Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions
Abstract
:1. Introduction
2. Pancreatic Fat—Are We Overlooking a Key Piece of the Metabolic Puzzle?
3. Adverse Metabolic Effects Attributed to Accumulation of Pancreatic Fat
4. Clinical Intervention Strategies—Targeting Amelioration of Ectopic Fat
4.1. Weight-Loss Diet Interventions
4.2. Very Low-Energy Diet (VLED) Total Meal Replacement Interventions
Author (Year) | Duration, Population | Intervention | Imaging Technique | Effect on Body Weight | Effect on Body Fat Compartments | Effect on Metabolic Parameters Associated with Glycaemia |
---|---|---|---|---|---|---|
Dietary Interventions | ||||||
(a) Weight-loss diet | ||||||
Rossi et al. (2012) [62] | 6 mo n = 24 (13 M, 11 F) 26 to 69 y non-T2D OB (BMI: 30 to 50 kg/m2) | Single arm (non-RCT) with hypo-energetic diet
| 1.5 Tesla MRI (Symphony, Siemens, Erlangen, Germany) | Decrease at 6 mo
| Decrease at 6 mo:
| Decrease at 6 mo for:
|
HELENA Trial Schubel et al. (2018) [15] | 50 wk n = 150 (75 M, 75 F) 35 to 65 y non-T2D OW and OB (BMI: ≥25 to <40 kg/m2) 16% MetS | Three arms (RCT): ICR group
| 1.5 Tesla MRI (MAGNETOM Aera, Siemens, Erlangen, Germany) | Decrease at 50 wk
| Decrease at 50 wk:VAT
ICR vs. control (p > 0.05) CCR vs. control (p > 0.05) LFC
ICR and control (p > 0.05) | NS decrease at 50 wk for ICR vs. control, CCR vs. control or ICR vs. CCR:
|
Skytte et al. (2019) [14] | 12 wk n = 28 (20 M, 8 F) >18 y T2D OW and OB (BMI: ≥25 kg/m2) | Two arms (RCT), then cross-over after 6 wk: CRHP group
| 3.0 Tesla MRI (Ingenia, Philips, the Netherlands) | Decrease at 6 wk
| Decrease at 6 wk: VAT
| Decrease at 6 wk for: FPG
|
(b) Low-energy diet (LED) total meal replacement | ||||||
Lim et al. (2011) [68] | 8 wk n = 11 (9 M, 2 F) 35 to 65 y T2D < 4 y OW and OB (BMI: 25 to 45 kg/m2) | Single arm (non-RCT) with VLED
| 3.0 Tesla MRI (Achieva, Philips, the Netherlands) | Decrease at 8 wk
| Decrease at 8 wk:
| Decrease at 8 wk:
|
Steven et al. (2016) [69] | 8 wk of VLED and follow-up until 6 mo n = 30 25 to 80 y duration of T2D (short: <4 y or long: >8 y) obese (BMI: 27 to 45 kg/m2) Analysed as responder (FPG < 7.0 mmol/L) and non-responder (FPG > 7.0 mmol/L) at end of trial | Single arm (non-RCT) with VLED
| 3.0 Tesla MRI (Achieva, Philips, the Netherlands) using three-point Dixon method | Decrease at 8 wk
| Decrease at 8 wk: VAT
VAT
| Decrease at 8 wk: Insulin
Insulin
|
DiRECT-Trial Al-Mrabeh et al. (2020) [70] | 5 mo of VLED and follow-up until 24 mo n = 33 (19 M, 14 F) 20 to 65 y T2D < 6 y OW and OB (BMI: 27 to 45 kg/m2) Analysed as responder (FPG < 7.0 mmol/L) and non-responder (FPG > 7.0 mmol/L) at end of trial | Single arm (non-RCT) with VLED
| 3.0 Tesla MRI (Achieva, Philips, Netherlands) using a 3-point Dixon method, with gradient-echo scans | Decrease at 5 mo
| Decrease at 5 mo: VAT
PFC
LFC
Decrease at 24 mo: VAT
PFC
LFC
| Decrease at 24 mo: FPG
(p > 0.05) HbA1c
(p > 0.05) Insulin
TAG
HDL-C
|
(c) Overfeeding | ||||||
LIPOGAIN-Trial Rosqvist et al. (2014) [71] | 7 wk n = 37 (26 M, 11 F) 20 to 38 y non-T2D non-OB (BMI: 18 to 27 kg/m2) | Two arms (RCT): Group 1: PUFA Group 2: SFA Muffin composition:
| 1.5 Tesla MRI (Achieva, Philips, the Netherlands) | No increase and difference between PUFA vs. SFA at 7 wk (p > 0.05) | Increase at 7 wk: VAT
| No increase and difference between PUFA vs. SFA at 7 wk:
|
LIPOGAIN2-Trial Rosqvist et al. (2019) [72] | 12 wk n = 60 (37 M, 23 F) 20 to 55 y non-T2D OW (BMI: 25 to 32 kg/m2) | Two arms (RCT) Group 1: PUFA Group 2: SFA Muffin composition:
| 1.5 Tesla MRI (Achieva, Philips, the Netherlands) | No increase and difference between PUFA vs. SFA at 12 wk (p > 0.05) | Change at 12 wk: VAT
| No increase and difference between PUFA vs. SFA at 12 wk:
|
(d) Snacking | ||||||
ATTIS-Trial Dikariyanto et al. (2020) [73] | 8 wk n = 107 30 to 70 y non-T2D OW and OB (BMI: ≥23 kg/m2) | Two arms (RCT): Roasted almond, 20% of EER Control group (isoenergetic): Sweet and savoury mini-muffins, 20% of EER Consume between meals and avoid extra nuts/nut products | 1.5 Tesla MRI (Magnetom Aera, Siemens, Erlangen, Germany) LFC quantified using HOROS V 1.1.7 software | No increase or difference in BMI in almond vs. control at 8 wk (p > 0.05) | No increase and difference between almond vs. control at 8 wk:
| No increase and difference between almond vs. control at 8 wk:
Non-HDL-C
|
(e) Isocaloric diet | ||||||
Guiseppe et al. (2018) [74] | 8 wk n = 39 35 to 75 y T2D abdominal obese (M: >102 cm; F: >88 cm) HbA1c ≤ 7.5% TAG ≤ 3.95 mmol/L LDL ≤ 3.36 mmol/L | Two arms (RCT): Multifactorial diet
Both diets are isoenergetic (~800 kcal) with 40%en CHO, 18%en PRO and 42%en FAT | 3.0 Tesla MRI (dStream, Philips, the Netherlands) using a 2-point DIXON method with flexible echo times | Decrease at 8 wk:
| Change at 8 wk: PFC
| Change at 8 wk FPG
|
Physical activity intervention | ||||||
(a) Strength and endurance training | ||||||
Langleite et al. (2016) [16] | 12 wk 40 to 65 y Sedentary Dysglycemic (n = 11 M) FPG ≥ 5.6 mmol/L OW (BMI: 27 to 32 kg/m2) Control (n = 11 M) FPG < 5.6 mmol/L lean (BMI: 19 to 25 kg/m2) | Two arms (non-RCT) 4 h wk intensive training, including 2 whole-body strength-training sessions and 2 spin bike interval sessions | 1.5 T Tesla MRI (Achieva, Philips, the Netherlands) using 3D DIXON technique | NS decrease for dysglycemic at 12 wk (p > 0.05) NS decrease for control at 12 wk (p > 0.05) | Change at 12 wk: PFC
| NS decrease between dysglycemic vs. control at 12 wk:
|
(b) Short-term exercise training | ||||||
Heiskanen et al. (2018) [17] | 2 wk Healthy (28 M) 40 to 55 y Sedentary lean and OW (BMI: 18.5 to 30 kg/m2) Pre-/T2D (16 M, 10 F) Sedentary lean, OW and OB (BMI: 18.5 to 35 kg/m2) | Two arms (RCT) Sprint interval training: 4 to 6 episodes of all-out cycling (30 s each) with supramaximal workload Moderate-intensity continuous training: 40–60 min cycling with 60% peak workload | 1.5 Tesla MRI (Gyroscan Intera, Philips, the Netherlands) | NS decrease and difference between pre/T2D vs. healthy at 2 wk (p > 0.05) | NS decrease and difference between pre/T2D vs. healthy at 2 wk:
| No difference between pre/T2D vs. healthy at 2 wk:
|
Combination of diet and physical activity intervention | ||||||
Vogt et al. (2016) [75] | 15 wk n = 29 (10 M, 19 F) 18 to 70 y T2D OW and OW (BMI: ≥ 27 kg/m2) | Single arm (non-RCT) VLED Liquid diet (800 kcal) for 6 wk Refeeding phase (1200 kcal) for 4 wk Normal diet for 5 wk Cardio and strength training | 3.0 Tesla MRI (Verio, Siemens, Erlangen, Germany) | Decrease at 6 wk
| Decrease at 6 wk:
| Decrease at 15 wk:
|
CENTRAL-Trial Gepner et al. (2018) [76] | 18 mo n = 278 11% F 28 to 69 y abdominal obese (M: >102 cm; F: >88 cm) dyslipidemia (>8.3 mmol/L) low HDL-C (M: <2.2 mmol/L; F: < 2.8 mmol/L) | Two arms (RCT) LF group
| 3.0 Tesla MRI (Ingenia, Philips, the Netherlands) utilising modified 3D DIXON method | Decrease at 18 mo
| Decrease at 18 mo: VAT
| Decrease at 18 mo: TAG
|
Surgical intervention | ||||||
(a) Laparoscopic sleeve gastrectomy | ||||||
Umemura et al. (2017) [77] | 6 mo n = 27 (14 M, 13 F) 18 to 65 y OB (BMI: ≥35 kg/m2) | Single arm (non-RCT) | VAT and PFC measured using a 64-row CT (AquilionTM; Toshiba; Tokyo, Japan) | Decrease at 6 mo
| Decrease at 6 mo:
| Decrease at 6 mo:
|
Covarrubias et al. (2019) [78] | 6 mo n = 9 (2 M, 7 F) ≥18 y OB (BMI: ≥35 kg/m2) | Single arm (non-RCT) | 3.0 Tesla MRI (GE Signa EXCITE HDxt, GE Healthcare, Waukesha, WI); 3D multi-echo spoiled gradient echo (SGRE) sequence | Decrease at 6 mo
| Decrease at 6 mo:
| Not reported |
(b) Roux-en-Y gastric bypass | ||||||
Steven et al. (2016) [79] | 8 wk Group 1 n = 18 (7 M, 11 F) T2D < 15 y Group 2 n = 9 (2 M, 7 F) NGT Both groups 25 to 65 y BMI: ≤ 45 kg/m2 | Two arms (non-RCT) | 3.0 Tesla MRI (Philips, the Netherlands) using a 3-point Dixon method | Decrease at 8 wk
| Decrease at 8 wk: VAT
| Decrease at 8 wk: FPG
|
Lautenbach et al. (2018) [80] | 6 mo n = 11 ≥18 y OB (BMI: ≥30 to ≤50 kg/m2) | Single arm (non-RCT) | 3.0 Tesla MRI (Ingenia, Philips, Germany) | Decrease at 6 mo
| Decrease at 6 mo:
| Decrease at 6 mo:
|
(c) Comparison of surgical methods | ||||||
Gaborit et al. (2015) [81] | 6 mo n = 20 (8 T2D, 12 non-T2D) 43.3 ± 1.8 y (6 M, 14 F) Severely OB (BMI: > 40 or ≥ 35 kg/m2 with at least one comorbidity) | Two arms (non-RCT) with both LSG and RYGB | 3.0 Tesla MRI (Verio, Siemens, Erlangen, Germany) | Decrease at 6 mo
| Decrease at 6 mo:VAT
| Decrease at 6 mo: FPG
|
Honka et al. (2015) [82] | 6 mo n = 23 (10 T2D, 13 non-T2D) 18 to 60 y Severely OB (BMI: > 40 or ≥ 35 with additional risk factor) | Two arms (non-RCT) with both LSG and RYGB | 1.5 Tesla MRI (Gyroscan Intera CV Nova Dual, Philips, the Netherlands) | NS decrease and difference between T2D vs. NGT at 6 mo (p > 0.05) | Decrease at 6 mo: VAT
| Decrease at 6 mo: TAG
|
Hui et al. (2019) [83] | 12 mo n = 12 (4 M, 8 F) 18 to 65 y OB (BMI: ≥ 35 or ≥ 30 with MetS) | Single arm (non-RCT) with LSG, RYGB and LGCP | 3.0 Tesla MRI (Achieva, Philips, the Netherlands) | Decrease at 12 mo
| Decrease at 12 mo:
| Not reported |
Comparison of diet and surgical intervention | ||||||
Steven et al. (2016) [84] | 1 wk n = 18 (9 RYGB, 9 VLED) 25 to 65 y T2D Severely OB (BMI: ≤ 45 kg/m2) | Two arms (RCT) RYGB VLED 700 kcal/day | 3.0 Tesla MRI (Philips, the Netherlands) | Decrease at 1 wk
| Decrease at 1 wk: PFC
| Decrease at 1 wk: FPG
|
4.3. Overfeeding Intervention Trials which Include Snacking
4.4. Isocaloric Diet Intervention
4.5. Physical Activity Interventions
4.6. Combined Dietary and Physical Activity Interventions
4.7. Surgical Interventions
5. Discussion—Can We Identify the Best Practice Approach for the Amelioration of Ectopic Fat and Cardiometabolic Risk?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef] [Green Version]
- Hocking, S.; Samocha-Bonet, D.; Milner, K.L.; Greenfield, J.R.; Chisholm, D.J. Adiposity and insulin resistance in humans: The role of the different tissue and cellular lipid depots. Endocr. Rev. 2013, 34, 463–500. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, D.L.; Tchoukalova, Y.; Tam, C.S.; Covington, J.D.; Xie, W.; Schwarz, J.M.; Bajpeyi, S.; Ravussin, E. Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: Testing the “adipose tissue expandability” hypothesis. Diabetes Care 2014, 37, 2789–2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navina, S.; Acharya, C.; DeLany, J.P.; Orlichenko, L.S.; Baty, C.J.; Shiva, S.S.; Durgampudi, C.; Karlsson, J.M.; Lee, K.; Bae, K.T.; et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl. Med. 2011, 3, 107ra110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.L.; Parkinson, J.R.; Frost, G.S.; Goldstone, A.P.; Dore, C.J.; McCarthy, J.P.; Collins, A.L.; Fitzpatrick, J.A.; Durighel, G.; Taylor-Robinson, S.D.; et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity 2012, 20, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, I.R.; Yip, W.; Lu, L.; Jiang, Y.; Murphy, R.; Plank, L.; Zhang, S.; Liu, H.; Chuang, C.L.; Vazhoor-Amarsingh, G.; et al. Visceral Adiposity and Glucoregulatory Peptides are Associated with Susceptibility to Type 2 Diabetes: The TOFI_Asia Study. Obesity 2020, 28, 2368–2378. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, N.; Molavi, B.; Elbein, S.C.; Kern, P.A. Ectopic fat accumulation and metabolic syndrome. Diabetes Obes. Metab. 2007, 9, 1–10. [Google Scholar] [CrossRef]
- Ferrara, D.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell Physiol. 2019, 234, 21630–21641. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Soares, M.J.; Mohan, V.; Anoop, S.; Abhishek, V.; Vaidya, R.; Pradeepa, R. Body fat, metabolic syndrome and hyperglycemia in South Asians. J. Diabetes Complicat. 2018, 32, 1068–1075. [Google Scholar] [CrossRef]
- Neeland, I.J.; Ross, R.; Despres, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Roh, E.; Kim, K.M.; Park, K.S.; Kim, Y.J.; Chun, E.J.; Choi, S.H.; Park, K.S.; Jang, H.C.; Lim, S. Comparison of pancreatic volume and fat amount linked with glucose homeostasis between healthy Caucasians and Koreans. Diabetes Obes. Metab. 2018, 20, 2642–2652. [Google Scholar] [CrossRef]
- Saisho, Y. Pancreas volume with obesity in Asians: Comparison with whites. Pancreas 2014, 43, 657–659. [Google Scholar] [CrossRef]
- Djuric-Stefanovic, A.; Masulovic, D.; Kostic, J.; Randjic, K.; Saranovic, D. CT volumetry of normal pancreas: Correlation with the pancreatic diameters measurable by the cross-sectional imaging, and relationship with the gender, age, and body constitution. Surg. Radiol. Anat. 2012, 34, 811–817. [Google Scholar] [CrossRef]
- Skytte, M.J.; Samkani, A.; Petersen, A.D.; Thomsen, M.N.; Astrup, A.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Thomsen, H.S.; Madsbad, S.; et al. A carbohydrate-reduced high-protein diet improves HbA1c and liver fat content in weight stable participants with type 2 diabetes: A randomised controlled trial. Diabetologia 2019, 62, 2066–2078. [Google Scholar] [CrossRef]
- Schubel, R.; Nattenmuller, J.; Sookthai, D.; Nonnenmacher, T.; Graf, M.E.; Riedl, L.; Schlett, C.L.; von Stackelberg, O.; Johnson, T.; Nabers, D.; et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 108, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Langleite, T.M.; Jensen, J.; Norheim, F.; Gulseth, H.L.; Tangen, D.S.; Kolnes, K.J.; Heck, A.; Storas, T.; Grothe, G.; Dahl, M.A.; et al. Insulin sensitivity, body composition and adipose depots following 12 w combined endurance and strength training in dysglycemic and normoglycemic sedentary men. Arch. Physiol. Biochem. 2016, 122, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Heiskanen, M.A.; Motiani, K.K.; Mari, A.; Saunavaara, V.; Eskelinen, J.J.; Virtanen, K.A.; Koivumaki, M.; Loyttyniemi, E.; Nuutila, P.; Kalliokoski, K.K.; et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: A randomised controlled trial. Diabetologia 2018, 61, 1817–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinnick, K.E.; Collins, S.C.; Londos, C.; Gauguier, D.; Clark, A.; Fielding, B.A. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 2008, 16, 522–530. [Google Scholar] [CrossRef]
- Kovanlikaya, A.; Mittelman, S.D.; Ward, A.; Geffner, M.E.; Dorey, F.; Gilsanz, V. Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr. Radiol. 2005, 35, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Khalatbari-Soltani, S.; Imamura, F.; Brage, S.; De Lucia Rolfe, E.; Griffin, S.J.; Wareham, N.J.; Marques-Vidal, P.; Forouhi, N.G. The association between adherence to the Mediterranean diet and hepatic steatosis: Cross-sectional analysis of two independent studies, the UK Fenland Study and the Swiss CoLaus Study. BMC Med. 2019, 17, 19. [Google Scholar] [CrossRef]
- Willmann, C.; Heni, M.; Linder, K.; Wagner, R.; Stefan, N.; Machann, J.; Schulze, M.B.; Joost, H.G.; Haring, H.U.; Fritsche, A. Potential effects of reduced red meat compared with increased fiber intake on glucose metabolism and liver fat content: A randomized and controlled dietary intervention study. Am. J. Clin. Nutr. 2019, 109, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Ge, J.; Zhao, C.; Le, S.; Yang, Y.; Ke, D.; Wu, N.; Tan, X.; Zhang, X.; Du, X.; et al. Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: A randomized controlled trial. Sci. Rep. 2017, 7, 15952. [Google Scholar] [CrossRef] [Green Version]
- Errazuriz, I.; Dube, S.; Slama, M.; Visentin, R.; Nayar, S.; O’Connor, H.; Cobelli, C.; Das, S.K.; Basu, A.; Kremers, W.K.; et al. Randomized Controlled Trial of a MUFA or Fiber-Rich Diet on Hepatic Fat in Prediabetes. J. Clin. Endocrinol. Metab. 2017, 102, 1765–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markova, M.; Pivovarova, O.; Hornemann, S.; Sucher, S.; Frahnow, T.; Wegner, K.; Machann, J.; Petzke, K.J.; Hierholzer, J.; Lichtinghagen, R.; et al. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals with Type 2 Diabetes. Gastroenterology 2017, 152, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Goss, A.M.; Dowla, S.; Pendergrass, M.; Ashraf, A.; Bolding, M.; Morrison, S.; Amerson, A.; Soleymani, T.; Gower, B. Effects of a carbohydrate-restricted diet on hepatic lipid content in adolescents with non-alcoholic fatty liver disease: A pilot, randomized trial. Pediatr. Obes. 2020, 15, e12630. [Google Scholar] [CrossRef]
- Tengowski, M.W.; Fuerst, T.; Sirlin, C.B. Magnetic resonance imaging fatty liver changes following surgical, lifestyle or drug treatments in obese, non-alcoholic fatty liver disease or non-alcoholic steatohepatitis subjects. Imaging Med. 2017, 9, 195–214. [Google Scholar]
- Lewis, B.; Mao, J. Development of the Pancreas and Related Structures. In The Pancreas; John Wiley and Sons: Oxford, UK, 2018; pp. 1–9. [Google Scholar]
- Schwenzer, N.F.; Machann, J.; Martirosian, P.; Stefan, N.; Schraml, C.; Fritsche, A.; Claussen, C.D.; Schick, F. Quantification of Pancreatic Lipomatosis and Liver Steatosis by MRI: Comparison of In/Opposed-Phase and Spectral-Spatial Excitation Techniques. Investig. Radiol. 2008, 43, 330–337. [Google Scholar] [CrossRef]
- Saisho, Y.; Butler, A.E.; Meier, J.J.; Monchamp, T.; Allen-Auerbach, M.; Rizza, R.A.; Butler, P.C. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 2007, 20, 933–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Bae, J.H.; Chun, E.J.; Kim, H.; Kim, S.Y.; Kim, K.M.; Choi, S.H.; Park, K.S.; Florez, J.C.; Jang, H.C. Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Acta Diabetol. 2014, 51, 739–748. [Google Scholar] [CrossRef]
- DeSouza, S.V.; Singh, R.G.; Yoon, H.D.; Murphy, R.; Plank, L.D.; Petrov, M.S. Pancreas volume in health and disease: A systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 757–766. [Google Scholar] [CrossRef]
- Longnecker, D.S.; Gorelick, F.; Thompson, E.D. Anatomy, Histology, and Fine Structure of the Pancreas. In The Pancreas; John Wiley and Sons: Oxford, UK, 2018; pp. 10–23. [Google Scholar]
- Macauley, M.; Percival, K.; Thelwall, P.E.; Hollingsworth, K.G.; Taylor, R. Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS ONE 2015, 10, e0126825. [Google Scholar] [CrossRef]
- Honka, H.; Hannukainen, J.C.; Tarkia, M.; Karlsson, H.; Saunavaara, V.; Salminen, P.; Soinio, M.; Mikkola, K.; Kudomi, N.; Oikonen, V.; et al. Pancreatic metabolism, blood flow, and beta-cell function in obese humans. J. Clin. Endocrinol. Metab. 2014, 99, E981–E990. [Google Scholar] [CrossRef] [Green Version]
- Maggio, A.B.; Mueller, P.; Wacker, J.; Viallon, M.; Belli, D.C.; Beghetti, M.; Farpour-Lambert, N.J.; McLin, V.A. Increased pancreatic fat fraction is present in obese adolescents with metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Taylor, R. Intra-pancreatic fat deposition: Bringing hidden fat to the fore. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Gerst, F.; Wagner, R.; Oquendo, M.B.; Siegel-Axel, D.; Fritsche, A.; Heni, M.; Staiger, H.; Haring, H.U.; Ullrich, S. What role do fat cells play in pancreatic tissue? Mol. Metab. 2019, 25, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, J.E. Lipotoxicity: When tissues overeat. Curr. Opin. Lipidol. 2003, 14, 281–287. [Google Scholar] [CrossRef] [PubMed]
- van Raalte, D.H.; van der Zijl, N.J.; Diamant, M. Pancreatic steatosis in humans: Cause or marker of lipotoxicity? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 478–485. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Cardozo, A.K.; Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 2008, 29, 42–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Frigerio, F.; Maechler, P. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc. Trans. 2008, 36, 930–934. [Google Scholar] [CrossRef]
- Busch, A.K.; Cordery, D.; Denyer, G.S.; Biden, T.J. Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic beta-cell function. Diabetes 2002, 51, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Mandrup-Poulsen, T. beta-cell apoptosis: Stimuli and signaling. Diabetes 2001, 50 (Suppl. 1), S58–S63. [Google Scholar] [CrossRef] [PubMed]
- Lupi, R.; Dotta, F.; Marselli, L.; Del Guerra, S.; Masini, M.; Santangelo, C.; Patane, G.; Boggi, U.; Piro, S.; Anello, M.; et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 2002, 51, 1437–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, M.M.; van Geenen, E.J. The clinical significance of pancreatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 169–177. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.L.; Zhang, D.D.; Lin, H.Y.; Dai, X.H.; Sun, X.L.; Li, J.T.; Song, L.Y.; Peng, H.; Wen, M.M. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology 2016, 16, 578–583. [Google Scholar] [CrossRef]
- Cohen, M.; Syme, C.; Deforest, M.; Wells, G.; Detzler, G.; Cheng, H.L.; McCrindle, B.; Hanley, A.; Hamilton, J. Ectopic fat in youth: The contribution of hepatic and pancreatic fat to metabolic disturbances. Obesity 2014, 22, 1280–1286. [Google Scholar] [CrossRef]
- Szczepaniak, L.S.; Victor, R.G.; Mathur, R.; Nelson, M.D.; Szczepaniak, E.W.; Tyer, N.; Chen, I.; Unger, R.H.; Bergman, R.N.; Lingvay, I. Pancreatic steatosis and its relationship to beta-cell dysfunction in humans: Racial and ethnic variations. Diabetes Care 2012, 35, 2377–2383. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.P.; Berthold, F.; Mayerle, J.; Volzke, H.; Reeder, S.B.; Rathmann, W.; Lerch, M.M.; Hosten, N.; Hegenscheid, K.; Meffert, P.J. Pancreatic Steatosis Demonstrated at MR Imaging in the General Population: Clinical Relevance. Radiology 2015, 276, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popp, D.; Aertsen, S.; Luetke-Daldrup, C.; Coppenrath, E.; Hetterich, H.; Saam, T.; Rottenkolber, M.; Seissler, J.; Lechner, A.; Sommer, N.N. No Correlation of Pancreatic Fat and beta-Cell Function in Young Women with and Without a History of Gestational Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 3260–3266. [Google Scholar] [CrossRef]
- Heber, S.D.; Hetterich, H.; Lorbeer, R.; Bayerl, C.; Machann, J.; Auweter, S.; Storz, C.; Schlett, C.L.; Nikolaou, K.; Reiser, M.; et al. Pancreatic fat content by magnetic resonance imaging in subjects with prediabetes, diabetes, and controls from a general population without cardiovascular disease. PLoS ONE 2017, 12, e0177154. [Google Scholar] [CrossRef] [Green Version]
- Murakami, R.; Saisho, Y.; Watanabe, Y.; Inaishi, J.; Tsuchiya, T.; Kou, K.; Sato, S.; Kitago, M.; Kitagawa, Y.; Yamada, T.; et al. Pancreas Fat and beta Cell Mass in Humans with and Without Diabetes: An Analysis in the Japanese Population. J. Clin. Endocrinol. Metab. 2017, 102, 3251–3260. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Tsuboya, T.; Katanuma, A.; Kodama, Y.; Tauchi, S.; Dohke, M.; Maguchi, H. Lack of Independent Association Between Fatty Pancreas and Incidence of Type 2 Diabetes: 5-Year Japanese Cohort Study. Diabetes Care 2016, 39, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Tauchi, S.; Kimachi, M.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Yamamoto, Y.; Fukuhara, S.; Fukuma, S. Independent association between prediabetes and future pancreatic fat accumulation: A 5-year Japanese cohort study. J. Gastroenterol. 2018, 53, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Tauchi, S.; Wang, J.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Saisho, Y.; Kamitani, T.; Fukuhara, S.; et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: A 6-year computed tomography-based cohort study. J. Gastroenterol. 2020, 55, 712–721. [Google Scholar] [CrossRef]
- Lee, Y.; Lingvay, I.; Szczepaniak, L.S.; Ravazzola, M.; Orci, L.; Unger, R.H. Pancreatic steatosis: Harbinger of type 2 diabetes in obese rodents. Int. J. Obes. 2010, 34, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Quiclet, C.; Dittberner, N.; Gassler, A.; Stadion, M.; Gerst, F.; Helms, A.; Baumeier, C.; Schulz, T.J.; Schurmann, A. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 2019, 97, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ichii, O.; Irie, T.; Kouguchi, H.; Sotozaki, K.; Chihara, M.; Sunden, Y.; Nagasaki, K.I.; Tatsumi, O.; Elewa, Y.H.A.; et al. Cotton rat (Sigmodon hispidus) develops metabolic disorders associated with visceral adipose inflammation and fatty pancreas without obesity. Cell Tissue Res. 2019, 375, 483–492. [Google Scholar] [CrossRef]
- Andreoli, A.; Garaci, F.; Cafarelli, F.P.; Guglielmi, G. Body composition in clinical practice. Eur. J. Radiol. 2016, 85, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Van der Zijl, N.J.; Goossens, G.H.; Moors, C.C.; van Raalte, D.H.; Muskiet, M.H.; Pouwels, P.J.; Blaak, E.E.; Diamant, M. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: Impact on beta-cell function in individuals with impaired glucose metabolism. J. Clin. Endocrinol. Metab. 2011, 96, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Wong, V.W.; Wong, G.L.; Yeung, D.K.; Abrigo, J.M.; Kong, A.P.; Chan, R.S.; Chim, A.M.; Shen, J.; Ho, C.S.; Woo, J.; et al. Fatty pancreas, insulin resistance, and beta-cell function: A population study using fat-water magnetic resonance imaging. Am. J. Gastroenterol. 2014, 109, 589–597. [Google Scholar] [CrossRef]
- Rossi, A.P.; Fantin, F.; Zamboni, G.A.; Mazzali, G.; Zoico, E.; Bambace, C.; Antonioli, A.; Pozzi Mucelli, R.; Zamboni, M. Effect of moderate weight loss on hepatic, pancreatic and visceral lipids in obese subjects. Nutr. Diabetes 2012, 2, e32. [Google Scholar] [CrossRef] [Green Version]
- Raynor, H.A.; Steeves, E.A. Weight Management: Weight Maintenance. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; pp. 416–421. [Google Scholar]
- Astbury, N.M.; Aveyard, P.; Nickless, A.; Hood, K.; Corfield, K.; Lowe, R.; Jebb, S.A. Doctor Referral of Overweight People to Low Energy total diet replacement Treatment (DROPLET): Pragmatic randomised controlled trial. BMJ 2018, 362, k3760. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.; Meinert Larsen, T.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.; Hansen, S.; Ritz, C.; Astrup, A.; et al. Men and women respond differently to rapid weight loss: Metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 2018, 20, 2840–2851. [Google Scholar] [CrossRef] [Green Version]
- Raben, A.; Vestentoft, P.S.; Brand-Miller, J.; Jalo, E.; Drummen, M.; Simpson, L.; Martinez, J.A.; Handjieva-Darlenska, T.; Stratton, G.; Huttunen-Lenz, M.; et al. The PREVIEW intervention study: Results from a 3-year randomized 2 × 2 factorial multinational trial investigating the role of protein, glycaemic index and physical activity for prevention of type 2 diabetes. Diabetes Obes. Metab. 2020, 23, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steven, S.; Hollingsworth, K.G.; Al-Mrabeh, A.; Avery, L.; Aribisala, B.; Caslake, M.; Taylor, R. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016, 39, 808–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mrabeh, A.; Zhyzhneuskaya, S.V.; Peters, C.; Barnes, A.C.; Melhem, S.; Jesuthasan, A.; Aribisala, B.; Hollingsworth, K.G.; Lietz, G.; Mathers, J.C.; et al. Hepatic Lipoprotein Export and Remission of Human Type 2 Diabetes after Weight Loss. Cell Metab. 2020, 31, 233–249.e4. [Google Scholar] [CrossRef]
- Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.; Ahlstrom, H.; Arner, P.; Dahlman, I.; et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014, 63, 2356–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosqvist, F.; Kullberg, J.; Stahlman, M.; Cedernaes, J.; Heurling, K.; Johansson, H.E.; Iggman, D.; Wilking, H.; Larsson, A.; Eriksson, O.; et al. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared with Polyunsaturated Fat: A Randomized Trial. J. Clin. Endocrinol. Metab. 2019, 104, 6207–6219. [Google Scholar] [CrossRef] [Green Version]
- Dikariyanto, V.; Smith, L.; Francis, L.; Robertson, M.; Kusaslan, E.; O’Callaghan-Latham, M.; Palanche, C.; D’Annibale, M.; Christodoulou, D.; Basty, N.; et al. Snacking on whole almonds for 6 weeks improves endothelial function and lowers LDL cholesterol but does not affect liver fat and other cardiometabolic risk factors in healthy adults: The ATTIS study, a randomized controlled trial. Am. J. Clin. Nutr. 2020, 111, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Della Pepa, G.; Brancato, V.; Costabile, G.; Salamone, D.; Corrado, A.; Vitale, M.; Cavaliere, C.; Mancini, M.; Salvatore, M.; Luongo, D.; et al. An Isoenergetic Multifactorial Diet Reduces Pancreatic Fat and Increases Postprandial Insulin Response in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2022, 45, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.J.; Steveling, A.; Meffert, P.J.; Kromrey, M.L.; Kessler, R.; Hosten, N.; Kruger, J.; Gartner, S.; Aghdassi, A.A.; Mayerle, J.; et al. Magnetic Resonance Imaging of Changes in Abdominal Compartments in Obese Diabetics during a Low-Calorie Weight-Loss Program. PLoS ONE 2016, 11, e0153595. [Google Scholar] [CrossRef]
- Gepner, Y.; Shelef, I.; Schwarzfuchs, D.; Zelicha, H.; Tene, L.; Yaskolka Meir, A.; Tsaban, G.; Cohen, N.; Bril, N.; Rein, M.; et al. Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools: CENTRAL Magnetic Resonance Imaging Randomized Controlled Trial. Circulation 2018, 137, 1143–1157. [Google Scholar] [CrossRef]
- Umemura, A.; Sasaki, A.; Nitta, H.; Baba, S.; Ando, T.; Kajiwara, T.; Ishigaki, Y. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy. Endocr. J. 2017, 64, 487–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covarrubias, Y.; Fowler, K.J.; Mamidipalli, A.; Hamilton, G.; Wolfson, T.; Leinhard, O.D.; Jacobsen, G.; Horgan, S.; Schwimmer, J.B.; Reeder, S.B.; et al. Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity. J. Magn. Reason. Imaging 2019, 50, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Steven, S.; Hollingsworth, K.G.; Small, P.K.; Woodcock, S.A.; Pucci, A.; Aribisala, B.; Al-Mrabeh, A.; Daly, A.K.; Batterham, R.L.; Taylor, R. Weight Loss Decreases Excess Pancreatic Triacylglycerol Specifically in Type 2 Diabetes. Diabetes Care 2016, 39, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, A.; Wernecke, M.; Riedel, N.; Veigel, J.; Yamamura, J.; Keller, S.; Jung, R.; Busch, P.; Mann, O.; Knop, F.K.; et al. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss. Diabetes Metab. Res. Rev. 2018, 34, e3025. [Google Scholar] [CrossRef]
- Gaborit, B.; Abdesselam, I.; Kober, F.; Jacquier, A.; Ronsin, O.; Emungania, O.; Lesavre, N.; Alessi, M.C.; Martin, J.C.; Bernard, M.; et al. Ectopic fat storage in the pancreas using 1H-MRS: Importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int. J. Obes. 2015, 39, 480–487. [Google Scholar] [CrossRef]
- Honka, H.; Koffert, J.; Hannukainen, J.C.; Tuulari, J.J.; Karlsson, H.K.; Immonen, H.; Oikonen, V.; Tolvanen, T.; Soinio, M.; Salminen, P.; et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J. Clin. Endocrinol. Metab. 2015, 100, 2015–2023. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.C.N.; Wong, S.K.H.; Ai, Q.; Yeung, D.K.W.; Ng, E.K.W.; Chu, W.C.W. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: Evaluation with MRI. Eur. Radiol. 2019, 29, 849–856. [Google Scholar] [CrossRef]
- Steven, S.; Hollingsworth, K.G.; Small, P.K.; Woodcock, S.A.; Pucci, A.; Aribasala, B.; Al-Mrabeh, A.; Batterham, R.L.; Taylor, R. Calorie restriction and not glucagon-like peptide-1 explains the acute improvement in glucose control after gastric bypass in Type 2 diabetes. Diabet. Med. 2016, 33, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- American Society for Metabolic and Bariatric Surgery. Available online: https://asmbs.org/patients/bariatric-surgery-procedures (accessed on 6 October 2022).
- Li, Y.H.; Wang, B.Y.; Huang, Y.C.; Tsao, L.C.; Chan, C.P.; Huang, C.Y.; Chang, H.C. Clinical Outcomes of Laparoscopic Greater Curvature Plication and Laparoscopic Sleeve Gastrectomy: A Case-Matched Control Study. Obes. Surg. 2019, 29, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Kim, H.; Cho, J.Y.; Lim, S.; Cha, K.; Lee, K.H.; Kim, Y.H.; Kim, J.H.; Yoon, Y.S.; Han, H.S.; et al. Quantitative assessment of pancreatic fat by using unenhanced CT: Pathologic correlation and clinical implications. Radiology 2014, 271, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, K.; Yamada, Y.; Ban, N.; Ihara, Y.; Tsukiyama, K.; Zhou, H.; Fujimoto, S.; Oku, A.; Tsuda, K.; Toyokuni, S.; et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 2002, 8, 738–742. [Google Scholar] [CrossRef]
- Hyder, A.; Zenhom, M.; Klapper, M.; Herrmann, J.; Schrezenmeir, J. Expression of fatty acid binding proteins 3 and 5 genes in rat pancreatic islets and INS-1E cells: Regulation by fatty acids and glucose. Islets 2010, 2, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Colles, S.L.; Dixon, J.B.; Marks, P.; Strauss, B.J.; O’Brien, P.E. Preoperative weight loss with a very-low-energy diet: Quantitation of changes in liver and abdominal fat by serial imaging. Am. J. Clin. Nutr. 2006, 84, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R. Calorie restriction for long-term remission of type 2 diabetes. Clin. Med. 2019, 19, 37–42. [Google Scholar] [CrossRef]
- Taylor, R.; Ramachandran, A.; Yancy, W.S., Jr.; Forouhi, N.G. Nutritional basis of type 2 diabetes remission. BMJ 2021, 374, n1449. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages |
---|---|---|
Ultrasound |
|
|
CT 1 |
|
|
MRI 2/MRS 3 |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiu, K.H.; Poppitt, S.D.; Miles-Chan, J.L.; Sequeira, I.R. Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions. Nutrients 2022, 14, 4873. https://doi.org/10.3390/nu14224873
Leiu KH, Poppitt SD, Miles-Chan JL, Sequeira IR. Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions. Nutrients. 2022; 14(22):4873. https://doi.org/10.3390/nu14224873
Chicago/Turabian StyleLeiu, Kok Hong, Sally D. Poppitt, Jennifer L. Miles-Chan, and Ivana R. Sequeira. 2022. "Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions" Nutrients 14, no. 22: 4873. https://doi.org/10.3390/nu14224873
APA StyleLeiu, K. H., Poppitt, S. D., Miles-Chan, J. L., & Sequeira, I. R. (2022). Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions. Nutrients, 14(22), 4873. https://doi.org/10.3390/nu14224873