Dietary Diversity, Micronutrient Adequacy and Bone Status during Pregnancy: A Study in Urban China from 2019 to 2020
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Anthropometric Measurements
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maternal and Child Working Group. Chineses Nutrition Society Expert Committee for Dietary Guidelines 2016. Dietary Guideline for Pregnant Women. Chin. J. Perinat. Med. 2016, 19, 641–648. [Google Scholar]
- Chen, J.; Wang, L.; Wang, R.; Hu, Y.; Li, W.; Mao, D.; Huang, J.; Yang, L. Vitamin a Nutrition Status among Pregnant Women in Rural China in 2015. Wei Sheng Yan Jiu 2021, 50, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, R.; Mao, D.; Chen, J.; Li, M.; Li, W.; Yang, Y.; Zhao, L.; Zhang, J.; Piao, J.; et al. Vitamin D Nutritional Status of Chinese Pregnant Women, Comparing the Chinese National Nutrition Surveillance (Cnhs) 2015–2017 with Cnhs 2010–2012. Nutrients 2021, 13, 2237. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wei, Y.; Zhu, W.; Wang, C.; Su, R.; Feng, H.; Yang, H.; on behalf of the Gestational diabetes mellitus Prevalence Survey (GPS) study Group Prevalence. Risk Factors and Associated Adverse Pregnancy Outcomes of Anaemia in Chinese Pregnant Women: A Multicentre Retrospective Study. Bmc Pregnancy Childb 2018, 18, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madzorera, I.; Isanaka, S.; Wang, M.; I Msamanga, G.; Urassa, W.; Hertzmark, E.; Duggan, C.; Fawzi, W.W. Maternal Dietary Diversity and Dietary Quality Scores in Relation to Adverse Birth Outcomes in Tanzanian Women. Am. J. Clin. Nutr. 2020, 112, 695–706. [Google Scholar] [CrossRef]
- Madzorera, I.; Ghosh, S.; Wang, M.; Fawzi, W.; Isanaka, S.; Hertzmark, E.; Namirembe, G.; Bashaasha, B.; Agaba, E.; Turyashemererwa, F.; et al. Prenatal Dietary Diversity May Influence Underweight in Infants in a Ugandan Birth-Cohort. Matern. Child Nutr. 2021, 17, e13127. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cheng, Y.; Zeng, L.; Dang, S.; Yan, H. Maternal Dietary Diversity During Pregnancy and Congenital Heart Defects: A Case-Control Study. Eur. J. Clin. Nutr. 2021, 75, 355–363. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, D.; Zhao, A. Dietary Diversity and the Risk of Fracture in Adults: A Prospective Study. Nutrients 2020, 12, 3655. [Google Scholar] [CrossRef]
- Qorbani, M.; Mahdavi-Gorabi, A.; Khatibi, N.; Ejtahed, H.-S.; Khazdouz, M.; Djalalinia, S.; Sahebkar, A.; Esmaeili-Abdar, M.; Hasani, M. Dietary Diversity Score and Cardio-Metabolic Risk Factors: An Updated Systematic Review and Meta-Analysis. Eat. Weight Disord. 2022, 27, 85–100. [Google Scholar] [CrossRef]
- FAO. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016; Available online: https://gender.cgiar.org/publications-data/minimum-dietary-diversity-women-guide-measurement (accessed on 28 May 2022).
- Women’s Dietary Diversity Project (WDDP) Study Group. Development of a Dichotomous Indicator for Population-Level Assessment of Dietary Diversity in Women of Reproductive Age. Curr. Dev. Nutr. 2017, 1, 1701. [Google Scholar] [CrossRef] [Green Version]
- Diop, L.; Becquey, E.; Turowska, Z.; Huybregts, L.; Ruel, M.T.; Gelli, A. Standard Minimum Dietary Diversity Indicators for Women or Infants and Young Children Are Good Predictors of Adequate Micronutrient Intakes in 24-59-Month-Old Children and Their Nonpregnant Nonbreastfeeding Mothers in Rural Burkina Faso. J. Nutr. 2021, 151, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Gicevic, S.; Gaskins, A.J.; Fung, T.T.; Rosner, B.; Tobias, D.K.; Isanaka, S.; Willett, W.C. Evaluating Pre-Pregnancy Dietary Diversity Vs. Dietary Quality Scores as Predictors of Gestational Diabetes and Hypertensive Disorders of Pregnancy. PLoS ONE 2018, 13, e0195103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulo, H.A.; Mosha, D.; Mwanyika-Sando, M.; Mboya, I.B.; Madzorera, I.; Killewo, J.; Leyna, G.H.; Msuya, S.E.; Fawzi, W.W. Role of Dietary Quality and Diversity on Overweight and Obesity among Women of Reproductive Age in Tanzania. PLoS ONE 2022, 17, e0266344. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Byrne, N.M.; Soares, M.J.; Katulanda, P.; Yadav, B.; Hills, A.P. High Dietary Diversity Is Associated with Obesity in Sri Lankan Adults: An Evaluation of Three Dietary Scores. BMC Public Health 2013, 13, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholizadeh, F.; Moludi, J.; Yagin, N.L.; Alizadeh, M.; Nachvak, S.M.; Abdollahzad, H.; Mirzaei, K.; Mostafazadeh, M. The Relation of Dietary Diversity Score and Food Insecurity to Metabolic Syndrome Features and Glucose Level among Pre-Diabetes Subjects. Prim. Care Diabetes 2018, 12, 338–344. [Google Scholar] [CrossRef]
- Djossinou, D.R.A.; Savy, M.; Fanou-Fogny, N.; Landais, E.; Accrombessi, M.; Briand, V.; Yovo, E.; Hounhouigan, D.J.; Gartner, A.; Martin-Prevel, Y. Changes in Women’s Dietary Diversity before and During Pregnancy in Southern Benin. Matern. Child Nutr. 2020, 16, e12906. [Google Scholar] [CrossRef]
- Kovacs, C.S. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol. Rev. 2016, 96, 449–547. [Google Scholar] [CrossRef] [Green Version]
- Hellmeyer, L.; Hahn, B.; Fischer, C.; Hars, O.; Boekhoff, J.; Maier, J.; Hadji, P. Quantitative Ultrasonometry During Pregnancy and Lactation: A Longitudinal Study. Osteoporos. Int. 2015, 26, 1147–1154. [Google Scholar] [CrossRef]
- Oliveri, B.; Parisi, M.S.; Zeni, S.; Mautalen, C. Mineral and Bone Mass Changes During Pregnancy and Lactation. Nutrition 2004, 20, 235–240. [Google Scholar] [CrossRef]
- Hardcastle, S.A. Pregnancy and Lactation Associated Osteoporosis. Calcif. Tissue Int. 2022, 110, 531–545. [Google Scholar] [CrossRef]
- Ettinger, A.S.; Lamadrid-Figueroa, H.; Mercado-García, A.; Kordas, K.; Wood, R.J.; E Peterson, K.; Hu, H.; Hernández-Avila, M.; Téllez-Rojo, M.M. Effect of Calcium Supplementation on Bone Resorption in Pregnancy and the Early Postpartum: A Randomized Controlled Trial in Mexican Women. Nutr. J. 2014, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Cullers, A.; King, J.C.; Van Loan, M.; Gildengorin, G.; Fung, E.B. Effect of Prenatal Calcium Supplementation on Bone During Pregnancy and 1 Y Postpartum. Am. J. Clin. Nutr. 2019, 109, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, A.; Huo, S.; Tan, Y.; Yang, Y.; Szeto, I.M.-Y.; Zhang, Y.; Lan, H. The Association between Postpartum Practice and Chinese Postpartum Depression: Identification of a Postpartum Depression-Related Dietary Pattern. Nutrients 2022, 14, 903. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Petersen, K.S.; Hibbeln, J.R.; Hurley, D.; Kolick, V.; Peoples, S.; Rodriguez, N.; Woodward-Lopez, G. Nutrition and Behavioral Health Disorders: Depression and Anxiety. Nutr. Rev. 2021, 79, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.; Previdelli, N.; Fisberg, R.M.; Kovalskys, I.; Fisberg, M.; Herrera-Cuenca, M.; Sanabria, L.Y.C.; García, M.C.Y.; Rigotti, A.; Liria-Domínguez, M.R.; et al. Dietary Diversity and Micronutrients Adequacy in Women of Childbearing Age: Results from Elans Study. Nutrients 2020, 12, 1994. [Google Scholar] [CrossRef] [PubMed]
- Okada, C.; Imano, H.; Yamagishi, K.; Cui, R.; Umesawa, M.; Maruyama, K.; Muraki, I.; Hayama-Terada, M.; Shimizu, Y.; Sankai, T.; et al. Dietary Intake of Energy and Nutrients from Breakfast and Risk of Stroke in the Japanese Population: The Circulatory Risk in Communities Study (Circs). J. Atheroscler. Thromb. 2019, 26, 145–153. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L. Nutrient Intake, Diet Quality, and Weight/Adiposity Parameters in Breakfast Patterns Compared with No Breakfast in Adults: National Health and Nutrition Examination Survey 2001–2008. J. Acad. Nutr. Diet. 2014, 114, S27–S43. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Zhang, Y.; Wang, Y.; Sun, J. Association of Maternal Depression with Dietary Intake, Growth, and Development of Preterm Infants: A Cohort Study in Beijing, China. Front. Med. 2018, 12, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Zujko, M.E.; Witkowska, A.M.; Waskiewicz, A.; Mironczuk-Chodakowska, I. Dietary Antioxidant and Flavonoid Intakes Are Reduced in the Elderly. Oxid. Med. Cell. Longev. 2015, 2015, 843173. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Hjertholm, K.G.; Holmboe-Ottesen, G.; Iversen, P.O.; Mdala, I.; Munthali, A.; Maleta, K.; Shi, Z.; Ferguson, E.; Kamudoni, P. Seasonality in Associations between Dietary Diversity Scores and Nutrient Adequacy Ratios among Pregnant Women in Rural Malawi—A Cross-Sectional Study. Food Nutr. Res. 2019, 63, 2712. [Google Scholar] [CrossRef] [Green Version]
- Chinese Nutrition Society. Chinese Dietary Reference Intakes Handbook 2013, 1st ed.; China Standards Press: Beijing, China, 2014. [Google Scholar]
- Schraders, K.; Zatta, G.; Kruger, M.; Coad, J.; Weber, J.; Brough, L.; Thomson, J. Quantitative Ultrasound and Dual X-Ray Absorptiometry as Indicators of Bone Mineral Density in Young Women and Nutritional Factors Affecting It. Nutrients 2019, 11, 2336. [Google Scholar] [CrossRef] [PubMed]
- Biver, E.; Pepe, J.; de Sire, A.; Chevalley, T.; Ferrari, S. Associations between Radius Low-Frequency Axial Ultrasound Velocity and Bone Fragility in Elderly Men and Women. Osteoporos. Int. 2019, 30, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, F.C.; Department of Disease Control Ministry of Health PRC. The Guidelines for Prevention and Control of Overweight and Obesity in Chinese Adults. Biomed. Environ. Sci. 2004, 17, 1–36. [Google Scholar] [PubMed]
- Osorio-Yáñez, C.; Sanchez-Guerra, M.; Solano, M.; Baccarelli, A.; Wright, R.; Sanders, A.P.; Tellez-Rojo, M.M.; Tamayo-Ortiz, M. Metal Exposure and Bone Remodeling During Pregnancy: Results from the Progress Cohort Study. Environ. Pollut. 2021, 282, 116962. [Google Scholar] [CrossRef]
- Song, S.Y.; Kim, Y.; Park, H.; Kim, Y.J.; Kang, W.; Kim, E.Y. Effect of Parity on Bone Mineral Density: A Systematic Review and Meta-Analysis. Bone 2017, 101, 70–76. [Google Scholar] [CrossRef]
- Song, J.; Zhang, R.; Lv, L.; Liang, J.; Wang, W.; Liu, R.; Dang, X. The Relationship between Body Mass Index and Bone Mineral Density: A Mendelian Randomization Study. Calcif. Tissue Int. 2020, 107, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zou, J.; Zhang, Y.; Yang, Q.; Shi, H. A Longitudinal Study of Physical Activity to Improve Sleep Quality During Pregnancy. Nat. Sci. Sleep 2020, 12, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.-N.; Li, K.-J. Study on the Reliability and Validity of International Physical Activity Questionnaire (Chinese Vision, Ipaq). Zhonghua Liu Xing Bing Xue Za Zhi 2004, 25, 265–268. [Google Scholar]
- Fan, M.; Lyu, J.; He, P. Chinese Guidelines for Data Processing and Analysis Concerning the International Physical Activity Questionnaire. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 961–964. [Google Scholar]
- Shrestha, V.; Paudel, R.; Sunuwar, D.R.; Lyman, A.L.T.; Manohar, S.; Amatya, A. Factors Associated with Dietary Diversity among Pregnant Women in the Western Hill Region of Nepal: A Community Based Cross-Sectional Study. PLoS ONE 2021, 16, e0247085. [Google Scholar] [CrossRef]
- Crozier, S.R.; Inskip, H.M.; Godfrey, K.M.; Cooper, C.; Robinson, S.M.; Grp, S.S. Nausea and Vomiting in Early Pregnancy: Effects on Food Intake and Diet Quality. Matern. Child Nutr. 2017, 13, e12389. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The Importance of Nutrition in Pregnancy and Lactation: Lifelong Consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Dong, J.; Zhang, J.; Zhang, C.; Wang, Y.; Zhang, Z.; Xiang, M. Nutrient Supplementation among Pregnant Women in China: An Observational Study. Public Health Nutr. 2022, 25, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, X.-F.; Li, D.-Y.; Chen, Y.-C.; Zhao, L.-J.; Liu, X.-G.; Guo, Y.-F.; Shen, J.; Lin, X.; Deng, J.; et al. The Good, the Bad, and the Ugly of Calcium Supplementation: A Review of Calcium Intake on Human Health. Clin. Interv. Aging 2018, 13, 2443–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quann, E.E.; Fulgoni, V.L.; Auestad, N. Consuming the Daily Recommended Amounts of Dairy Products Would Reduce the Prevalence of Inadequate Micronutrient Intakes in the United States: Diet Modeling Study Based on Nhanes 2007–2010. Nutr. J. 2015, 14, 90. [Google Scholar] [CrossRef] [Green Version]
- Cano-Ibáñez, N.; Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Olmedo-Requena, R.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Maternal Dietary Diversity and Risk of Small for Gestational Age Newborn: Findings from a Case-Control Study. Clin. Nutr. 2020, 39, 1943–1950. [Google Scholar] [CrossRef]
- Whittle, C.R.; Woodside, J.V.; Cardwell, C.R.; McCourt, H.J.; Young, I.S.; Murray, L.J.; Boreham, C.A.; Gallagher, A.M.; Neville, C.E.; McKinley, M.C. Dietary Patterns and Bone Mineral Status in Young Adults: The Northern Ireland Young Hearts Project. Br. J. Nutr. 2012, 108, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.R.; the PROVIDE Consortium; Verlaan, S.; Biesheuvel, E.; Eastell, R.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; et al. A Vitamin D, Calcium and Leucine-Enriched Whey Protein Nutritional Supplement Improves Measures of Bone Health in Sarcopenic Non-Malnourished Older Adults: The Provide Study. Calcif. Tissue Int. 2019, 105, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Kerstetter, J.E.; Kenny, A.M.; Insogna, K. Dietary Protein and Skeletal Health: A Review of Recent Human Research. Curr. Opin. Lipidol. 2011, 22, 16–20. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.-Y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, Vegetables, and Health: A Comprehensive Narrative, Umbrella Review of the Science and Recommendations for Enhanced Public Policy to Improve Intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, T.; Barreca, D.; Lagana, G.; Mandalari, G. Health Benefits Related to Tree Nut Consumption and Their Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 5960. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.; Zhang, K.; Wei, Y.; Hua, W.; Gao, Y.; Li, X.; Ye, L. Therapeutic Potentials and Modulatory Mechanisms of Fatty Acids in Bone. Cell Prolif. 2020, 53, e12735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Zhou, K.; Zhang, J.; Xu, L.; Yin, W. Interventions for Leg Cramps in Pregnancy. Cochrane Database Syst. Rev. 2020, 12, CD010655. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Trumpff, C.; Genkinger, J.; Davis, A.; Spann, M.; Werner, E.; Monk, C.; Singh, A.; Trumpff, C.; Genkinger, J.; et al. Micronutrient Dietary Intake in Latina Pregnant Adolescents and Its Association with Level of Depression, Stress, and Social Support. Nutrients 2017, 9, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Li, C.; Luo, W.; Chen, Z.; Liu, Z.; Ding, Y. Fragility Fracture Discriminative Ability of Radius Quantitative Ultrasound: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2021, 32, 23–38. [Google Scholar] [CrossRef]
First Trimester (n = 264) | Second Trimester (n = 259) | Third Trimester (n = 252) | All (n = 775) | p | |
---|---|---|---|---|---|
Age (years) | 29.2 ± 4.5 | 29.0 ± 4.0 | 29.9 ± 4.5 | 29.4 ± 4.3 | 0.061 |
Age group (years) | |||||
18–24 | 39 (14.8) | 39 (15.1) | 28 (11.1) | 106 (13.7) | 0.242 |
25–34 | 190 (72.0) | 198 (76.5) | 191 (75.8) | 579 (74.7) | |
35–44 | 35 (13.3) | 22 (8.5) | 33 (13.1) | 90 (11.6) | |
Han nationality | 242 (91.7) | 244 (94.2) | 235 (93.3) | 721 (93.0) | 0.514 |
South area | 152 (57.6) | 160 (61.8) | 147 (58.3) | 459 (59.2) | 0.583 |
Currently working | 166 (62.9) | 158 (61.0) | 145 (57.5) | 469 (60.5) | 0.482 |
Education level | |||||
Basic | 37 (14.0) | 40 (15.4) | 26 (10.3) | 103 (13.3) | 0.179 |
Secondary | 52 (19.7) | 36 (13.9) | 40 (15.9) | 128 (16.5) | |
Higher | 175 (66.3) | 182 (70.3) | 184 (73.0) | 541 (69.8) | |
Monthly income (yuan) | |||||
0–4999 | 84 (31.8) | 78 (30.1) | 68 (27.0) | 230 (29.7) | 0.746 |
5000–9999 | 124 (47.0) | 125 (48.3) | 124 (49.2) | 373 (48.1) | |
≥10,000 | 48 (18.2) | 55 (21.2) | 54 (21.4) | 157 (20.3) | |
Multiparous | 107 (40.5) | 93 (35.9) | 100 (39.7) | 300 (38.7) | 0.592 |
Smoking status | |||||
Never smoked | 247 (93.6) | 245 (94.6) | 242 (96.0) | 734 (94.7) | 0.714 |
Stopped smoking | 16 (6.1) | 12 (4.6) | 9 (3.6) | 37 (4.8) | |
Smoking during pregnancy | 1 (0.4) | 2 (0.8) | 1 (0.4) | 4 (0.5) | |
Second-hand smoke exposure | 52 (19.7) | 49 (18.9) | 56 (22.2) | 157 (20.3) | 0.665 |
Alcohol use | |||||
Never | 195 (73.9) | 194 (74.9) | 186 (73.8) | 575 (74.2) | 0.746 |
Stopped | 66 (25.0) | 61 (23.6) | 61 (24.2) | 188 (24.3) | |
Still drinking | 2 (0.8) | 1 (0.4) | 4 (1.6) | 7 (0.9) | |
Calcium supplement intake rate | 23 (8.7) | 160 (61.8) | 204 (81.0) | 387 (50.0) | <0.001 |
Pre-pregnancy BMI (kg/m2) | 22.0 ± 3.3 | 21.4 ± 3.4 | 21.7 ± 3.2 | 21.7 ± 3.3 | 0.045 |
BMI at interview (kg/m2) | 22.6 ± 3.5 | 23.3 ± 3.6 | 26.2 ± 3.3 | 24.0 ± 3.8 | <0.001 |
Physical activity level | |||||
Low | 128 (48.5) | 119 (46.0) | 77 (30.6) | 324 (41.8) | <0.001 |
Medium | 133 (50.4) | 137 (52.9) | 172 (68.3) | 442 (57.0) | |
High | 3 (1.1) | 3 (1.2) | 3 (1.2) | 9 (1.2) | |
DDS | 6.09 ± 1.53 | 6.85 ± 1.51 | 6.92 ± 1.40 | 6.61 ± 1.53 | <0.001 |
Food Groups | DDS < 7 (n = 354) | DDS ≥ 7 (n = 421) | All (n = 775) | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Starchy staples | 353 | 99.7 | 420 | 99.8 | 773 | 99.7 |
Flesh foods | 291 | 82.2 | 413 | 98.1 *** | 704 | 90.8 |
Other vegetables | 297 | 83.9 | 396 | 94.1 *** | 693 | 89.4 |
Other fruits | 252 | 71.2 | 385 | 91.5 *** | 637 | 82.2 |
Eggs | 166 | 46.9 | 339 | 80.5 *** | 505 | 65.2 |
Dark green leafy vegetables | 142 | 40.1 | 305 | 72.5 *** | 447 | 57.7 |
Other vitamin A-rich fruits and vegetables | 114 | 32.2 | 289 | 68.7 *** | 403 | 52.0 |
Dairy | 100 | 28.3 | 293 | 69.6 *** | 393 | 50.7 |
Pulses | 89 | 25.1 | 240 | 57.0 *** | 329 | 42.5 |
Nuts and seeds | 52 | 14.7 | 189 | 44.9 *** | 241 | 31.1 |
Nutrient | DDS < 7 (n = 354) | DDS ≥ 7 (n = 421) | All (n = 775) | ra |
---|---|---|---|---|
Vitamin A | 0.53 ± 0.34 | 0.78 ± 0.25 *** | 0.67 ± 0.32 | 0.443 *** |
Thiamin | 0.60 ± 0.25 | 0.75 ± 0.23 *** | 0.68 ± 0.25 | 0.303 *** |
Riboflavin | 0.58 ± 0.26 | 0.79 ± 0.21 *** | 0.69 ± 0.25 | 0.457 *** |
Niacin | 0.84 ± 0.22 | 0.93 ± 0.14 *** | 0.89 ± 0.19 | 0.289 *** |
Vitamin C | 0.59 ± 0.34 | 0.73 ± 0.30 *** | 0.66 ± 0.32 | 0.248 *** |
Vitamin E | 0.94 ± 0.14 | 0.97 ± 0.10 *** | 0.96 ± 0.12 | 0.161 *** |
Folate | 0.40 ± 0.23 | 0.58 ± 0.24 *** | 0.50 ± 0.25 | 0.384 *** |
Calcium | 0.47 ± 0.28 | 0.70 ± 0.25 *** | 0.59 ± 0.29 | 0.447 *** |
Phosphorus | 0.90 ± 0.18 | 0.98 ± 0.06 *** | 0.94 ± 0.14 | 0.383 *** |
Potassium | 0.71 ± 0.25 | 0.90 ± 0.15 *** | 0.81 ± 0.22 | 0.484 *** |
Magnesium | 0.70 ± 0.24 | 0.85 ± 0.17 *** | 0.78 ± 0.22 | 0.402 *** |
Iron | 0.71 ± 0.24 | 0.80 ± 0.20 *** | 0.76 ± 0.23 | 0.232 *** |
Zinc | 0.80 ± 0.22 | 0.93 ± 0.13 *** | 0.87 ± 0.19 | 0.399 *** |
Copper | 0.96 ± 0.11 | 1.00 ± 0.03 *** | 0.98 ± 0.08 | 0.281 *** |
Selenium | 0.61 ± 0.28 | 0.74 ± 0.24 *** | 0.68 ± 0.27 | 0.288 *** |
MAR b | 0.69 ± 0.17 | 0.83 ± 0.12 *** | 0.77 ± 0.16 | 0.493 *** |
Bone Health | DDS < 7 | DDS ≥ 7 | All | |
---|---|---|---|---|
All population | n | 354 | 421 | 775 |
SOS a | 4208.2 ± 130.1 | 4222.4 ± 139.1 | 4215.9 ± 135.2 | |
T-score | 0.18 ± 1.12 | 0.31 ± 1.20 | 0.25 ± 1.17 | |
Z-score | 0.66 ± 1.11 | 0.75 ± 1.18 | 0.71 ± 1.15 | |
First trimester | n | 160 | 104 | 264 |
SOS | 4219.8 ± 140.4 | 4226.4 ± 142.7 | 4222.4 ± 141.0 | |
T-score | 0.28 ± 1.21 | 0.33 ± 1.19 | 0.30 ± 1.20 | |
Z-score | 0.74 ± 1.17 | 0.75 ± 1.18 | 0.75 ± 1.17 | |
Second trimester | n | 104 | 155 | 259 |
SOS | 4187.9 ± 116.3 | 4231.4 ± 132.0 ** | 4213.9 ± 127.5 | |
T-score | 0.00 ± 1.02 | 0.39 ± 1.16 ** | 0.24 ± 1.12 | |
Z-score | 0.52 ± 1.02 | 0.85 ± 1.12 * | 0.72 ± 1.09 | |
Third trimester | n | 90 | 162 | 252 |
SOS | 4211.1 ± 124.8 | 4211.2 ± 143.5 | 4211.2 ± 136.8 | |
T-score | 0.22 ± 1.08 | 0.22 ± 1.25 | 0.22 ± 1.19 | |
Z-score | 0.67 ± 1.10 | 0.64 ± 1.24 | 0.65 ± 1.19 |
β (SE) | 95% CI | p | R2 | |
---|---|---|---|---|
All population | ||||
Model 1 a | 8.39 (3.17) | (2.18, 14.61) | 0.008 | 0.0090 |
Model 2 b | 8.04 (3.49) | (1.19, 14.90) | 0.022 | 0.0548 |
Model 3 c | 7.68 (3.44) | (0.92, 14.44) | 0.026 | 0.0548 |
First trimester | ||||
Model 1 a | 7.54 (5.67) | (−3.61, 18.70) | 0.184 | 0.0067 |
Model 2 d | 7.85 (6.46) | (−4.88, 20.58) | 0.226 | 0.0859 |
Model 3 c | 4.38 (6.30) | (−8.04, 16.80) | 0.488 | 0.0711 |
Second trimester | ||||
Model 1 a | 16.55 (5.18) | (6.35, 26.75) | 0.002 | 0.0382 |
Model 2 d | 18.07 (5.77) | (6.70, 29.43) | 0.002 | 0.1020 |
Model 3 c | 17.18 (5.69) | (5.97, 28.39) | 0.003 | 0.0990 |
Third trimester | ||||
Model 1 a | 4.44 (6.15) | (−7.68, 16.56) | 0.471 | 0.0021 |
Model 2 d | 2.77 (6.86) | (−10.74, 16.28) | 0.687 | 0.0694 |
Model 3 c | 3.27 (6.70) | (−9.94, 16.48) | 0.626 | 0.0724 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.; Zhao, A.; Lan, H.; Mao, S.; Li, P.; Jiang, H.; Wang, P.; Szeto, I.M.-Y.; Zhang, Y. Dietary Diversity, Micronutrient Adequacy and Bone Status during Pregnancy: A Study in Urban China from 2019 to 2020. Nutrients 2022, 14, 4690. https://doi.org/10.3390/nu14214690
Zhong W, Zhao A, Lan H, Mao S, Li P, Jiang H, Wang P, Szeto IM-Y, Zhang Y. Dietary Diversity, Micronutrient Adequacy and Bone Status during Pregnancy: A Study in Urban China from 2019 to 2020. Nutrients. 2022; 14(21):4690. https://doi.org/10.3390/nu14214690
Chicago/Turabian StyleZhong, Wuxian, Ai Zhao, Hanglian Lan, Shuai Mao, Pin Li, Hua Jiang, Peiyu Wang, Ignatius Man-Yau Szeto, and Yumei Zhang. 2022. "Dietary Diversity, Micronutrient Adequacy and Bone Status during Pregnancy: A Study in Urban China from 2019 to 2020" Nutrients 14, no. 21: 4690. https://doi.org/10.3390/nu14214690
APA StyleZhong, W., Zhao, A., Lan, H., Mao, S., Li, P., Jiang, H., Wang, P., Szeto, I. M. -Y., & Zhang, Y. (2022). Dietary Diversity, Micronutrient Adequacy and Bone Status during Pregnancy: A Study in Urban China from 2019 to 2020. Nutrients, 14(21), 4690. https://doi.org/10.3390/nu14214690