The Metabolic Role of Ketogenic Diets in Treating Epilepsy
Abstract
:1. Introduction
2. Research Methodology
3. Study Results
3.1. Epilepsy
3.2. Prevalence
3.3. Diagnosis
3.4. Mortality
3.5. Epilepsy Therapy
3.6. Medicines
3.7. Surgery
3.8. Dietary Treatment
3.9. Ketogenic Diet
3.10. Types of KD
3.11. Biochemistry of KD
3.12. Efficacy of the KD
3.13. Increased Bio-Energetic Reaction
3.14. Anti-Inflammatory and Antioxidative Behavior
3.15. KD and Pathophysiology of Epilepsy
3.16. Administration of KD
3.17. Acceptability and Adverse Effects of KD
4. Importance of KD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verrotti, A.; Iapadre, G.; Di Francesco, L.; Zagaroli, L.; Farello, G. Diet in the Treatment of Epilepsy: What We Know So Far. Nutrients 2020, 12, 2645. [Google Scholar] [CrossRef] [PubMed]
- López, S.V.; Ramos-Jiménez, C.; de la Cruz Reyes, L.A.; Ruiz, A.K.G.; Arriola, L.A.B.; Olivares, J.M.M.; Galindo, E.G.A.; Pedroza, I.F.P.; San-Juan, D. Epilepsy diagnosis based on one unprovoked seizure and ≥60% risk. A systematic review of the etiologies. Epilepsy Behav. 2021, 125, 108392. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, A.; Miyazaki, Y.; Yokoi, N.; Shigematsu, H.; Sato, Y.; Goto-Ito, S.; Maeda, A.; Goto, T.; Sanbo, M.; Hirabayashi, M.; et al. Structural basis of epilepsy-related ligand–receptor complex LGI1–ADAM22. Nat. Commun. 2018, 9, 1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granata, T.; Marchi, N.; Carlton, E.; Ghosh, C.; Gonzalez-Martinez, J.; Alexopoulos, A.V.; Janigro, D. Management of the patient with medically refractory epilepsy. Expert. Rev. Neurother. 2009, 9, 1791–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, L.; Schoeler, N.E.; Langan, D.; Cross, J.H. Use of ketogenic diet therapy in infants with epilepsy: A systematic review and meta-analysis. Epilepsia 2020, 61, 1261–1281. [Google Scholar] [CrossRef]
- Martin-McGill, K.J.; Bresnahan, R.; Levy, R.G.; Cooper, P.N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev. 2018, 11, CD001903. [Google Scholar] [CrossRef]
- D’Andrea Meira, I.; Romão, T.T.; Pires do Prado, H.J.; Krüger, L.T.; Pires, M.E.P.; da Conceição, P.O. Ketogenic Diet and Epilepsy: What We Know So Far. Front. Neurosci. 2019, 13, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, A.; Kwon, H.E.; Kim, H.D. Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed. J. 2022, 45, 19–26. [Google Scholar] [CrossRef]
- Armeno, M.; Verini, A.; Caballero, E.; Cresta, A.; Valenzuela, G.R.; Caraballo, R. Long-term effectiveness and adverse effects of ketogenic diet therapy in infants with drug-resistant epilepsy treated at a single center in Argentina. Epilepsy Res. 2021, 178, 106793. [Google Scholar] [CrossRef]
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Thijs, R.D.; Surges, R.; O‘Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Perucca, P.; Bahlo, M.; Berkovic, S.F. The Genetics of Epilepsy. Annu. Rev. Genomics. Hum. Genet. 2020, 21, 205–230. [Google Scholar] [CrossRef]
- Falco-Walter, J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020, 40, 617–623. [Google Scholar] [CrossRef]
- Pressler, R.M.; Cilio, M.R.; Mizrahi, E.M.; Moshé, S.L.; Nunes, M.L.; Plouin, P.; Vanhatalo, S.; Yozawitz, E.; de Vries, L.S.; Puthenveettil Vinayan, K.; et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia 2021, 62, 615–628. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, C.; Koren, J.; Britto-Arias, M.; Schmidt, S.; Pirker, S. Epidemiology and pathophysiology of autonomic seizures: A systematic review. Clin. Auton. Res. 2019, 29, 137–150. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Sander, J.W. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav. 2020, 105, 106949. [Google Scholar] [CrossRef] [PubMed]
- Jovel, C.A.E.; Salazar, S.R.; Rodríguez, C.R.; Mejía, F.E.S. Factors associated with quality of life in a low-income population with epilepsy. Epilepsy Res. 2016, 127, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.; Sabri, A.A.; Ahmad, N.; Akram, M.N.; Hussain, H.A.; Rasool, A.G. Epidemiological study of epilepsy in Faisalabad. Prof. Med. J. 2020, 27, 2608–2612. [Google Scholar] [CrossRef]
- Subota, A.; Khan, S.; Josephson, C.B.; Manji, S.; Lukmanji, S.; Roach, P.; Wiebe, S.; Buchhalter, J.; Federico, P.; Teskey, G.C.; et al. Signs and symptoms of the postictal period in epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2019, 94, 243–251. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Curtis, A.; Carapetian, A.; Hovsepian, D.; Krishnadasan, A.; Markovic, D. Why are epilepsy mortality rates rising in the United States? A population-based multiple cause-of-death study. BMJ Open 2020, 10, e035767. [Google Scholar] [CrossRef] [PubMed]
- Mula, M. Emerging drugs for focal epilepsy. Expert Opin. Emerg. Drugs 2018, 23, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Quintana, M.; Sánchez-López, J.; Mazuela, G.; Santamarina, E.; Abraira, L.; Fonseca, E.; Seijo, I.; Álvarez-Sabin, J.; Toledo, M. Incidence and mortality in adults with epilepsy in northern Spain. Acta Neurol. Scand. 2021, 143, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Kuchenbuch, M. Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat. Rev. Neurol. 2020, 16, 674–688. [Google Scholar] [CrossRef]
- Krasowski, M.D.; McMillin, G.A. Advances in anti-epileptic drug testing. Clin. Chim. Acta 2014, 436, 224–236. [Google Scholar] [CrossRef]
- de Biase, S.; Nilo, A.; Bernardini, A.; Gigli, G.L.; Valente, M.; Merlino, G. Timing use of novel anti-epileptic drugs: Is earlier better? Expert Rev. Neurother. 2019, 19, 945–954. [Google Scholar] [CrossRef]
- Mobed, A.; Shirafkan, M.; Charsouei, S. Biosensors technology for anti-epileptic drugs. Clin. Chim. Acta 2022, 533, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Málaga, I.; Sánchez-Carpintero, R.; Roldán, S.; Ramos-Lizana, J.; García-Peñas, J.J. New anti-epileptic drugs in paediatrics. An. Pediatría (English Ed.) 2019, 91, e1–e415. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Löscher, W.; Rho, J.M. Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harb. Perspect. Med. 2016, 6, a022780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.J.; Wong, T.T.; Huang, C.C.; Chang, H.; Hsieh, K.L.C.; Tsai, M.L.; Yang, Y.S.; Chen, C.L. Quantitative analysis of intraoperative electrocorticography mirrors histopathology and seizure outcome after epileptic surgery in children. J. Formos. Med. Assoc. 2021, 120, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Consales, A.; Casciato, S.; Asioli, S.; Barba, C.; Caulo, M.; Colicchio, G.; Cossu, M.; de Palma, L.; Morano, A.; Vatti, G.; et al. The surgical treatment of epilepsy. Neurol. Sci. 2021, 42, 2249–2260. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Beeres, K.; Elger, C.E.; Kuczaty, S.; Schramm, J.; Hoppe, C. Cognitive outcome of pediatric epilepsy surgery across ages and different types of surgeries: A monocentric 1-year follow-up study in 306 patients of school age. Seizure 2020, 77, 86–92. [Google Scholar] [CrossRef]
- Numis, A.L.; da Gente, G.; Sherr, E.H.; Glass, H.C. Whole-exome sequencing with targeted analysis and epilepsy after acute symptomatic neonatal seizures. Pediatr. Res. 2022, 91, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Janmohamed, M.; Brodie, M.J.; Kwan, P. Pharmacoresistance—Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology 2020, 168, 107790. [Google Scholar] [CrossRef] [PubMed]
- Zarnowska, I.M. Therapeutic Use of the Ketogenic Diet in Refractory Epilepsy: What We Know and What Still Needs to Be Learned. Nutrients 2020, 12, 2616. [Google Scholar] [CrossRef]
- Tekin, E.; Serdaroğlu, F.M.; Şahin, Ş.; Taşdemir, H.A. Ketogenic diet experience at Ondokuz Mayıs University. Neurol. Sci. 2021, 42, 2481–2485. [Google Scholar] [CrossRef]
- Li, R.J.; Liu, Y.; Liu, H.Q.; Li, J. Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration. J. Food Biochem. 2020, 44, 13140. [Google Scholar] [CrossRef]
- Dabek, A.; Wojtala, M.; Pirola, L.; Balcerczyk, A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients 2020, 12, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.; Swaminathan, A.; Paseka, J.; Hanson, C. Efficacy and Safety of a Ketogenic Diet in Children and Adolescents with Refractory Epilepsy—A Review. Nutrients 2020, 12, 1809. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, K.K.; Gupta, S. Biochemistry, Ketogenesis; StatPearls Publishers; StatPearls [Internet]. 2022. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29630231 (accessed on 10 February 2022).
- Masino, S.A.; Li, T.; Theofilas, P.; Sandau, U.S.; Ruskin, D.N.; Fredholm, B.B.; Geiger, J.D.; Aronica, E.; Boison, D. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J. Clin. Investig. 2011, 121, 2679–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Shan, W.; Zhu, F.; Wu, J.; Wang, Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front. Neurol. 2019, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, M.; Hall, K.D.; Guo, J.; Ravussin, E.; Mayer, L.S.; Reitman, M.L.; Smith, S.R.; Walsh, B.T.; Leibel, R.L. Glucose and Lipid Homeostasis and Inflammation in Humans Following an Isocaloric Ketogenic Diet. Obesity 2019, 27, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Dunwiddie, T.V.; Diao, L.; Proctor, W.R. Adenine Nucleotides Undergo Rapid, Quantitative Conversion to Adenosine in the Extracellular Space in Rat Hippocampus. J. Neurosci. 1997, 17, 7673–7682. [Google Scholar] [CrossRef]
- Kawamura, M.; Ruskin, D.N.; Masino, S.A. Metabolic Autocrine Regulation of Neurons Involves Cooperation among Pannexin Hemichannels, Adenosine Receptors, and KATP Channels. J. Neurosci. 2010, 30, 3886–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.-Y.; Zhou, H.-H.; Jin, W.-L. Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Front. Neurosci. 2019, 13, 512. [Google Scholar] [CrossRef] [Green Version]
- Plum, L. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J. Clin. Investig. 2006, 116, 1886–1901. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Khattab, F.; Chae, H.; Desmet, L.; Herrera, P.L.; Gilon, P. KATP channel blockers control glucagon secretion by distinct mechanisms: A direct stimulation of α-cells involving a [Ca2+]c rise and an indirect inhibition mediated by somatostatin. Mol. Metab. 2021, 53, 101268. [Google Scholar] [CrossRef]
- Yang, H.Q.; Echeverry, F.A.; ElSheikh, A.; Gando, I.; Arredondo, S.A.; Samper, N.; Cardozo, T.; Delmar, M.; Shyng, S.L.; Coetzee, W.A. Subcellular trafficking and endocytic recycling of K ATP channels. Am. J. Physiol. Physiol. 2022, 322, C1230–C1247. [Google Scholar] [CrossRef]
- Lutas, A.; Yellen, G. The ketogenic diet: Metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013, 36, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ułamek-Kozioł, M.; Czuczwar, S.J.; Januszewski, S.; Pluta, R. Ketogenic Diet and Epilepsy. Nutrients 2019, 11, 2510. [Google Scholar] [CrossRef] [Green Version]
- Kayode, O.T.; Rotimi, D.E.; Afolayan, O.A.; Kayode, A.A. Ketogenic diet: A nutritional remedy for some metabolic disorders. J. Educ. Health Sport. 2020, 10, 180–188. [Google Scholar] [CrossRef]
- Hartman, A.L.; Gasior, M.; Vining, E.P.; Rogawski, M.A. The Neuropharmacology of the Ketogenic Diet. Pediatr. Neurol. 2007, 36, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Tognini, P. Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet. Nutrients 2022, 14, 782. [Google Scholar] [CrossRef]
- Molteberg, E.; Thorsby, P.M.; Kverneland, M.; Iversen, P.O.; Selmer, K.K.; Nakken, K.O.; Taubøll, E. Effects of modified Atkins diet on thyroid function in adult patients with pharmacoresistant epilepsy. Epilepsy Behav. 2020, 111, 107285. [Google Scholar] [CrossRef]
- Cervenka, M.C.; Barron, B.J.; Kossoff, E.H.; Zahava Turner, R.D. The Ketogenic and Modified Atkins Diets: Treatments for Epilepsy and Other Disorders. 2016. Available online: https://ebookcentral.proquest.com/lib/unc/detail.action?docID=4429634 (accessed on 10 February 2022).
- Dou, X.; Xu, X.; Mo, T.; Chen, H.; Wang, Z.; Li, X.; Jia, S.; Wang, D. Evaluation of the seizure control and the tolerability of ketogenic diet in Chinese children with structural drug-resistant epilepsy. Seizure 2022, 94, 43–51. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Zupec-Kania, B.A.; Amark, P.E.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Helen Cross, J.; Dahlin, M.G.; et al. Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia 2009, 50, 304–317. [Google Scholar] [CrossRef]
- Feinman, R.D. The biochemistry of low-carbohydrate and ketogenic diets. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 261–268. [Google Scholar] [CrossRef]
- Longo, R.; Peri, C.; Cricrì, D.; Coppi, L.; Caruso, D.; Mitro, N.; De Fabiani, E.; Crestani, M. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019, 11, 2497. [Google Scholar]
- Bruci, A.; Tuccinardi, D.; Tozzi, R.; Balena, A.; Santucci, S.; Frontani, R.; Mariani, S.; Basciani, S.; Spera, G.; Gnessi, L.; et al. Very Low-Calorie Ketogenic Diet: A Safe and Effective Tool for Weight Loss in Patients with Obesity and Mild Kidney Failure. Nutrients 2020, 12, 333. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, B.J.; Koutnik, A.P.; Goldberg, E.L.; Upadhyay, V.; Turnbaugh, P.J.; Verdin, E.; Newman, J.C. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections. Med 2020, 1, 43–65. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Puri, B.K.; Carvalho, A.; Maes, M.; Berk, M.; Ruusunen, A.; Olive, L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int. J. Neuropsychopharmacol. 2020, 23, 366–384. [Google Scholar] [CrossRef] [Green Version]
- Madaan, P.; Jauhari, P.; Chakrabarty, B.; Gulati, S. Ketogenic Diet in Epilepsy of Infancy with Migrating Focal Seizures. Pediatr. Neurol. 2019, 95, 92. [Google Scholar] [CrossRef] [PubMed]
- Green, S.F.; Nguyen, P.; Kaalund-Hansen, K.; Rajakulendran, S.; Murphy, E. Effectiveness, retention, and safety of modified ketogenic diet in adults with epilepsy at a tertiary-care centre in the UK. J. Neurol. 2020, 267, 1171–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Chen, J.; Zhang, J.; Yang, X.; Ji, T.; Zhang, Y.; Wu, Y.; Fang, F.; Wu, X.; Zhang, Y. The Efficacy of Ketogenic Diet in 60 Chinese Patients with Dravet Syndrome. Front Neurol. 2019, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- Lucchi, C.; Marchiò, M.; Caramaschi, E.; Giordano, C.; Giordano, R.; Guerra, A.; Biagini, G. Electrographic Changes Accompanying Recurrent Seizures under Ketogenic Diet Treatment. Pharmaceuticals 2017, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Marchiò, M.; Roli, L.; Giordano, C.; Trenti, T.; Guerra, A.; Biagini, G. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet. Clin. Nutr. 2019, 38, 954–957. [Google Scholar] [CrossRef]
- Masino, S.A.; Rho, J.M. Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Res. 2019, 1703, 26–30. [Google Scholar] [CrossRef]
- Grigolon, R.B.; Gerchman, F.; Schöffel, A.C.; Hawken, E.R.; Gill, H.; Vazquez, G.H.; Mansur, R.B.; McIntyre, R.S.; Brietzke, E. Mental, emotional, and behavioral effects of ketogenic diet for non-epileptic neuropsychiatric conditions. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2020, 102, 109947. [Google Scholar] [CrossRef]
- Boison, D.; Steinhäuser, C. Epilepsy and astrocyte energy metabolism. Glia 2018, 66, 1235–1243. [Google Scholar] [CrossRef]
- Simeone, T.A.; Simeone, K.A.; Stafstrom, C.E.; Rho, J.M. Do ketone bodies mediate the anti-seizure effects of the ketogenic diet? Neuropharmacology 2018, 133, 233–241. [Google Scholar] [CrossRef]
- Barzegar, M.; Afghan, M.; Tarmahi, V.; Behtari, M.; Rahimi Khamaneh, S.; Raeisi, S. Ketogenic diet: Overview, types, and possible anti-seizure mechanisms. Nutr. Neurosci. 2021, 24, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741.e13. [Google Scholar] [CrossRef] [Green Version]
- Schwantje, M.; Verhagen, L.M.; van Hasselt, P.M.; Fuchs, S.A. Glucose transporter type 1 deficiency syndrome and the ketogenic diet. J. Inherit. Metab. Dis. 2020, 43, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M.; Kunugi, H. Intermittent Fasting, Dietary Modifications, and Exercise for the Control of Gestational Diabetes and Maternal Mood Dysregulation: A Review and a Case Report. Int. J. Environ. Res. Public Health 2020, 17, 9379. [Google Scholar] [CrossRef]
- Zhu, T.W.; Zhang, X.; Zong, M.H.; Linhardt, R.J.; Wu, H.; Li, B. Storage stability studies on interesterified blend-based fast-frozen special fats for oxidative stability, crystallization characteristics and physical properties. Food Chem. 2020, 306, 125563. [Google Scholar] [CrossRef] [PubMed]
- Manville, R.W.; Abbott, G.W. Potassium channels act as chemosensors for solute transporters. Commun. Biol. 2020, 3, 90. [Google Scholar] [CrossRef] [Green Version]
- El-Rashidy, O.F.; Youssef, M.M.; Elgendy, Y.G.; Mohsen, M.A.; Morsy, S.M.; Dawh, S.A.; Saad, K. Selenium and antioxidant levels in children with intractable epilepsy receiving ketogenic diet. Acta Neurol. Belg. 2020, 120, 375–380. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Tromba, V.; Silvestri, F.; Costantino, F. Epilepsy in children with type 1 diabetes mellitus: Pathophysiological basis and clinical hallmarks. Eur. J. Paediatr. Neurol. 2019, 23, 240–247. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Akbari, M.E.; Mirzaei, H.R.; Mehrad-Majd, H.; Kalamian, M.; Davoodi, S.H. Feasibility, Safety, and Beneficial Effects of MCT-Based Ketogenic Diet for Breast Cancer Treatment: A Randomized Controlled Trial Study. Nutr. Cancer 2020, 72, 627–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, J.N.; Sharma, S. Current Perspectives On The Role Of The Ketogenic Diet In Epilepsy Management. Neuropsychiatr. Dis. Treat. 2019, 15, 3273–3285. [Google Scholar] [CrossRef] [PubMed]
- Brietzke, E.; Mansur, R.B.; Subramaniapillai, M.; Balanzá-Martínez, V.; Vinberg, M.; González-Pinto, A.; Rosenblat, J.D.; Ho, R.; McIntyre, R.S. Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci. Biobehav. Rev. 2018, 94, 11–16. [Google Scholar] [CrossRef] [PubMed]
- McDonald, T.J.; Henry-Barron, B.J.; Felton, E.A.; Gutierrez, E.G.; Barnett, J.; Fisher, R.; Lwin, M.; Jan, A.; Vizthum, D.; Kossoff, E.H.; et al. Improving compliance in adults with epilepsy on a modified Atkins diet: A randomized trial. Seizure 2018, 60, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lorenzo, C.; Coppola, G.; Di Lenola, D.; Evangelista, M.; Sirianni, G.; Rossi, P.; Di Lorenzo, G.; Serrao, M.; Pierelli, F. Efficacy of Modified Atkins Ketogenic Diet in Chronic Cluster Headache: An Open-Label, Single-Arm, Clinical Trial. Front. Neurol. 2018, 9, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, D.S. The Ketogenic Diet: Evidence for Optimism but High-Quality Research Needed. J. Nutr. 2020, 150, 1354–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattak, S.H.; Begum, S.; Aqeel, M.; Fayyaz, M.; Bangash, S.A.K.; Riaz, M.N.; Saeed, S.; Ahmed, A.; Ali, G.M. Investigating the Allelic Variation of Loci Controlling Rust Resistance Genes in Wheat (Triticum aestivum L.) Land Races by Ssr Marker. Appl. Ecol. Environ. Res. 2020, 18, 8091–8118. [Google Scholar] [CrossRef]
- Qaiser, R.; Fayyaz, M.; Sufiyan, M.; Khattak, S.H.; Sandhu, K.S.; Sidhu, G.S. Genome-wide association mapping and population structure for stripe rust in Pakistani wheat germplasm. Pakistan J. Bot. 2020, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Waqar, A.; Khattak, S.H.; Begum, S.; Rehman, T.; Shehzad, A.; Ajmal, W.; Zia, S.S.; Siddiqi, I.; Ali, G.M. Stripe Rust: A Review of the Disease, Yr Genes and its Molecular Markers. Sarhad J. Agric. 2018, 34, 188–201. [Google Scholar] [CrossRef]
- Begum, S.; Khan, M.R.; Jan, A.; Rahman, H.; Khattak, S.H.; Saeed, S.; Ahmed, A.; Ali, G.M. Genetic Transformation of the Epsps Herbicide Resistance Gene in Agrobacterium Mediated Peanut (Arachis hypogaea L.) and Effective Revival of Transgenic Plants. Appl. Ecol. Environ. Res. 2022, 20, 1335–1349. [Google Scholar] [CrossRef]
- Zupec-Kania, B. KetoCalculator: A web-based calculator for the ketogenic diet. Epilepsia 2008, 49, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.G.; Cho, Y.W.; Kim, K.T.; Kim, D.W.; Yang, K.I.; Lee, S.T.; Byun, J.I.; No, Y.J.; Kang, K.W.; Kim, D. Pharmacological Treatment of Epilepsy in Elderly Patients. J. Clin. Neurol. 2020, 16, 556. [Google Scholar] [CrossRef] [PubMed]
- van der Louw, E.; van den Hurk, D.; Neal, E.; Leiendecker, B.; Fitzsimmon, G.; Dority, L.; Thompson, L.; Marchió, M.; Dudzińska, M.; Dressler, A.; et al. Ketogenic diet guidelines for infants with refractory epilepsy. Eur. J. Paediatr. Neurol. 2016, 20, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Park, E.G.; Lee, J.; Lee, J. Use of the Modified Atkins Diet in Intractable Pediatric Epilepsy. J. Epilepsy Res. 2018, 8, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Armeno, M.; Araujo, C.; Sotomontesano, B.; Caraballo, R.H. Update on the adverse effects during therapy with a ketogenic diet in paediatric refractory epilepsy. Rev. Neurol. 2018, 66, 193–200. [Google Scholar]
- Heussinger, N.; Della Marina, A.; Beyerlein, A.; Leiendecker, B.; Hermann-Alves, S.; Dalla Pozza, R.; Klepper, J. 10 patients, 10 years—Long term follow-up of cardiovascular risk factors in Glut1 deficiency treated with ketogenic diet therapies: A prospective, multicenter case series. Clin. Nutr. 2018, 37, 2246–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, D.; Garg, D.; Sharma, S. Emerging role of the ketogenic dietary therapies beyond epilepsy in child neurology. Ann. Indian Acad. Neurol. 2021, 44, 470–480. [Google Scholar] [CrossRef]
- Mosek, A.; Natour, H.; Neufeld, M.Y.; Shiff, Y.; Vaisman, N. Ketogenic diet treatment in adults with refractory epilepsy: A prospective pilot study. Seizure 2009, 18, 30–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossoff, E.H.; Al-Macki, N.; Cervenka, M.C.; Kim, H.D.; Liao, J.; Megaw, K.; Nathan, J.K.; Raimann, X.; Rivera, R.; Wiemer-Kruel, A.; et al. What are the minimum requirements for ketogenic diet services in resource-limited regions? Recommendations from the International League Against Epilepsy Task Force for Dietary Therapy. Epilepsia 2015, 56, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
Drugs | Molecular Target |
---|---|
Voltage-gated ion channels | |
Phenytoin, fosphenytoin, carbamazepine, oxcarbazepine, eslicarbazepine acetate, lamotrigine, lacosamide; possibly topiramate, zonisamide, rufinamide | Voltage-gated sodium channels |
Ethosuximide | Voltage-gated calcium channels (T-type) |
Ezogabine | Voltage-gated potassium channels (Kv7) |
GABA inhibition | |
Phenobarbital, primidone, benzodiazepines, including diazepam, lorazepam, and clonazepam; possibly topiramate, felbamate, ezogabine | GABAA receptors |
Tiagabine | GAT1 GABA transporter |
Vigabatrin | GABA transaminase |
Levetiracetam | SV2A |
Gabapentin, gabapentin enacarbil, pregabalin | α2δ |
Ionotropic glutamate receptors | |
Perampanel | AMPA receptor |
Valproate, felbamate, topiramate, zonisamide, rufinamide, adrenocorticotrophin | Mixed/unknown |
S.No | KD Beneficial | KD Contraindications |
---|---|---|
1 | Adenylosuccinate lyase deficiency64 | Carnitine deficiency (primary) |
2 | CDKL5 encephalopathy | Carnitine palmitoyltransferase (CPT) I or II deficiency |
3 | Childhood absence epilepsy | Carnitine translocase deficiency |
4 | Cortical malformations | β-oxidation defects |
5 | Epilepsy of infancy with migrating focal seizures | Medium-chain acyl dehydrogenase deficiency (MCAD) |
6 | Epileptic encephalopathy with continuous spike-and-wave during sleep | Long-chain acyl dehydrogenase deficiency (LCAD) |
7 | Glycogenosis type V | Short-chain acyl dehydrogenase deficiency (SCAD) |
8 | Juvenile myoclonic epilepsy | Long-chain 3-hydroxyacyl-CoA deficiency |
9 | Lafora body disease | Medium-chain 3-hydroxyacyl-CoA deficiency. |
10 | Landau-Kleffner syndrome | Pyruvate carboxylase deficiency |
11 | Lennox-Gastaut syndrome | Porphyria |
12 | Phosphofructokinase deficiency | Inability to maintain adequate nutrition |
13 | Rett syndrome | Surgical focus identified by neuroimaging and video-EEG monitoring |
14 | Subacute sclerosing panencephalitis (SSPE) | Parent or caregiver noncompliance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imdad, K.; Abualait, T.; Kanwal, A.; AlGhannam, Z.T.; Bashir, S.; Farrukh, A.; Khattak, S.H.; Albaradie, R.; Bashir, S. The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients 2022, 14, 5074. https://doi.org/10.3390/nu14235074
Imdad K, Abualait T, Kanwal A, AlGhannam ZT, Bashir S, Farrukh A, Khattak SH, Albaradie R, Bashir S. The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients. 2022; 14(23):5074. https://doi.org/10.3390/nu14235074
Chicago/Turabian StyleImdad, Kaleem, Turki Abualait, Ammara Kanwal, Ziyad Tareq AlGhannam, Shahab Bashir, Anum Farrukh, Sahir Hameed Khattak, Raidah Albaradie, and Shahid Bashir. 2022. "The Metabolic Role of Ketogenic Diets in Treating Epilepsy" Nutrients 14, no. 23: 5074. https://doi.org/10.3390/nu14235074
APA StyleImdad, K., Abualait, T., Kanwal, A., AlGhannam, Z. T., Bashir, S., Farrukh, A., Khattak, S. H., Albaradie, R., & Bashir, S. (2022). The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients, 14(23), 5074. https://doi.org/10.3390/nu14235074