The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation and Quality Control of SWCA
2.3. Animals and Administration
2.4. Biochemical Analysis
2.5. Micro-Computed Tomography (Micro-CT) Analysis of Bone Properties
2.6. Bone Histology and Colon Immunohistology
2.7. Quantification of Plasma Serotonin and Kynurenine
2.8. Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.9. Western Blot Analysis
2.10. Hemostasis Assay
2.11. 16S rRNA Gene Sequencing and Analysis
2.12. Statistical Analysis
3. Results
3.1. SWCA Extract Improved Bone Properties without Altering Body Weight, Uterus Index or Serum Biochemistries in OVX Rats
3.2. SWCA Extract Suppressed Serum Serotonin Level without Altering Kynurenine Level in OVX Rats
3.3. SWCA Extract Modulated Gut-Derived Serotonin-Related Signaling Pathway in Femur
3.4. SWCA Extract Inhibited TPH-1 Protein Expression in the Colon, but Did Not Influence TPH-1 and TPH-2 Protein Expressions in the Brain Cortex
3.5. SWCA Extract Did Not Influence Coagulation
3.6. SWCA Extract Slightly Altered the Microbial Composition
3.7. SWCA Extract Significantly Altered Antinobacteria Phylum and Its Belonged Genus
3.8. SWCA Extract Modulated the Microbial Genera Correlated with BMD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364. [Google Scholar] [CrossRef]
- Black, D.M.; Rosen, C.J. Postmenopausal Osteoporosis. N. Engl. J. Med. 2016, 374, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-W.; Zeng, G.-F.; Zong, S.-H.; Zhang, Z.-Y.; Zou, B.; Fang, Y.; Lu, L.; Xiao, D.-Q. Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutr. Res. 2014, 34, 467. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Feng, L.; Wang, H.; Li, Y.; Lo, J.H.T.; Zhang, X.; Lu, X.; Wang, Y.; Lin, S.; Tortorella, M.D.; et al. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis. Nutrients 2021, 13, 4455. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Arbiser, J.; Weitzmann, M. Honokiol stimulates osteoblastogenesis by suppressing NF-κB activation. Int. J. Mol. Med. 2011, 28, 1049–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liao, X.; Zhang, Y.; Wei, L.; Pang, Y. Schisandrin B regulates MC3T3-E1 subclone 14 cells proliferation and differentiation through BMP2-SMADs-RUNX2-SP7 signaling axis. Sci. Rep. 2020, 10, 14476. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, Q.; Shen, Y.; Chen, X.; Zhou, F.; Peng, D. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways. Biochem. Biophys. Res. Commun. 2014, 449, 344–350. [Google Scholar] [CrossRef]
- Xiao, H.-H.; Gao, Q.-G.; Ho, M.-X.; Zhang, Y.; Wong, K.-C.; Dai, Y.; Yao, X.-S.; Wong, M.-S. An 8-O-4′ norlignan exerts oestrogen-like actions in osteoblastic cells via rapid nongenomic ER signaling pathway. J. Ethnopharmacol. 2015, 170, 39–49. [Google Scholar] [CrossRef]
- Ma, Z.-P.; Zhang, Z.-F.; Yang, Y.-F.; Yang, Y. Sesamin Promotes Osteoblastic Differentiation and Protects Rats from Osteoporosis. Med. Sci. Monit. 2019, 25, 5312–5320. [Google Scholar] [CrossRef]
- Kardinaal, A.F.M.; Morton, M.S.; BrÜGgemann-Rotgans, I.E.M.; Van Beresteijn, E.C.H. Phyto-oestrogen excretion and rate of bone loss in postmenopausal women. Eur. J. Clin. Nutr. 1998, 52, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Cornish, S.M.; Chilibeck, P.D.; Paus-Jennsen, L.; Biem, H.J.; Khozani, T.; Senanayake, V.; Vatanparast, H.; Little, J.P.; Whiting, S.J.; Pahwa, P. A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults. Physiol. Appliquée Nutr. Métabolisme 2009, 34, 89–98. [Google Scholar] [CrossRef]
- Kim, M.K.; Chung, B.C.; Yu, V.Y.; Nam, J.H.; Lee, H.C.; Huh, K.B.; Lim, S.K. Relationships of urinary phyto-oestrogen excretion to BMD in postmenopausal women. Clin. Endocrinol. Oxf. 2002, 56, 321–328. [Google Scholar] [CrossRef]
- Xiao, H.H.; Dai, Y.; Wan, H.Y.; Wong, M.S.; Yao, X.S. Bone protective effects of bioactive fractions and ingredients in Sambucus williamsii HANCE. Br. J. Nutr. 2011, 106, 1802–1809. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.H.; Dai, Y.; Wong, M.S.; Yao, X.S. New lignans from the bioactive fraction of Sambucus williamsii Hance and proliferation activities on osteoblastic-like UMR106 cells. Fitoterapia 2014, 94, 29–35. [Google Scholar] [CrossRef]
- Xiao, H.H.; Sham, T.T.; Chan, C.-O.; Li, M.H.; Chen, X.; Wu, Q.C.; Mok, D.K.W.; Yao, X.S.; Wong, M.S. A Metabolomics Study on the Bone Protective Effects of a Lignan-Rich Fraction From Sambucus Williamsii Ramulus in Aged Rats. Front. Pharmacol. 2018, 9, 932. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.f.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 163, 258. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, B.; Lian, J.B.; Mawe, G.M. Regulation of bone metabolism by serotonin. Adv. Exp. Med. Biol. 2017, 1033, 35–46. [Google Scholar] [PubMed]
- Reigstad, C.S.; Salmonson, C.E.; Iii, J.F.R.; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.-H.; Lv, J.; Mok, D.; Yao, X.-S.; Wong, M.-S.; Cooper, R. NMR Applications for Botanical Mixtures: The Use of HSQC Data to Determine Lignan Content in Sambucus williamsii. J. Nat. Prod. 2019, 82, 1733–1740. [Google Scholar] [CrossRef]
- Xiao, H.-H.; Lu, L.; Poon, C.C.-W.; Chan, C.-O.; Wang, L.-J.; Zhu, Y.-X.; Zhou, L.-P.; Cao, S.; Yu, W.-X.; Wong, K.Y.; et al. The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed. Pharmacother. 2021, 137, 111372. [Google Scholar] [CrossRef]
- Zhang, C.; Song, C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front. Pharmacol. 2020, 11, 607017. [Google Scholar] [CrossRef]
- Liu, R.X.; Xian, Y.Y.; Liu, S.; Yu, F.; Mu, H.J.; Sun, K.X.; Liu, W.H. Development, validation and comparison of surrogate matrix and surrogate analyte approaches with UHPLC-MS/MS to simultaneously quantify dopamine, serotonin and gamma-aminobutyric acid in four rat brain regions. Biomed. Chromatogr. 2018, 32, e4276. [Google Scholar] [CrossRef]
- Feng, S.; Meng, C.; Hao, Z.; Liu, H. Bacillus licheniformis Reshapes the Gut Microbiota to Alleviate the Subhealth. Nutrients 2022, 14, 1642. [Google Scholar] [CrossRef]
- Vemuri, R.; Shinde, T.; Gundamaraju, R.; Gondalia, S.V.; Karpe, A.V.; Beale, D.J.; Martoni, C.J.; Eri, R. Lactobacillus acidophilus DDS-1 Modulates the Gut Microbiota and Improves Metabolic Profiles in Aging Mice. Nutrients 2018, 10, 1255. [Google Scholar] [CrossRef] [Green Version]
- Michalowska, M.; Znorko, B.; Kaminski, T.; Oksztulska-Kolanek, E.; Pawlak, D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J. Physiol. Pharmacol. 2015, 66, 779–791. [Google Scholar]
- Lozano, P.; Garcia, S.; Boakye, E.; Kingbong, H.; Naddour, E.; Alarabi, A.; Khasawneh, F.; Alshbool, F. The Antidepressant Duloxetine Inhibits Platelet Function and Protects against Thrombosis. FASEB J. 2021, 35, 04622. [Google Scholar] [CrossRef]
- Bruyère, O.; Reginster, J.-Y. Osteoporosis in patients taking selective serotonin reuptake inhibitors: A focus on fracture outcome. Endocrine 2014, 48, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Han, M.; Park, C.I.; Jung, I.; Kim, E.H.; Boo, Y.J.; Kang, J.I.; Kim, S.J. Use of serotonin reuptake inhibitors and risk of subsequent bone loss in a nationwide population-based cohort study. Sci. Rep. 2021, 11, 13461. [Google Scholar] [CrossRef]
- Ho, R.C.; Chua, A.N.; Husain, S.F.; Tan, W.; Hao, F.; Vu, G.T.; Tran, B.X.; Nguyen, H.T.; McIntyre, R.S.; Ho, C.S. Premenopausal Singaporean Women Suffering from Major Depressive Disorder Treated with Selective Serotonin Reuptake Inhibitors Had Similar Bone Mineral Density as Compared with Healthy Controls. Diagnostics 2022, 12, 96. [Google Scholar] [CrossRef]
- Karsenty, G.; Ducy, P.; Yadav, V.K.; Balaji, S.; Suresh, P.S.; Liu, X.S.; Lu, X.; Li, Z.; Guo, X.E.; Mann, J.J.; et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 2010, 16, 308–312. [Google Scholar]
- Mödder, U.I.; Achenbach, S.J.; Amin, S.; Riggs, B.L.; Melton, L.J.; Khosla, S. Relation of serum serotonin levels to bone density and structural parameters in women. J. Bone Miner. Res. 2010, 25, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Kode, A.; Mosialou, I.; Silva, B.C.; Rached, M.-T.; Zhou, B.; Wang, J.; Townes, T.M.; Hen, R.; DePinho, R.A.; Guo, X.E.; et al. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J. Clin. Investig. 2012, 122, 3490–3503. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, C.; Zhao, D.; Wang, C.; Li, C. Dietary Proteins Regulate Serotonin Biosynthesis and Catabolism by Specific Gut Microbes. J. Agric. Food Chem. 2020, 68, 5880–5890. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Bäckhed, F. The gut microbiota--masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Badger, R.; Aho, K.; Serve, K. Short-term exposure to synthetic flaxseed lignan LGM2605 alters gut microbiota in mice. MicrobiologyOpen 2021, 10, e1185. [Google Scholar] [CrossRef]
- Corona, G.; Kreimes, A.; Barone, M.; Turroni, S.; Brigidi, P.; Keleszade, E.; Costabile, A. Impact of lignans in oilseed mix on gut microbiome composition and enterolignan production in younger healthy and premenopausal women: An in vitro pilot study. Microb. Cell Factories 2020, 19, 82. [Google Scholar] [CrossRef] [Green Version]
- Maruo, T.; Sakamoto, M.; Ito, C.; Toda, T.; Benno, Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int. J. Syst. Evol. Microbiol. 2008, 58, 1221–1227. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol: A clue to the effectiveness of soy and its isoflavones. J. Nutr. 2002, 132, 3577–3584. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.; Zou, Y.; Dai, Y.; Luo, G.; Zhang, X.; Xiao, L. Characterization a Novel Butyric Acid-Producing Bacterium Collinsella aerofaciens Subsp. Shenzhenensis Subsp. Nov. Microorganisms 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Romo-Vaquero, M.; Cortés-Martín, A.; Loria-Kohen, V.; Ramírez-de-Molina, A.; García-Mantrana, I.; Collado, M.C.; Espín, J.C.; Selma, M.V. Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications. Mol. Nutr. Food Res. 2019, 63, e1800958. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Kang, K.; Li, Y.-L.; Sang, L.-X.; Chang, B. Tea polyphenols protect mice from acute ethanol-Induced liver injury by modulating the gut microbiota and short-chain fatty acids. J. Funct. Foods 2021, 87, 104865. [Google Scholar] [CrossRef]
- Cheng, D.; Chang, H.; Ma, S.; Guo, J.; She, G.; Zhang, F.; Li, L.; Li, X.; Lu, Y. Tiansi Liquid Modulates Gut Microbiota Composition and Tryptophan–Kynurenine Metabolism in Rats with Hydrocortisone-Induced Depression. Molecules 2018, 23, 2832. [Google Scholar] [CrossRef] [Green Version]
- Tu, M.-Y.; Han, K.-Y.; Chang, G.R.-L.; Lai, G.-D.; Chang, K.-Y.; Chen, C.-F.; Lai, J.-C.; Lai, C.-Y.; Chen, H.-L.; Chen, C.-M. Kefir Peptides Prevent Estrogen Deficiency-Induced Bone Loss and Modulate the Structure of the Gut Microbiota in Ovariectomized Mice. Nutrients 2020, 12, 3432. [Google Scholar] [CrossRef]
- Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C.-C.; Ardura-Fabregat, A.; de Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018, 557, 724–728. [Google Scholar] [CrossRef]
- Chen, R.; Wang, J.; Zhan, R.; Zhang, L.; Wang, X. Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. J. Ethnopharmacol. 2019, 244, 112139. [Google Scholar] [CrossRef]
Parameters | Sham | OVX | PTH | CAL | CAH | |
---|---|---|---|---|---|---|
Tibia | BMD (mgHA/cm3) | 468.1 ± 15.4 a | 167.4 ± 7.4 c | 245.1 ± 15.9 b | 209.0 ± 5.3 bc | 183.8 ± 10.5 c |
Tb.N (mm−1) | 5.50 ± 0.13 a | 1.55 ± 0.10 c | 2.35 ± 0.16 b | 2.10 ± 0.13 bc | 1.76 ± 0.14 c | |
Tb.Sp (mm) | 0.141 ± 0.006 c | 0.653 ± 0.042 a | 0.416 ± 0.028 b | 0.497 ± 0.034 ab | 0.568 ± 0.045 a | |
Tb.Th (mm) | 0.121 ± 0.002 a | 0.084 ± 0.001 c | 0.090 ± 0.002 b | 0.085 ± 0.001 bc | 0.085 ± 0.001 bc | |
BV/TV (%) | 0.575 ± 0.017 a | 0.117 ± 0.008 c | 0.212 ± 0.021 b | 0.166 ± 0.007 bc | 0.128 ± 0.012 c | |
Conn. D (mm−3) | 55.9 ± 2.4 a | 17.4 ± 2.1 c | 29.7 ± 3.1 b | 26.4 ± 1.4 bc | 19.6 ± 2.3 c | |
SMI | −3.41 ± 0.48 c | 1.74 ± 0.1 a | 0.89 ± 0.24 b | 1.36 ± 0.16 ab | 1.88 ± 0.10 a | |
Femur | BMD (mgHA/cm3) | 475.2 ± 18.4 a | 189.5 ± 11.3 c | 265.2 ± 16.6 b | 233.1 ± 5.6 bc | 207.6 ± 9.6 c |
Tb.N (mm−1) | 5.17 ± 0.19 a | 1.68 ± 0.08 c | 2.21 ± 0.27 b | 2.02 ± 0.12 bc | 1.69 ± 0.06 bc | |
Tb.Sp (mm) | 0.179 ± 0.014 c | 0.685 ± 0.032 a | 0.516 ± 0.065 b | 0.557 ± 0.035 b | 0.697 ± 0.017 a | |
Tb.Th (mm) | 0.116 ± 0.006 a | 0.086 ± 0.001 b | 0.089 ± 0.002 b | 0.088 ± 0.002 b | 0.088 ± 0.002 b | |
BV/TV (%) | 0.528 ± 0.015 a | 0.169 ± 0.018 c | 0.251 ± 0.022 b | 0.222 ± 0.005 bc | 0.198 ± 0.014 bc | |
Conn. D (mm−3) | 53.2 ± 3.0 a | 26.8 ± 2.3 c | 36.1 ± 2.9 b | 34.1 ± 0.8 bc | 29.0 ± 2.1 bc | |
SMI | −2.88 ± 0.25 b | 0.30 ± 0.22 a | −0.37 ± 0.27 a | 0.04 ± 0.14 a | 0.46 ± 0.20 a | |
Weight change (%) | 19.9 ± 4.6 b | 37.7 ± 3.1 a | 48.0 ± 5.5 a | 37.1 ± 3.9 a | 35.2 ± 2.6 a | |
Uterus index (UI, mg/g) | 1.70 ± 0.12 a | 0.27 ± 0.01 b | 0.26 ± 0.02 b | 0.28 ± 0.03 b | 0.27 ± 0.02 b | |
Serum Ca (mmol/L) | 2.39 ± 0.03 | 2.33 ± 0.04 | 2.36 ± 0.02 | 2.33 ± 0.06 | 2.40 ± 0.04 | |
Serum P (mmol/L) | 2.13 ± 0.19 | 2.19 ± 0.10 | 2.04 ± 0.08 | 2.31 ± 0.07 | 2.02 ± 0.08 | |
Serum ALP (ng/mL) | 56.6 ± 7.6 | 77.7 ± 12.8 | 61.6 ± 6.8 | 65.7 ± 3.9 | 63.6 ± 5.3 | |
Serum OCN (pg/mL) | 362.8 ± 55.9 a | 213.2 ± 35.8 b | 272.1 ± 76.9 ab | 331.1 ± 32.1 a | 281.8 ± 28.1 ab | |
Serum CTX-I (ng/mL) | 0.49 ± 0.04 b | 0.67 ± 0.06 a | 0.47 ± 0.05 b | 0.49 ± 0.03 b | 0.41 ± 0.05 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.-H.; Zhu, Y.-X.; Lu, L.; Zhou, L.-P.; Poon, C.C.-W.; Chan, C.-O.; Wang, L.-J.; Cao, S.; Yu, W.-X.; Wong, K.-Y.; et al. The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients 2022, 14, 4718. https://doi.org/10.3390/nu14224718
Xiao H-H, Zhu Y-X, Lu L, Zhou L-P, Poon CC-W, Chan C-O, Wang L-J, Cao S, Yu W-X, Wong K-Y, et al. The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients. 2022; 14(22):4718. https://doi.org/10.3390/nu14224718
Chicago/Turabian StyleXiao, Hui-Hui, Yu-Xin Zhu, Lu Lu, Li-Ping Zhou, Christina Chui-Wa Poon, Chi-On Chan, Li-Jing Wang, Sisi Cao, Wen-Xuan Yu, Ka-Ying Wong, and et al. 2022. "The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats" Nutrients 14, no. 22: 4718. https://doi.org/10.3390/nu14224718
APA StyleXiao, H. -H., Zhu, Y. -X., Lu, L., Zhou, L. -P., Poon, C. C. -W., Chan, C. -O., Wang, L. -J., Cao, S., Yu, W. -X., Wong, K. -Y., Mok, D. K. -W., & Wong, M. -S. (2022). The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients, 14(22), 4718. https://doi.org/10.3390/nu14224718