossRef]
- Toor, D.; Wsson, M.K.; Kumar, P.; Karthikeyan, G.; Kaushik, N.K.; Goel, C.; Singh, S.; Kumar, A.; Prakash, H. Dysbiosis disrupts gut immune homeostasis and promotes gastric diseases. Int. J. Mol. Sci. 2019, 20, 2432. [Google Scholar] [CrossRef] [Green Version]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, E.; Shimokawa, C.; Steimle, A.; Desai, M.S.; Ohno, H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nature Reviews Immunology 2022. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Y.; Zhang, X.; Yu, Z.H.; Zhang, Z.; Deng, M.; Zhao, J.H.; Ruan, B. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 2018, 104, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Capuco, A.; Urits, I.; Hasoon, J.; Chun, R.; Gerald, B.; Wang, J.K.; Kassem, H.; Ngo, A.L.; Abd-Elsayed, A.; Simopoulos, T.; et al. Current perspectives on gut microbiome dysbiosis and depression. Adv. Ther. 2020, 37, 1328–1346. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M.L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol. Psychiatry 2016, 21, 738–748. [Google Scholar] [CrossRef] [Green Version]
- Long-Smith, C.; O’Riordan, K.J.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: New therapeutic opportunities. Annu. Rev. Pharm. Toxicol. 2020, 60, 477–502. [Google Scholar] [CrossRef] [Green Version]
- Morais, L.H.; Schreiber, H.L.t.; Mazmanian, S.K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Sharma, R.; Gupta, D.; Mehrotra, R.; Mago, P. Psychobiotics: The next-generation probiotics for the brain. Curr. Microbiol. 2021, 78, 449–463. [Google Scholar] [CrossRef]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; Garcia-Cayuela, T. Psychobiotics: Mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef]
- Tooley, K.L. Effects of the human gut microbiota on cognitive performance, brain structure and function: A narrative review. Nutrients 2020, 12, 3009. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. Rob 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccheri, R.K.; Sharifi, C. Critical appraisal tools and reporting guidelines for evidence-based practice. Worldviews Evid. Based Nurs. 2017, 14, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Wilms, E.; An, R.; Smolinska, A.; Stevens, Y.; Weseler, A.R.; Elizalde, M.; Drittij, M.J.; Ioannou, A.; van Schooten, F.J.; Smidt, H.; et al. Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress. Clin. Nutr. 2021, 40, 3019–3031. [Google Scholar] [CrossRef]
- Curtis, K.; Molfese, D.L.; Gosnell, S.N.; Kosten, T.R.; De La Garza, R.; Salas, R.; Stewart, C.J.; Petrosino, J.F.; Robinson, M. Insular resting state functional connectivity is associated with gut microbiota diversity. Eur. J. Neurosci. 2019, 50, 2446–2452. [Google Scholar] [CrossRef]
- Langgartner, D.; Zambrano, C.A.; Heinze, J.D.; Stamper, C.; Böbel, T.S.; Hackl, S.B.; Jarczok, M.N.; Rohleder, N.; Rook, G.A.; Gündel, H.; et al. Association of the salivary microbiome with animal contact during early life and stress-induced immune activation in healthy participants. Front. Psychiatry 2020, 11, 353. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yoon, S.-H.; Jung, Y.; Kim, N.; Min, U.; Chun, J.; Choi, I. Emotional well-being and gut microbiome profiles by enterotype. Sci. Rep. 2020, 10, 20736. [Google Scholar] [CrossRef]
- Lin, D.; Hutchison, K.E.; Portillo, S.; Vegara, V.; Ellingson, J.M.; Liu, J.; Krauter, K.S.; Carroll-Portillo, A.; Calhoun, V.D. Association between the oral microbiome and brain resting state connectivity in smokers. Neuroimage 2019, 200, 121–131. [Google Scholar] [CrossRef]
- Palomo-Buitrago, M.E.; Sabater-Masdeu, M.; Moreno-Navarrete, J.M.; Caballano-Infantes, E.; Arnoriaga-Rodríguez, M.; Coll, C.; Ramió, L.; Palomino-Schätzlein, M.; Gutiérrez-Carcedo, P.; Pérez-Brocal, V.; et al. Glutamate interactions with obesity, insulin resistance, cognition and gut microbiota composition. Acta Diabetol. 2019, 56, 569. [Google Scholar] [CrossRef]
- Taylor, A.M.; Thompson, S.V.; Edwards, C.G.; Musaad, S.M.A.; Khan, N.A.; Holscher, H.D. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutr. Neurosci. 2019, 23, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Kortte, K.B.; Horner, M.D.; Windham, W.K. The trail making test, part b: Cognitive flexibility or ability to maintain set? Appl. Neuropsychol. 2002, 9, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Bagga, D.; Aigner, C.S.; Reichert, J.L.; Cecchetto, C.; Fischmeister, F.P.S.; Holzer, P.; Moissl-Eichinger, C.; Schöpf, V. Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur. J. Nutr. 2019, 58, 1821. [Google Scholar] [CrossRef] [Green Version]
- Berding, K.; Long-Smith, C.M.; Carbia, C.; Bastiaanssen, T.F.; van de Wouw, M.; Wiley, N.; Strain, C.R.; Fouhy, F.; Stanton, C.; Cryan, J.F. A specific dietary fibre supplementation improves cognitive performance—an exploratory randomised, placebo-controlled, crossover study. Psychopharmacology 2020, 238, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Carbuhn, A.F.; Reynolds, S.M.; Campbell, C.W.; Bradford, L.A.; Deckert, J.A.; Kreutzer, A.; Fry, A.C. Effects of probiotic (bifidobacterium longum 35624) supplementation on exercise performance, immune modulation, and cognitive outlook in division i female swimmers. Sports 2018, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.X.; Yusoff, N.A.A.; Hor, Y.Y.; Lew, L.C.; Jaafar, M.H.; Choi, S.B.; Yusoff, M.S.B.; Wahid, N.; Abdullah, M.F.I.L.; Zakaria, N.; et al. Lactobacillus plantarum dr7 alleviates stress and anxiety in adults: A randomised, double-blind, placebo-controlled study. Benef. Microbes 2019, 10, 355–373. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Hoffman, M.W.; Zelicha, H.; Gepner, Y.; Willoughby, D.S.; Feinstein, U.; Ostfeld, I. The effect of 2 weeks of inactivated probiotic bacillus coagulans on endocrine, inflammatory, and performance responses during self-defense training in soldiers. J. Strength Cond. Res. 2019, 33, 2330–2337. [Google Scholar] [CrossRef]
- Liu, G.; Chong, H.-X.; Chung, F.Y.-L.; Li, Y.; Liong, M.-T. Lactobacillus plantarum dr7 modulated bowel movement and gut microbiota associated with dopamine and serotonin pathways in stressed adults. Int. J. Mol. Sci. 2020, 21, 4608. [Google Scholar] [CrossRef]
- Moloney, G.M.; Long-Smith, C.M.; Murphy, A.; Dorland, D.; Hojabri, S.F.; Ramirez, L.O.; Marin, D.C.; Bastiaanssen, T.F.S.; Cusack, A.-M.; Berding, K.; et al. Improvements in sleep indices during exam stress due to consumption of a bifidobacterium longum. Brain Behav. Immun.—Health 2021, 10, 100174. [Google Scholar] [CrossRef]
- Nishida, K.; Kuwano, Y.; Tanaka, H.; Rokutan, K.; Sawada, D. Health benefits of lactobacillus gasseri cp2305 tablets in young adults exposed to chronic stress: A randomized, double-blind, placebo-controlled study. Nutrients 2019, 11, 1859. [Google Scholar] [CrossRef] [Green Version]
- Ostadmohammadi, V.; Jamilian, M.; Bahmani, F.; Asemi, Z. Vitamin d and probiotic co-supplementation affects mental health, hormonal, inflammatory and oxidative stress parameters in women with polycystic ovary syndrome. J. Ovarian Res. 2019, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Shim, H.S.; Lee, G.R.; Lee, J.M.; Sohn, M.; Yin, C.S.; Shim, I.; Yoon, K.H.; Ho Kim, J.; Park, C.Y.; et al. A randomized, double-blind, placebo-controlled study on the memory-enhancing effect of lactobacillus fermented saccharina japonica extract. Eur. J. Integr. Med. 2019, 28, 39–46. [Google Scholar] [CrossRef]
- Sawada, D.; Kuwano, Y.; Tanaka, H.; Hara, S.; Uchiyama, Y.; Sugawara, T.; Fujiwara, S.; Rokutan, K.; Nishida, K. Daily intake of lactobacillus gasseri cp2305 relieves fatigue and stress-related symptoms in male university ekiden runners: A double-blind, randomized, and placebo-controlled clinical trial. J. Funct. Foods 2019, 57, 465–476. [Google Scholar] [CrossRef]
- Schaafsma, A.; Mallee, L.; van den Belt, M.; Floris, E.; Kortman, G.; Veldman, J.; van den Ende, D.; Kardinaal, A. The effect of a whey-protein and galacto-oligosaccharides based product on parameters of sleep quality, stress, and gut microbiota in apparently healthy adults with moderate sleep disturbances: A randomized controlled cross-over study. Nutrients 2021, 13, 2204. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.P.; Conklin, S.M. Acute intake of b. Longum probiotic does not reduce stress, anxiety, or depression in young adults: A pilot study. Brain Behav. Immun. Health 2020, 2, 100029. [Google Scholar] [CrossRef]
- Smith, A.P. Effects of Oligofructose-Enriched Inulin on Subjective Wellbeing, Mood and Cognitive Performance; Canadian Center of Science and Education (CCSE): Toronto, ON, Canada, 2019. [Google Scholar]
- Soldi, S.; Tagliacarne, S.C.; Valsecchi, C.; Perna, S.; Rondanelli, M.; Ziviani, L.; Milleri, S.; Annoni, A.; Castellazzi, A. Effect of A Multistrain Probiotic (Lactoflorene® Plus) on Inflammatory Parameters and Microbiota Composition in Subjects with Stress-Related Symptoms; Elsevier: Amsterdam, The Netherlands, 2018; Volume 10. [Google Scholar]
- Venkataraman, R.; Madempudi, R.S.; Neelamraju, J.; Ahire, J.J.; Vinay, H.R.; Lal, A.; Thomas, G.; Stephen, S. Effect of multi-strain probiotic formulation on students facing examination stress: A double-blind, placebo-controlled study. Probiotics Antimicrob. Proteins 2020, 13, 12–18. [Google Scholar] [CrossRef]
- Wang, H.; Braun, C.; Murphy, E.F.; Enck, P. Bifidobacterium longum 1714™ strain modulates brain activity of healthy volunteers during social stress. Am. J. Gastroenterol. 2019, 114, 1152–1162. [Google Scholar] [CrossRef]
- Ma, T.; Jin, H.; Kwok, L.-Y.; Sun, Z.; Liong, M.-T.; Zhang, H. Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiol. Stress 2021, 14, 100294. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (isapp) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Bagga, D.; Reichert, J.L.; Koschutnig, K.; Schöpf, V.; Holzer, P.; Koskinen, K.; Moissl-Eichinger, C.; Aigner, C.S. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 2018, 9, 486–496. [Google Scholar] [CrossRef]
- Lew, L.-C.; Hor, Y.-Y.; Yusoff, N.A.A.; Choi, S.-B.; Yusoff, M.S.B.; Roslan, N.S.; Ahmad, A.; Mohammad, J.A.M.; Abdullah, M.F.I.L.; Zakaria, N.; et al. Probiotic lactobacillus plantarum p8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clin. Nutr. 2019, 38, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Sawada, D.; Kuwano, Y.; Tanaka, H.; Sugawara, T.; Aoki, Y.; Fujiwara, S.; Rokutan, K. Daily administration of paraprobiotic lactobacillus gasseri cp2305 ameliorates chronic stress-associated symptoms in japanese medical students. J. Funct. Foods 2017, 36, 112–121. [Google Scholar] [CrossRef]
- Sawada, D.; Kawai, T.; Nishida, K.; Kuwano, Y.; Fujiwara, S.; Rokutan, K. Daily intake of lactobacillus gasseri cp2305 improves mental, physical, and sleep quality among japanese medical students enrolled in a cadaver dissection course. J. Funct. Foods 2017, 31, 188–197. [Google Scholar] [CrossRef]
- Gilbert, S.J.; Gonen-Yaacovi, G.; Benoit, R.G.; Volle, E.; Burgess, P.W. Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. Neuroimage 2010, 53, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Brummer, R.J.; Isolauri, E.; Lochs, H.; Morelli, L.; Ockhuizen, T.; Rowland, I.R.; Schrezenmeir, J.; Stanton, C.; Verbeke, K. The design of probiotic studies to substantiate health claims. Gut Microbes 2011, 2, 299–305. [Google Scholar] [CrossRef] [PubMed]
Search List 1 | Search List 2 | |
---|---|---|
(“Dietary fib*” OR “inulin” OR “oligo*” OR “Lactobac*” OR “gut permeability” OR “microbio*” OR “Bifidobac*” OR “Streptococ*” OR “prebiotic” OR “probiotic” OR “gut-brain-axis” OR ‘’phytobiotic” OR “paraprobiotic” OR “synbiotic” OR “xenobiotic” OR “psychobiotic” OR “polyphenol”) | AND | (“cognit*” or “memory” or “vigilance” or “decision making” or “attent*” or ”percept*” or “processing speed” or “visuo-spatial” or “executive function” or “task-switching” or “emot*” or “behav*” or “recognition” or “resting-state” or “salience” or “stroop” or “go-no go” or “n-back” or “functional state” or “neuroscience” or “psychobiology” or “stop signal” or “perform*” or “stress” or “cortisol” or ”BDNF” or “serotonin” or “NPY” or “neuropeptide” or “lipopolysaccharide (LPS)” or “lipopolysacc*”) |
Author/Year | Participants/Sample (Age M ± SD Years) | Sex (M/F) | Study Design | Assessment | Main Findings—Microbiome Link |
---|---|---|---|---|---|
Curtis et al., (2019) [36] | n = 30; non-smokers n = 10 (32 ± 2); eCig users n = 10 (30 ± 3); tobacco smokers n = 10 (37 ± 3) | 28/2 | Cross-sectional group comparison | Resting state functional connectivity of the middle insula; faecal microbiota (16S rRNA) | Insular connectivity is associated with microbiome diversity, structure and at least two specific bacteria genera, potentially modulated by tobacco smoking |
Langgartner et al., (2020) [37] | n = 40; healthy; rural n = 20 (25.1 ± 0.8); urban n = 20 (24.5 ± 0.8) | 40/0 | Cross-sectional group comparison with stress test | TSST, saliva (oral) microbiota (16S rRNA), IL-6 and cortisol (plasma) and PMBC | No significant difference in alpha or beta diversity (salivary microbiome). Urban upbringing and neg animal contact had effects on salivary microbiome composition linked to stress-induced immune activation. |
Lee et al., (2020) [38] | n = 83 (48.9 ± 13.2) | 37/46 | Correlational; emotional well-being and gut microbiome profiles | Faecal microbiota (16S rRNA), PANAS | Gut microbiome diversity is related to emotional well-being; Prevotella was indicative of positive emotional wellbeing |
Lin et al., (2019) [39] | n = 60; smokers n = 30 (37.2 ± 9.6); non-smokers n = 30 (37.2 ± 11.8) | smoker 21/8; non-smoker 20/7 | Cross-sectional group comparison | Resting state fMRI; metagenome inferred from faecal microbiota (16Sr RNA) | Brain functional component differences linked with smoking related microbiota, indicating smoking induced microbiome dysbiosis and brain functional connectivity alteration |
Palomo-Buitrago et al., (2019) [40] | n = 35; non-obese n = 16 (50.1 ± 10.4); obese n = 19 (53.6 ± 5.9) | unknown | Cross-sectional group comparison | Faecal microbiota (shotgun) and plasma and faecal glutamate, glutamine and acetate; TMT-A &TMT-B | Slower TMT-A scores associated with relative abundance of Streptococaceae and lower faecal glutamate levels. Corynebacteriaceae and Burkholderiaceae associated with faecal glutamate levels, glutamate/glutamine ratio and faster TMT-A scores |
Taylor et al., (2019) [41] | n = 133; 25–45 years (33.4 ± 5.8) | 60/73 | Exploratory cross-sectional | DASS- 42; faecal microbiota (16S rRNA); dietary intake and diet quality | Bacterial taxa and DASS relationship. Sex associations with bacterial taxa and DASS, inverse relationship between Anxiety scale scores and Bifidobacterium (females); inverse relationship with Depression scores and Lactobacillus (males). |
Author/Year | Participants/Sample * (Age M ± SD Years) | Sex (M/F) | Study Design | Treatment/Intervention | Dose/Frequency | Assessment | Main Findings—Microbiome Link |
---|---|---|---|---|---|---|---|
Bagga et al., (2019) [43] | n = 45 healthy (26.2 ± 4.8); n = 15 no intervention (26.9 ± 5.0); n = 15 PLA (27.3 ± 5.8); n = 15 PRO (28.3 ± 4.2) | 7/8 9/6 7/8 (22/23) | RDBPC, parallel design study | Ecologic®825 9 strains: Lactoba-cillus casei W56, L. acidophilus W22, L. paracasei W20, Bifidobacterium lactis W51, L. salivarius W24, Lactococcus lactis W19, B. lactis W52, L. plantarum W62 and B. bifidum W23 (PRO), maize starch and maltodextrins (PLA) or no intervention. See Bagga et al., 2018 [62] | 3 g sachet; 7.5 × 106 (PRO) or PLA once daily; 4 weeks. See Bagga et al., 2018 [62] | fMRI resting state and diffusion. | Decrease in functional connectivity in DMN, SN, VIN and MFGN (link to depression and stress disorders) vs. PLA and/or CON. |
Berding et al., (2020) [44] | n = 18 healthy (26 ± 1.3). Note: n = 6 withdrew | 0/18 | RDBPC, crossover design study | Litesse®Ultra (>90%PDX polymer) (PRE) or Maltodextrin (PLA) | 12.5 g sachet; PRE or PLA, once daily; 4 weeks, washout 4 weeks before cross over, another intervention 4 weeks | CANTAB tasks MTT, RVP, PAL, SSP, IED, ERT, faecal sample (16S rRNA sequencing), salivary cortisol, cytokines, acute stress response (cold pressor task). | Improved IED (cognitive flexibility) and RVP (sustained attention). |
Carbuhn et al., (2018) [45] | n = 17 healthy; n = 8 PRO, n = 9 PLA; age NI. Note: n = 3 withdrew(2PRO/1PLA) | 0/17 | Two-group stratified randomisation, double-blind, placebo-controlled design | B. longum 35624 (PRO) or maltodextrin (PLA) | 4 mg capsule; 1 × 109 CFU PRO or PLA once daily; 6 weeks | Inflammation (12 cytokines), LPS and LPS Binding Protein, sIgA, cognitive stress-recovery assessment. | No significant effect on exercise performance or immune function. Differences in cognitive outlook between PRO and PLA, especially during intense training phase. |
Chong et al., (2019) [46] | n = 111 (18–60), PLA n = 55 (32.1 ± 11.0); PRO n = 56 (31.1 ± 7.8) Note: n = 12 withdrew or excluded | NI | RDBPC, parallel design study | Lactobacillus plantarum DR7 (PRO) or maltodextrin (PLA) | 2 g sachet; 1 × 109 CFU PRO or PLA once daily; 12 weeks | CogState Brief Battery, PSS-10, DASS-42, cortisol, cytokines, plasma neurotransmitters. | Reduced symptoms of stress and anxiety, improved several cognitive and memory functions, reduced levels of plasma cortisol and pro-inflammatory cytokines. |
Hoffman et al., (2019) [47] | n = 15 soldiers; PAR: n = 8 (20.0 ± 0.6); PLA n = 7 (20.2 ± 0.6). Note: n = 1 withdrew, but included in reported avg. age for PLA | 15/0 | Double-blind, parallel design study | Inactivated Bacillus coagulans, (PAR called Staimune) or PLA (details not specified) | 1 × 109 CFU PAR or PLA once daily; 2 weeks | Serum cortisol, testosterone; IL-10., TNFα, IFNγ. | No significant differences between groups. Note: 2 weeks intervention not adequate; not adequately powdered. Trend findings identified. |
Liu et al., (2020) [48] | n = 111; <30: PLA n = 32 (24.9 ± 2.9); PRO n = 27 (24.8 ± 2.8). >30: PLA n = 23 (41.7 ± 9.5); PRO n = 29 (37.0 ± 6.0). Note: n = 13 withdrew or lost to follow up (6PRO/7PLA) | NI | RDBPC | Lactobacilllus plantarum DR7 (PRO) or maltodextrin (PLA) | 2 g sachet; 1 × 109 CFU PRO or PLA once daily; 12 weeks | Faecal microbiota (16S rRNA), gastrointestinal symptoms, stress neurotransmitters. | Changes of gut microbiota along different taxonomic levels; reflective changes in neurotransmitter serotonin and dopamine pathways enzyme gene expression. |
Ma et al., (2021) [60] | n = 79; PRO n = 43; PLA n = 36; age for updated dataset NI. Previous study Lew et al., (2019) [63]. Note: n = 24 did not provide faecal samples not included in analysis (9PRO/15PLA) | 18/61 | RDBPC (as per Lew [63]) | L. plantarum P-8 (PRO) or maltodextrin (PLA) | 2 g sachet; 2 × 1010 CFU PRO or PLA once daily; 12 weeks | Shotgun metagenomics, metabolomics for gut-brain. | Enhanced diversity of neurotransmitter synthesizing/consuming SGBs and the levels of some predicted microbial neuroactive metabolites (e.g., SCFAs, gamma-aminobutyric acid, arachidonic acid, and sphingomyelin). |
Moloney et al., (2021) [49] | n = 20 healthy; (20.7 ± 0.28 SEM). Note: n = 10 withdrew or excluded | 20/0 | RDBPC, cross-over design | B. longum AH1714 (PRO) or corn starch, magnesium stearate, hypromellose & titanium Dioxide (PRO) | Capsule; 1 × 109 CFU PRO or PLA once daily for 8 weeks, 4 weeks washout before cross over, daily for another 8 weeks | PSQI, PSS-10, CANTAB (visual memory and learning (PAL), sustained attention (RVP), working memory (SSP), emotional recognition (ERT) and social cognition (RMIE)), BDI-II, faecal microbiota (16S rRNA), salivary cortisol. | Stated findings included: no statistical improvement in any cognitive element or the alleviation of stress/anxiety symptomology. INTERPRET CAUTIOUSLY: Immunological data indicated wash-out period was not sufficient = data not reliable. |
Nishida et al., (2019) [50] | n = 60; PAR n = 31 (24.9 ± 0.5); PLA n = 29 (25.3 ± 0.6) | PAR: 21/10 PLA: 20/9 | RDBPC, parallel design | Lactobacillus gasseri CP2305 (heat-inactivated) (PAR) or maltose, dextrin, starch, veg oil (PLA) | Per 2 tables; 1 × 1010 CFU PAR or PLA, twice daily (2 tablets per day); 24 weeks | STAI, GHQ-28, HADS, PSQI, VAS, salivary cortisol and IgA, CgA, EEG (sleep), faecal SCFA, faecal microbiota (16S rRNA). | CP2305: reduced anxiety; improved sleep quality; reduced GHQ-depression subscores; reduced anxiety and depression (HADS); reduced reactivity physiologically from stress; improved irritability and abdominal discomfort; mitigated changes in microbiota due to stress. |
Ostadmohammadi et al., (2019) [51] | n = 60; healthy with PCOS; Vit D + PRO n = 30 (24.4 ± 4.7); PL n = 30 (25.4 ± 5.1) | 0/60 | RDBPC, parallel design | Vitamin D + Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri and Lactobacillus fermentum (PRO) or corn starch and oil (PLA) | 50,0000 IU Vit D every 2 weeks + 8 × 109 CFU (2 x109 CFU/g for each strain) PRO or PLA once daily; 12 weeks | Hormonal profiles, Mental health (BDI, GHQ-28, DASS, PSQI), biomarkers of inflammation and oxidative stress (serum hs-CRP, plasma TAC, GSH and MDA). | Reduced BDI, GHQ and DASS scores compared to placebo. Did not change PSQI score. Reduced testosterone, hirsutism, hs-CRP and MDA levels and increased antioxidant defenses compared to placebo. |
Park et al., (2019) [52] | n = 39; healthy 18–65 years. SYN n = 31 (32.9 ± 17.6); PLA n = 32 (31.8 ± 16.3). Note: n = 3 from PLA excluded. n size used for avg. age and sex ratio are smaller. | SYN: 8/23; PLA: 11/21 | RDBPC, parallel design | Fermented Saccharina japonica (kelp extract; FSJ postbiotic) by Lactobacillus brevis (paraprobiotic) (SYN) or lactose (PL)) | Each active capsule contained 500 mg standardized fermented lactobacillus FSJ, 2 x capsules daily; 4 weeks | BDI, K-WAIS, operation-word span task and raven’s test-based quantitative EEG test. Serum amyloid-β, SOD. | Non-significant between groups on cog tests and biochemical measures. FSJ treated group significantly increased the percentage of correct answers and concentration for space perception for memory ability and space perception ability. |
Sawada et al., (2019) [53] | n = 49, healthy athletes 18–22 years. PAR n = 24 (19.8 ± 1.4); PLA n = 25 (20.1 ± 1.1). | 49/0 | RDBPC, parallel design | Lactobacillus gasseri CP2305 (heat inactivated) in excipient (PRA) or excipient (PLA). Excipient = isotonic sports drink containing sweetener, acidifier, flavorings, Vit C, and minerals (Na, Ca, K, Mg) | 200 mL beverage; 1 × 1010 PRA or PLA once daily; 12 weeks | CFS, STAI, HADS, GHQ- 28, PSQI, stress and immune markers (salivary Cg A and immune cells), faecal microbiota (16S rRNA) | CP2305 decreased STAI-state and STAI-trait, improved fatigue, anxiety and depressive mood. Minor changes in bacteria composition |
Schaafsma et al., (2021) [54] | n = 69; healthy with sleep problems age 30–50 years (M39). Note: n = 1 lost to follow-up. n = 69 for ITT analysis and n = 64 and 47 for PP and mod-PP analysis, respectively. | NI | RDBPC, cross-over design | Dairy-based product (DP) containing protein (Lactium®), prebiotic (Galacto-oligosaccharides (BiotisTM GOS), 70% pure GOS, and vitamins and minerals (PRE) or protein (Lactium®), vitamins and minerals (PLA) | Sachet; 5.2 g GOS PRE or PLA, once daily; 3 weeks. 3 weeks washout before cross over, another intervention 3 weeks | DASS, PSQI, salivary cortisol; faecal microbiota (16 S rRNA, 1st crossover period only); note: altered endpoint of day 14 was reported on instead of day 21. | Data indicated wash-out was not sufficient and carry-over effects = data contamination. DP reduced salivary cortisol and stimulated Bifidobacterium (faecal). INTERPRET CAUTIOUSLY: contained sucralose which would have confounded gut microbiota; washout not sufficient. |
Siegel & Conklin (2020) [55] | n = 79 (19.7); PLA n = 39 (19.9 ± 1.1); PRO n = 40 (19.4 ± 1.0) | 58/21 | RDBPC, parallel design, pilot | B. longum (PRO) or corn starch (PLA) | 400 mg; ~4.0 × 1010 CFUs or PLA, twice daily for 7 days | PSS-10; CES-D; STAI. | Non-significant changes in stress, depressive symptoms or anxiety. INTERPRET CAUTIOUSLY: intervention time-period not sufficient to elicit mental wellbeing matrices assessed. |
Smith (2019) [56] | n = 53; 19–54 years (22). No further details provided. | 12/39 | Placebo controlled cross-over study (blinding NI) | Inulin; Oligofructose-enriched inulin (Orafti®Synergy1) (PRE) or maltodextrin (PLA) | 13 g (8 g + 5 g, split over 12 h) Acute testing, cross-over assessment next day | Mood (alertness, hedonic tone and anxiety), episodic memory, logical reasoning, semantic processing, SRT, attention lapse, cognitive vigilance | Effect of inulin was (morning): Reduced alertness, reduction in hedonic tone, poorer recall accuracy (episodic memory) and slowed semantic processing. Acute effect, not microflora influence. INTERPRET CAUTIOUSLY: Not a true prebiotic effect—timeline for effect too acute. |
Soldi et al., (2018) [57] | n = 50; 20–35 years. Note: n = 6 withdrew/discontinued/antibiotics | NI | RDBPC, cross-over design | Lactoflorene® Plus: Lactobacillus acidophilus LA-5®, Bifidobacterium animalis subsp. lactis, BB-12®, Lactobacillus paracasei subsp. paracasei, L. CASEI 431®, Bacillus coagulans BC513, zinc, B vitamins (niacin, B1, B2, B5, B6, B12 and folic acid) (PRO) or zinc, B vitamins (niacin, B1, B2, B5, B6, B12 and folic acid) (PLA) | 10 mL liquid; 2 x 109 CFU PRO or PLA, twice daily for 45 days; washout 25 d; crossover to other intervention for 45 days | Salivary stress markers (α-amylase, cortisol, chromogranin A) and immunological parameters (sIgA, NK cell activity, IL-8, IL-10, TNF-α) in faeces, faecal microbiota (16S rRNA), gastrointestinal symptoms. | No direct effect on salivary stress markers or NK cell activity. Reduced abdominal pain and increased faecal IgA and IL-10 levels. Increased anti-inflammatory and reduced pro–inflammatory bacteria with probiotic, reductions in abdominal pain. NK cells indicate wash-out period not adequate. INTERPRET CAUTIOUSLY: It appears that due to this most results would be skewed. |
Venkataram et al., (2020) [58] | n = 74 healthy (21.4 ± 1.5); PRO n = 36 (21.2 ± 1.6); PLA n = 38 (21.6 ± 1.3). Note: n = 6 not allocated a treatment (4PRO/2PLA). | 17/63 Note n size used for sex ratio based on original n = 80. | RDBPC, parallel design | Bacillus coagulans Unique IS2, L. rhamnosus UBLR58, B. lactis UBBLa70, L. plantarum UBLP40 (2 billion CFU each); B. breve UBBr01, B. infantis UBBI01 (1 billion CFU each) capsule with glutamine or microcrystalline cellulose (PLA) | Capsule; 1–2 × 1010 CFU PRO + 250 mg glutamine or PLA twice daily for 28 days | PSS-10, DASS, STAI, serum cortisol. | Reduced stress on PSS-10, DASS, and STAI in students facing examination. Early morning, fasting serum cortisol levels decreased compared to placebo. |
Wang et al., (2019) [59] | n = 40 healthy; 18–50 years; PRO n = 20 (31.0 ± 2.3); PLA n = 20 (33.0 ± 2.8). Note: n = 3 excluded from PRO (antibiotics) | PRO: 7/13; PLA: 7/13 | RDBPC, parallel design | Bifidobacterium longum 1714™ (Zenflore; PRO) or maltodextrin (PLA) | 2 g sachet; 1 × 109 CFU or PLA once daily; 4 weeks | Resting state MEG, MEG during CBG, SF36, social stress induced by CBG, measured by NTS, MQ, and SEP. | B. longum 1714 altered resting-state brain activity, and induced change in neural activity correlated with increased energy/vitality. No treatment effect on SF36 or stress. |
Wilms et al., (2020) [35] | n = 24 heathy adults (38.2 ± 7.8) | Adults (8/16) | RDBPC, cross-over design | Biotis™ galacto-oligosaccharide (GOS) powder (PRE) or maltodextrin (PLA) | 7.2 g sachet; 5 g of pure GOS (PRE) or PLA, 3 times daily; washout 4–6 weeks; crossover to other intervention for 4 weeks | Faecal microbiota (16S rRNA) and SCFA, breath volatiles, stimulated cytokines, CRP, MDA, TEAC and uric acid in plasma. | GOS affected microbiota composition, accompanied by increases in bifidobacteria and decreased microbial diversity in healthy adults. Faecal and breath metabolites, immune and oxidative stress markers were not affected by GOS. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooke, M.B.; Catchlove, S.; Tooley, K.L. Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients 2022, 14, 4623. https://doi.org/10.3390/nu14214623
Cooke MB, Catchlove S, Tooley KL. Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients. 2022; 14(21):4623. https://doi.org/10.3390/nu14214623
Chicago/Turabian StyleCooke, Matthew B., Sarah Catchlove, and Katie L. Tooley. 2022. "Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature" Nutrients 14, no. 21: 4623. https://doi.org/10.3390/nu14214623
APA StyleCooke, M. B., Catchlove, S., & Tooley, K. L. (2022). Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients, 14(21), 4623. https://doi.org/10.3390/nu14214623