The Effects of Dietary Interventions on Brain Aging and Neurological Diseases
Abstract
:1. Introduction
2. Fasting in Age-Related Neurological Decline
2.1. Cognitive Function and Motor-Coordination
2.2. Synaptic Plasticity and Neurogenesis
2.3. Neuroinflammation, Mitochondrial Dysfunction, and Oxidative Stress
3. The Effect of Dietary Interventions on Neurological Diseases
3.1. Alzheimer’s Disease (AD)
3.2. Parkinson’s Disease (PD)
3.3. Epilepsy
3.4. Multiple Sclerosis (MS)
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- 2022 Alzheimer’s disease facts and figures. Alzheimers Dement 2022, 18, 700–789. [CrossRef] [PubMed]
- Aarsland, D.; Kurz, M.W. The epidemiology of dementia associated with Parkinson disease. J. Neurol. Sci. 2010, 289, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Ryman, S.G.; Yutsis, M.; Tian, L.; Henderson, V.W.; Montine, T.J.; Salmon, D.P.; Galasko, D.; Poston, K.L. Cognition at Each Stage of Lewy Body Disease with Co-occurring Alzheimer’s Disease Pathology. J. Alzheimers Dis. 2021, 80, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Kågedal, K.; Halliday, G.M. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res. Ther. 2014, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Maloney, E.M.; Chaila, E.; O’Reilly, É.J.; Costello, D.J. Incidence of first seizures, epilepsy, and seizure mimics in a geographically defined area. Neurology 2020, 95, e576–e590. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Refractory epilepsy: Mechanisms and solutions. Expert Rev. Neurother. 2006, 6, 397–406. [Google Scholar] [CrossRef]
- Shorvon, S.D. The etiologic classification of epilepsy. Epilepsia 2011, 52, 1052–1057. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Curtis, A.; Carapetian, A.; Hovsepian, D.; Krishnadasan, A.; Markovic, D. Why are epilepsy mortality rates rising in the United States? A population-based multiple cause-of-death study. BMJ Open. 2020, 10, e035767. [Google Scholar] [CrossRef]
- Sen, A.; Capelli, V.; Husain, M. Cognition and dementia in older patients with epilepsy. Brain 2018, 141, 1592–1608. [Google Scholar] [CrossRef]
- Mey, G.M.; Mahajan, K.R.; De Silva, T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2022, 26, 3423. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cree, B.A.C.; Arnold, D.L.; Chataway, J.; Chitnis, T.; Fox, R.J.; Pozo Ramajo, A.; Murphy, N.; Lassmann, H. Secondary Progressive Multiple Sclerosis: New Insights. Neurology 2021, 97, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Filley, C.M.; Heaton, R.K.; Nelson, L.M.; Burks, J.S.; Franklin, G.M. A comparison of dementia in Alzheimer’s disease and multiple sclerosis. Arch. Neurol. 1989, 46, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Westervelt, H.J. Dementia in multiple sclerosis: Why is it rarely discussed? Arch. Clin. Neuropsychol. 2015, 30, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Sanai, S.A.; Saini, V.; Benedict, R.H.; Zivadinov, R.; Teter, B.E.; Ramanathan, M.; Weinstock-Guttman, B. Aging and multiple sclerosis. Mult. Scler. 2016, 22, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Fontana, L.; Ghezzi, L.; Cross, A.H.; Piccio, L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J. Exp. Med. 2021, 218, e20190086. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Koebnick, C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology 2013, 80, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Wesnes, K.; Riise, T.; Casetta, I.; Drulovic, J.; Granieri, E.; Holmøy, T.; Kampman, M.T.; Landtblom, A.M.; Lauer, K.; Lossius, A.; et al. Body size and the risk of multiple sclerosis in Norway and Italy: The EnvIMS study. Mult. Scler. 2015, 21, 388–395. [Google Scholar] [CrossRef]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Di Tano, M.; Mattson, M.P.; Guidi, N. Intermittent and periodic fasting, longevity and disease. Nat. Aging 2021, 1, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Hadem, I.K.H.; Majaw, T.; Kharbuli, B.; Sharma, R. Beneficial effects of dietary restriction in aging brain. J. Chem. Neuroanat. 2019, 95, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.F.; Ferreira, A.; Simões, R.F.; Magalhães-Novais, S.; Zehowski, C.; Cope, E.; Silva, A.M.; Pereira, D.; Sardão, V.A.; Cunha-Oliveira, T. Ketogenic diets: From cancer to mitochondrial diseases and beyond. Eur. J. Clin. Invest. 2016, 46, 285–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab. 2015, 22, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Guo, Z.; Jiang, H.; Ware, M.; Li, X.J.; Mattson, M.P. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl. Acad. Sci. USA 2003, 100, 2911–2916. [Google Scholar] [CrossRef] [Green Version]
- Ehrnhoefer, D.E.; Martin, D.D.O.; Schmidt, M.E.; Qiu, X.; Ladha, S.; Caron, N.S.; Skotte, N.H.; Nguyen, Y.T.N.; Vaid, K.; Southwell, A.L.; et al. Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta. Neuropathol. Commun. 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.B.; Loh, D.H.; Whittaker, D.S.; Cutler, T.; Howland, D.; Colwell, C.S. Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington’s Disease. eNeuro 2018, 5. [Google Scholar] [CrossRef]
- Pedersen, W.A.; Mattson, M.P. No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice. Brain Res. 1999, 833, 117–120. [Google Scholar] [CrossRef]
- Hamadeh, M.J.; Rodriguez, M.C.; Kaczor, J.J.; Tarnopolsky, M.A. Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve. 2005, 31, 214–220. [Google Scholar] [CrossRef]
- Singh, R.; Lakhanpal, D.; Kumar, S.; Sharma, S.; Kataria, H.; Kaur, M.; Kaur, G. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age 2012, 34, 917–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Manchanda, S.; Kaur, T.; Kumar, S.; Lakhanpal, D.; Lakhman, S.S.; Kaur, G. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats. Biogerontology 2015, 16, 775–788. [Google Scholar] [CrossRef]
- Talani, G.; Licheri, V.; Biggio, F.; Locci, V.; Mostallino, M.C.; Secci, P.P.; Melis, V.; Dazzi, L.; Carta, G.; Banni, S.; et al. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors. Neuropsychopharmacology 2016, 41, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Z.; Zuo, Z. Chronic intermittent fasting improves cognitive functions and brain structures in mice. PLoS ONE 2013, 8, e66069. [Google Scholar] [CrossRef] [Green Version]
- Kuhla, A.; Lange, S.; Holzmann, C.; Maass, F.; Petersen, J.; Vollmar, B.; Wree, A. Lifelong caloric restriction increases working memory in mice. PLoS ONE 2013, 8, e68778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Bakshi, V.; Lin, A.L. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice. Front. Aging Neurosci. 2015, 7, 213. [Google Scholar] [CrossRef] [Green Version]
- Barnes, C.A. Spatial learning and memory processes: The search for their neurobiological mechanisms in the rat. Trends Neurosci. 1988, 11, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Colman, R.J.; Anderson, R.M.; Johnson, S.C.; Kastman, E.K.; Kosmatka, K.J.; Beasley, T.M.; Allison, D.B.; Cruzen, C.; Simmons, H.A.; Kemnitz, J.W.; et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Sridharan, A.; Willette, A.A.; Bendlin, B.B.; Alexander, A.L.; Coe, C.L.; Voytko, M.L.; Colman, R.J.; Kemnitz, J.W.; Weindruch, R.H.; Johnson, S.C. Brain volumetric and microstructural correlates of executive and motor performance in aged rhesus monkeys. Front. Aging Neurosci. 2012, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Kastman, E.K.; Willette, A.A.; Coe, C.L.; Bendlin, B.B.; Kosmatka, K.J.; McLaren, D.G.; Xu, G.; Canu, E.; Field, A.S.; Alexander, A.L.; et al. A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J. Neurosci. 2012, 32, 11897–11904. [Google Scholar] [CrossRef] [Green Version]
- Witte, A.V.; Fobker, M.; Gellner, R.; Knecht, S.; Flöel, A. Caloric restriction improves memory in elderly humans. Proc. Natl. Acad. Sci. USA 2009, 106, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclerc, E.; Trevizol, A.P.; Grigolon, R.B.; Subramaniapillai, M.; McIntyre, R.S.; Brietzke, E.; Mansur, R.B. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectr. 2020, 25, 2–8. [Google Scholar] [CrossRef]
- Mattson, M.P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012, 16, 706–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leuner, B.; Kozorovitskiy, Y.; Gross, C.G.; Gould, E. Diminished adult neurogenesis in the marmoset brain precedes old age. Proc. Natl. Acad. Sci. USA 2007, 104, 17169–17173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, M.; Sharma, S.; Kaur, G. Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction. Biogerontology 2008, 9, 441–454. [Google Scholar] [CrossRef]
- Cambon, K.; Hansen, S.M.; Venero, C.; Herrero, A.I.; Skibo, G.; Berezin, V.; Bock, E.; Sandi, C. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci. 2004, 24, 4197–4204. [Google Scholar] [CrossRef] [Green Version]
- Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 2004, 5, 917–930. [Google Scholar] [CrossRef]
- Cameron, H.A.; Hazel, T.G.; McKay, R.D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 1998, 36, 287–306. [Google Scholar] [CrossRef]
- Gage, F.H. Mammalian neural stem cells. Science 2000, 287, 1433–1438. [Google Scholar] [CrossRef]
- Conner, J.M.; Lauterborn, J.C.; Yan, Q.; Gall, C.M.; Varon, S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: Evidence for anterograde axonal transport. J. Neurosci. 1997, 17, 2295–2313. [Google Scholar] [CrossRef]
- Kernie, S.G.; Liebl, D.J.; Parada, L.F. BDNF regulates eating behavior and locomotor activity in mice. Embo. J. 2000, 19, 1290–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Duan, W.; Mattson, M.P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 2002, 82, 1367–1375. [Google Scholar] [CrossRef]
- Zia, A.; Pourbagher-Shahri, A.M.; Farkhondeh, T.; Samarghandian, S. Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 2021, 17, 6. [Google Scholar] [CrossRef]
- Greenwood, E.K.; Brown, D.R. Senescent Microglia: The Key to the Ageing Brain? Int. J. Mol. Sci. 2021, 22, 4402. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.; Tung, N.; Casanova-Acebes, M.; Chang, C.; Cantoni, C.; Zhang, D.; Wirtz, T.H.; Naik, S.; Rose, S.A.; Brocker, C.N.; et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2019, 178, 1102–1114.e1117. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Cortellino, S. Fasting, dietary restriction, and immunosenescence. J. Allergy Clin. Immunol. 2020, 146, 1002–1004. [Google Scholar] [CrossRef]
- Willette, A.A.; Bendlin, B.B.; McLaren, D.G.; Canu, E.; Kastman, E.K.; Kosmatka, K.J.; Xu, G.; Field, A.S.; Alexander, A.L.; Colman, R.J.; et al. Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage 2010, 51, 987–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terman, A.; Kurz, T.; Navratil, M.; Arriaga, E.A.; Brunk, U.T. Mitochondrial turnover and aging of long-lived postmitotic cells: The mitochondrial-lysosomal axis theory of aging. Antioxid. Redox Signal 2010, 12, 503–535. [Google Scholar] [CrossRef] [Green Version]
- Kauppila, T.E.S.; Kauppila, J.H.K.; Larsson, N.G. Mammalian Mitochondria and Aging: An Update. Cell Metab. 2017, 25, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Mehrabani, S.; Bagherniya, M.; Askari, G.; Read, M.I.; Sahebkar, A. The effect of fasting or calorie restriction on mitophagy induction: A literature review. J. Cachexia. Sarcopenia Muscle 2020, 11, 1447–1458. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Lin, A.L.; Coman, D.; Jiang, L.; Rothman, D.L.; Hyder, F. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity. J. Cereb. Blood Flow. Metab. 2014, 34, 1440–1443. [Google Scholar] [CrossRef]
- Donato, A.J.; Walker, A.E.; Magerko, K.A.; Bramwell, R.C.; Black, A.D.; Henson, G.D.; Lawson, B.R.; Lesniewski, L.A.; Seals, D.R. Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice. Aging Cell 2013, 12, 772–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Qin, W.; Rocher, A.B.; Seror, I.; Humala, N.; Maniar, K.; Dolios, G.; Wang, R.; Hof, P.R.; et al. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. Faseb. J. 2005, 19, 659–661. [Google Scholar] [CrossRef]
- Hsiao, K.; Chapman, P.; Nilsen, S.; Eckman, C.; Harigaya, Y.; Younkin, S.; Yang, F.; Cole, G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Kawarabayashi, T.; Younkin, L.H.; Saido, T.C.; Shoji, M.; Ashe, K.H.; Younkin, S.G. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J. Neurosci. 2001, 21, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Schafer, M.J.; Alldred, M.J.; Lee, S.H.; Calhoun, M.E.; Petkova, E.; Mathews, P.M.; Ginsberg, S.D. Reduction of β-amyloid and γ-secretase by calorie restriction in female Tg2576 mice. Neurobiol. Aging 2015, 36, 1293–1302. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cheng, A.; Li, Y.J.; Yang, Y.; Kishimoto, Y.; Zhang, S.; Wang, Y.; Wan, R.; Raefsky, S.M.; Lu, D.; et al. SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat. Commun. 2019, 10, 1886. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.W.; Tanzi, R.E. Presenilins and Alzheimer’s disease. Curr. Opin. Neurobiol. 1997, 7, 683–688. [Google Scholar] [CrossRef]
- Cai, Y.; An, S.S.; Kim, S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging 2015, 10, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Fu, W.; Sopher, B.L.; Miller, M.W.; Ware, C.B.; Martin, G.M.; Mattson, M.P. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat. Med. 1999, 5, 101–106. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Q.; Mattson, M.P. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 1999, 842, 224–229. [Google Scholar] [CrossRef]
- Patel, N.V.; Gordon, M.N.; Connor, K.E.; Good, R.A.; Engelman, R.W.; Mason, J.; Morgan, D.G.; Morgan, T.E.; Finch, C.E. Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol. Aging 2005, 26, 995–1000. [Google Scholar] [CrossRef]
- Mouton, P.R.; Chachich, M.E.; Quigley, C.; Spangler, E.; Ingram, D.K. Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci. Lett. 2009, 464, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhan, Z.; Li, X.; Xing, A.; Jiang, C.; Chen, Y.; Shi, W.; An, L. Intermittent Fasting Protects against Alzheimer’s Disease Possible through Restoring Aquaporin-4 Polarity. Front. Mol. Neurosci. 2017, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Shen, Q.; Dong, S.; Xu, Z.; Tsien, J.Z.; Hu, Y. Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol. Aging 2008, 29, 1502–1511. [Google Scholar] [CrossRef]
- Brownlow, M.L.; Joly-Amado, A.; Azam, S.; Elza, M.; Selenica, M.L.; Pappas, C.; Small, B.; Engelman, R.; Gordon, M.N.; Morgan, D. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav. Brain Res. 2014, 271, 79–88. [Google Scholar] [CrossRef]
- Halagappa, V.K.; Guo, Z.; Pearson, M.; Matsuoka, Y.; Cutler, R.G.; Laferla, F.M.; Mattson, M.P. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 2007, 26, 212–220. [Google Scholar] [CrossRef]
- Keller, J.N.; Pang, Z.; Geddes, J.W.; Begley, J.G.; Germeyer, A.; Waeg, G.; Mattson, M.P. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 1997, 69, 273–284. [Google Scholar] [CrossRef]
- Guo, Z.H.; Mattson, M.P. In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid beta-peptide and iron: Evidence for a stress response. Exp. Neurol. 2000, 166, 173–179. [Google Scholar] [CrossRef]
- Li, W.; Wu, M.; Zhang, Y.; Wei, X.; Zang, J.; Liu, Y.; Wang, Y.; Gong, C.X.; Wei, W. Intermittent fasting promotes adult hippocampal neuronal differentiation by activating GSK-3β in 3xTg-AD mice. J. Neurochem. 2020, 155, 697–713. [Google Scholar] [CrossRef]
- Van der Auwera, I.; Wera, S.; Van Leuven, F.; Henderson, S.T. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr. Metab. 2005, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Parrella, E.; Maxim, T.; Maialetti, F.; Zhang, L.; Wan, J.; Wei, M.; Cohen, P.; Fontana, L.; Longo, V.D. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer’s disease mouse model. Aging Cell 2013, 12, 257–268. [Google Scholar] [CrossRef]
- Lazic, D.; Tesic, V.; Jovanovic, M.; Brkic, M.; Milanovic, D.; Zlokovic, B.V.; Kanazir, S.; Perovic, M. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Dis. 2020, 136, 104745. [Google Scholar] [CrossRef]
- Rangan, P.; Lobo, F.; Parrella, E.; Rochette, N.; Morselli, M.; Stephen, T.L.; Cremonini, A.L.; Tagliafico, L.; Persia, A.; Caffa, I.; et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer’s models. Cell Rep. 2022, 40, 111417. [Google Scholar] [CrossRef]
- Horie, N.C.; Serrao, V.T.; Simon, S.S.; Gascon, M.R.; Dos Santos, A.X.; Zambone, M.A.; Del Bigio de Freitas, M.M.; Cunha-Neto, E.; Marques, E.L.; Halpern, A.; et al. Cognitive Effects of Intentional Weight Loss in Elderly Obese Individuals With Mild Cognitive Impairment. J. Clin. Endocrinol. Metab. 2016, 101, 1104–1112. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.K.; Sullivan, D.K.; Mahnken, J.D.; Burns, J.M.; Swerdlow, R.H. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement 2018, 4, 28–36. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. 1), 216–231. [Google Scholar] [CrossRef]
- Lesage, S.; Brice, A. Parkinson’s disease: From monogenic forms to genetic susceptibility factors. Hum. Mol. Genet 2009, 18, R48–R59. [Google Scholar] [CrossRef]
- Schapira, A.H. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ. 2007, 14, 1261–1266. [Google Scholar] [CrossRef]
- Zheng, B.; Liao, Z.; Locascio, J.J.; Lesniak, K.A.; Roderick, S.S.; Watt, M.L.; Eklund, A.C.; Zhang-James, Y.; Kim, P.D.; Hauser, M.A.; et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2010, 2, 52ra73. [Google Scholar] [CrossRef] [Green Version]
- Eschbach, J.; von Einem, B.; Müller, K.; Bayer, H.; Scheffold, A.; Morrison, B.E.; Rudolph, K.L.; Thal, D.R.; Witting, A.; Weydt, P.; et al. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann. Neurol. 2015, 77, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Mattson, M.P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 1999, 57, 195–206. [Google Scholar] [CrossRef]
- Bayliss, J.A.; Lemus, M.B.; Stark, R.; Santos, V.V.; Thompson, A.; Rees, D.J.; Galic, S.; Elsworth, J.D.; Kemp, B.E.; Davies, J.S.; et al. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson’s Disease. J. Neurosci. 2016, 36, 3049–3063. [Google Scholar] [CrossRef] [Green Version]
- Coppens, J.; Bentea, E.; Bayliss, J.A.; Demuyser, T.; Walrave, L.; Albertini, G.; Van Liefferinge, J.; Deneyer, L.; Aourz, N.; Van Eeckhaut, A.; et al. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor. Int. J. Mol. Sci. 2017, 18, 558. [Google Scholar] [CrossRef] [Green Version]
- Bruce-Keller, A.J.; Umberger, G.; McFall, R.; Mattson, M.P. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 1999, 45, 8–15. [Google Scholar] [CrossRef]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Armentero, M.T.; Levandis, G.; Bramanti, P.; Nappi, G.; Blandini, F. Dietary restriction does not prevent nigrostriatal degeneration in the 6-hydroxydopamine model of Parkinson’s disease. Exp. Neurol. 2008, 212, 548–551. [Google Scholar] [CrossRef]
- Tatulli, G.; Mitro, N.; Cannata, S.M.; Audano, M.; Caruso, D.; D’Arcangelo, G.; Lettieri-Barbato, D.; Aquilano, K. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice. Front. Cell Neurosci. 2018, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Gallardo, G.; Fernández-Chacón, R.; Schlüter, O.M.; Südhof, T.C. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005, 123, 383–396. [Google Scholar] [CrossRef]
- Griffioen, K.J.; Rothman, S.M.; Ladenheim, B.; Wan, R.; Vranis, N.; Hutchison, E.; Okun, E.; Cadet, J.L.; Mattson, M.P. Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein. Neurobiol. Aging 2013, 34, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.L.; Jia, X.B.; Sun, M.F.; Zhu, Y.L.; Qiao, C.M.; Zhang, B.P.; Zhao, L.P.; Yang, Q.; Cui, C.; Chen, X.; et al. Neuroprotection of Fasting Mimicking Diet on MPTP-Induced Parkinson’s Disease Mice via Gut Microbiota and Metabolites. Neurotherapeutics 2019, 16, 741–760. [Google Scholar] [CrossRef] [Green Version]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480.e1412. [Google Scholar] [CrossRef] [Green Version]
- Maswood, N.; Young, J.; Tilmont, E.; Zhang, Z.; Gash, D.M.; Gerhardt, G.A.; Grondin, R.; Roth, G.S.; Mattison, J.; Lane, M.A.; et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2004, 101, 18171–18176. [Google Scholar] [CrossRef] [Green Version]
- Gash, D.M.; Zhang, Z.; Ovadia, A.; Cass, W.A.; Yi, A.; Simmerman, L.; Russell, D.; Martin, D.; Lapchak, P.A.; Collins, F.; et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996, 380, 252–255. [Google Scholar] [CrossRef]
- Hanbury, R.; Ling, Z.D.; Wuu, J.; Kordower, J.H. GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. J. Comp. Neurol. 2003, 461, 307–316. [Google Scholar] [CrossRef]
- Vanitallie, T.B.; Nonas, C.; Di Rocco, A.; Boyar, K.; Hyams, K.; Heymsfield, S.B. Treatment of Parkinson disease with diet-induced hyperketonemia: A feasibility study. Neurology 2005, 64, 728–730. [Google Scholar] [CrossRef]
- Phillips, M.C.L.; Murtagh, D.K.J.; Gilbertson, L.J.; Asztely, F.J.S.; Lynch, C.D.P. Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Mov. Disord. 2018, 33, 1306–1314. [Google Scholar] [CrossRef] [Green Version]
- Wheless, J.W. History of the ketogenic diet. Epilepsia 2008, 49 (Suppl. 8), 3–5. [Google Scholar] [CrossRef]
- D’Andrea Meira, I.; Romão, T.T.; Pires do Prado, H.J.; Krüger, L.T.; Pires, M.E.P.; da Conceição, P.O. Ketogenic Diet and Epilepsy: What We Know So Far. Front. Neurosci. 2019, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Greene, A.E.; Todorova, M.T.; McGowan, R.; Seyfried, T.N. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 2001, 42, 1371–1378. [Google Scholar] [CrossRef]
- Mantis, J.G.; Centeno, N.A.; Todorova, M.T.; McGowan, R.; Seyfried, T.N. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: Role of glucose and ketone bodies. Nutr. Metab. 2004, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Bough, K.J.; Schwartzkroin, P.A.; Rho, J.M. Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo. Epilepsia 2003, 44, 752–760. [Google Scholar] [CrossRef]
- Hartman, A.L.; Zheng, X.; Bergbower, E.; Kennedy, M.; Hardwick, J.M. Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia 2010, 51, 1395–1402. [Google Scholar] [CrossRef]
- Eagles, D.A.; Boyd, S.J.; Kotak, A.; Allan, F. Calorie restriction of a high-carbohydrate diet elevates the threshold of PTZ-induced seizures to values equal to those seen with a ketogenic diet. Epilepsy Res. 2003, 54, 41–52. [Google Scholar] [CrossRef]
- Yuskaitis, C.J.; Modasia, J.B.; Schrötter, S.; Rossitto, L.A.; Groff, K.J.; Morici, C.; Mithal, D.S.; Chakrabarty, R.P.; Chandel, N.S.; Manning, B.D.; et al. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep. 2022, 40, 111278. [Google Scholar] [CrossRef]
- Landgrave-Gómez, J.; Mercado-Gómez, O.F.; Vázquez-García, M.; Rodríguez-Molina, V.; Córdova-Dávalos, L.; Arriaga-Ávila, V.; Miranda-Martínez, A.; Guevara-Guzmán, R. Anticonvulsant Effect of Time-Restricted Feeding in a Pilocarpine-Induced Seizure Model: Metabolic and Epigenetic Implications. Front. Cell Neurosci. 2016, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Phillips-Farfán, B.V.; Rubio Osornio Mdel, C.; Custodio Ramírez, V.; Paz Tres, C.; Carvajal Aguilera, K.G. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front. Cell Neurosci. 2015, 9, 90. [Google Scholar] [CrossRef]
- Yuskaitis, C.J.; Jones, B.M.; Wolfson, R.L.; Super, C.E.; Dhamne, S.C.; Rotenberg, A.; Sabatini, D.M.; Sahin, M.; Poduri, A. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol. Dis. 2018, 111, 91–101. [Google Scholar] [CrossRef]
- Rho, J.M.; Shao, L.R.; Stafstrom, C.E. 2-Deoxyglucose and Beta-Hydroxybutyrate: Metabolic Agents for Seizure Control. Front. Cell Neurosci. 2019, 13, 172. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yu, W.; Lü, Y. The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatr. Dis. Treat. 2016, 12, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Martin-McGill, K.J.; Jackson, C.F.; Bresnahan, R.; Levy, R.G.; Cooper, P.N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev. 2018, 11, Cd001903. [Google Scholar] [CrossRef]
- Hartman, A.L.; Rubenstein, J.E.; Kossoff, E.H. Intermittent fasting: A “new” historical strategy for controlling seizures? Epilepsy Res. 2013, 104, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Bergqvist, A.G.; Schall, J.I.; Gallagher, P.R.; Cnaan, A.; Stallings, V.A. Fasting versus gradual initiation of the ketogenic diet: A prospective, randomized clinical trial of efficacy. Epilepsia 2005, 46, 1810–1819. [Google Scholar] [CrossRef]
- Zare, M.; Okhovat, A.A.; Esmaillzadeh, A.; Mehvari, J.; Najafi, M.R.; Saadatnia, M. Modified Atkins diet in adult with refractory epilepsy: A controlled randomized clinical trial. Iran. J. Neurol. 2017, 16, 72–77. [Google Scholar]
- Sondhi, V.; Agarwala, A.; Pandey, R.M.; Chakrabarty, B.; Jauhari, P.; Lodha, R.; Toteja, G.S.; Sharma, S.; Paul, V.K.; Kossoff, E.; et al. Efficacy of Ketogenic Diet, Modified Atkins Diet, and Low Glycemic Index Therapy Diet Among Children With Drug-Resistant Epilepsy: A Randomized Clinical Trial. JAMA Pediatr. 2020, 174, 944–951. [Google Scholar] [CrossRef]
- Derdelinckx, J.; Cras, P.; Berneman, Z.N.; Cools, N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front. Immunol. 2021, 12, 624685. [Google Scholar] [CrossRef]
- Bronge, M.; Högelin, K.A.; Thomas, O.G.; Ruhrmann, S.; Carvalho-Queiroz, C.; Nilsson, O.B.; Kaiser, A.; Zeitelhofer, M.; Holmgren, E.; Linnerbauer, M.; et al. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci. Adv. 2022, 8, eabn1823. [Google Scholar] [CrossRef]
- Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 2011, 164, 1079–1106. [Google Scholar] [CrossRef] [Green Version]
- Esquifino, A.I.; Cano, P.; Jimenez-Ortega, V.; Fernández-Mateos, M.P.; Cardinali, D.P. Immune response after experimental allergic encephalomyelitis in rats subjected to calorie restriction. J. Neuroinflammation 2007, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Piccio, L.; Stark, J.L.; Cross, A.H. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 2008, 84, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Kafami, L.; Raza, M.; Razavi, A.; Mirshafiey, A.; Movahedian, M.; Khorramizadeh, M.R. Intermittent feeding attenuates clinical course of experimental autoimmune encephalomyelitis in C57BL/6 mice. Avicenna J. Med. Biotechnol. 2010, 2, 47–52. [Google Scholar]
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018, 27, 1222–1235.e6. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A.H.; Morgan, T.E.; et al. A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016, 15, 2136–2146. [Google Scholar] [CrossRef] [Green Version]
- Bai, M.; Wang, Y.; Han, R.; Xu, L.; Huang, M.; Zhao, J.; Lin, Y.; Song, S.; Chen, Y. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J. Nutr. Biochem. 2021, 87, 108493. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Bhargava, P.; Smith, M.D.; Vizthum, D.; Henry-Barron, B.; Kornberg, M.D.; Cassard, S.D.; Kapogiannis, D.; Sullivan, P.; Baer, D.J.; et al. Intermittent calorie restriction alters T cell subsets and metabolic markers in people with multiple sclerosis. EBioMedicine 2022, 82, 104124. [Google Scholar] [CrossRef]
- Wei, M.; Brandhorst, S.; Shelehchi, M.; Mirzaei, H.; Cheng, C.W.; Budniak, J.; Groshen, S.; Mack, W.J.; Guen, E.; Di Biase, S.; et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 2017, 9, eaai8700. [Google Scholar] [CrossRef]
- Kessler, K.L.; Kapogiannis, D.I. Intermittent Calorie Restriction, Insulin Resistance, and Biomarkers of Brain Function; National Institute on Aging (NIA): Baltimore, MD, USA, 2022. [Google Scholar]
- Michalsen, A. Deciphering the Impact of Exposures From the Gut Microbiome-Derived Molecular Complex in Human Health and Disease (ExpoBiome); Charite University: Berlin, Germany, 2022. [Google Scholar]
- Bahr, L.S.; Bock, M.; Liebscher, D.; Bellmann-Strobl, J.; Franz, L.; Prüß, A.; Schumann, D.; Piper, S.K.; Kessler, C.S.; Steckhan, N.; et al. Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): Protocol of a randomized controlled study. Trials 2020, 21, 3. [Google Scholar] [CrossRef]
1 Alzheimer’s Disease Animal Studies | ||||||
---|---|---|---|---|---|---|
Model Organism | Age & Sex | Dietary Interventions | Cognitive Function & Neurogenesis | Brain Pathology | Biomarkers | Reference |
PS1 mutant knock-in mice | 6-weeks male | ADF for 3 months | N/A | ↓ neuronal damage | ↓ lipid peroxidation product (4-hydroxynonenal) | Zhu et al. 1999 [73] |
Tg2576 mice | 3 months female | 30% CR for 9 months | N/A | ↓ Aβ plaques; ↓ Aβ levels | N/A | Wang et al. 2005 [65] |
(1) APP (J20) and (2) APP + PS1 mice | (1) 14–15-weeks and (2) 9-weeks male | (1) 40% CR for 2 weeks (2) 40% CR for 15 weeks | N/A | ↓ Aβ plaques | n/s | Patel et al. 2005 [74] |
APP/V717I mice | 3 months female | KD for 43 days | N/A | ↓ Aβ levels | ↑BHB | Auwera et al. 2005 [83] |
3xTgAD mice | 3 months male & female | 40% CR or ADF for 14 months | ↑cognition (40% CR = ADF) | ↓ Aβ plaques; ↓ tau phosphorylation (40% CR) | N/A | Halagappa et al. 2007 [79] |
PS1 and PS2 double knockout (cDKO) mice | 4 months male & female | 30% CR for 4 months | ↑cognition; ↓brain atrophy | ↓ tau phosphorylation | ↓ GFAP; ↓ cleaved caspase-3 | Wu et al. 2008 [77] |
APP and PS1 (dtg APP/PS1) | 13–14 months male | 40% CR for 14 weeks | N/A | ↓ Aβ volume | N/A | Mouton et al. 2009 [75] |
3xTg-AD mice | 8–9 months male | PRCs for 18–19 weeks | ↑ cognition | ↓ Tau phosphorylation; ns Aβ plaques | ↑ IGFBP-1; ↓ IGF-1; ↓ IGFBP-3; n/s CD11b | Parrella et al. 2013 [84] |
Tg4510 mice | 18-weeks male & female | CR for 3 months (reduction of body weight to less than 35–40%) | ↑ cognition; n/s brain atrophy | N/A | N/A | Brownlow et al. 2014 [78] |
Tg2576 mice | 2.5 months male & female | 30% CR for 2.8 or 12.5 months | N/A | ↓ Aβ plaques; ↓ Aβ levels; ↓ gamma secretase complex | N/A | Schafer et al. 2015 [68] |
APP/PS1 (B6C3-Tg (APPswe, PS1dE) 85Dbo/J) mice | 5 months male & female | ADF for 5 months | ↑ cognition | ↓ Aβ plaques | N/A | Zhang et al. 2017 [76] |
AppNL-G-F knock in mice | 12 months male | ADF for either 1, 4 or 12 months. | ↑ cognition; ↑ synaptic plasticity | N/A | N/A | Liu et al. 2019 [69] |
5XFAD mice | 2 months female | ADF for 4 months | ↓ synaptic plasticity | ↑ neuronal injury; n/s Aβ accumulation | ↑IBA-1; ↑GFAP; ↑pro-inflammatory cytokines | Lazic et al. 2020 [85] |
3xTg-AD | 6 months male | ADF for 3 months | ↑ cognition; ↑ neuronal differentiation; ↑ GSK-3β | N/A | ↑ AMPK, ↑ BDNF, ↓ PKA, ↓insulin | Li et al. 2020 [82] |
(1) E4FAD and (2) 3xTg-AD mice | (1) 3 months female E4FAD (2) 3.5 months (long-term) and 6.5 months (short-term) male and female 3xTgAD | (1) FMD for 4.5 months 2) FMD or 4% PR for 15 months (long-term); FMD for 2 months (short-term) | (1) ↑cognition, ↑neurogenesis (2) ↑cognition, ↑neurogenesis (FMD > 4% PR) (long-term); ↑ cognition (short-term) | (1) ↓ Aβ plaques, ↓ Aβ levels (2) ↓ Aβ plaques, ↓tau hyperphosphoryation (FMD > 4% PR) (long-term); ↓ Aβ plaques, ↓ tau hyperphosphoryation (short-term) | (1) ↓pro-inflammatory cytokines, ↓ NOX2 levels (2) ↓ CD11b (FMD > 4% PR) (long-term); ↓ NOX2 levels, ↓ IBA-1, ↓ pro-inflammatory cytokines (short-term) | Rangan et al. 2022 [86] |
2 Alzheimer’s Disease Human Studies | ||||||
Patient Population | Age & Sex | Dietary Interventions | Clinical Findings | Reference | ||
Obese adults with MCI | 60+ (mean: 68) male & female | CR counseling with nutritionists (n = 38) or brief lifestyle counseling (n = 37) for 12 months | ↑ global cognition, ↑ memory, ↑ semantic fluency | Horie et al. 2016 [87] | ||
Adults with very mild to moderate AD | (mean: 78) male & female | KD for 3 months followed by 1 month of regular diet | ↑ cognition | Taylor et al. 2017 [88] | ||
Adults with aMCI or mild AD | 55–80 (mean: 71) male & female | placebo (n = 16) and FMD (1 cycle every 2 months) (n = 12) | N/A | Rangan et al. 2022 [86] |
1 Parkinson’s Disease Animal Studies | ||||||
---|---|---|---|---|---|---|
Model Organism (Drug) | Age & Sex | Dietary Interventions | Motor Function & Neurogenesis | Brain Pathology | Biomarkers | Reference |
Sprague–Dawley rats (6-OHDA) | male | ADF for 2 or 8 weeks before 6-OHDA injections | N/A | n/s | N/A | Armentero et al. 2008 [100] |
C57Bl/6 mice (MPTP) | 4 months, male | ADF for 3 months before MPTP injections | ↑ motor co-ordination | ↑ SN dopaminergic neurons, ↓ SN neuronal damage | N/A | Duan et al. 1999 [95] |
THY1-SNCA*A53T mice | 12 weeks, male | ADF for 12 weeks | ↓ ANS dysfunction, ↑ motor co-ordination | ↓ α-synuclein in the brain stem | N/A | Griffioen et al. 2013 [102] |
ghrelin WT/KO mice (MPTP) | 8 to 10 weeks, male | 30% CR for 27 days | n/s | ↑ SN dopaminergic neurons (ghrelin WT), ↑ striatal dopamine (ghrelin WT) | ↑ p-AMPK, ↑ ACC | Bayliss et al. 2016 [96] |
ghrelin receptor WT/KO mice (LAC) | 3–4 months and 18–22 months, male | 30% CR regimen for 28 days. LAC injections after 21 days on 30% CR | N/A | ↑ SN dopaminergic neurons, ↑ striatal dopamine | N/A | Coppens et al. 2017 [97] |
C57BL/6J (Rotenone) | 8 weeks, male | ADF for 28 days | ↓ motor-co-ordination | ↓ SN dopaminergic neurons, ↓ striatal dopamine, ↑ α-synuclein in the SN | ↓ IGF-1 (IF); ↑ LPC & SM (Rotenone + IF) | Tatulli et al. 2018 [101] |
C57Bl/6 mice (MPTP) | 7 weeks, male | 2 FMD cycles before and 1 FMD cycle after MPTP | ↑ motor co-ordination | ↑ SN dopaminergic neurons, ↑ striatal dopamine and its metabolites | ↓ pro-inflammatory cytokines, ↓ IBA-1, ↓ GFAP, ↑ BDNF | Zhou et al. 2019 [104] |
Rhesus monkeys (MPTP) | 9–17 years, male | 30% CR for 6 months before an MPTP injection | ↑ motor co-ordination | ↑ SN dopaminergic neurons, ↑ striatal dopamine and its metabolites | ↑ GDNF | Maswood et al. 2004 [106] |
2 Parkinson’s Disease Human Studies | ||||||
Patient Population | Age & Sex | Dietary Interventions | Clinical Findings | Reference | ||
Overweight or obese adults with PD (prospective study) | (mean: 61) male & female | HKD (n = 5) for 28 days | n/s | Vanitallie et al. 2005 [109] | ||
Adults with PD | (mean: 63) male & female | LFHC (n = 20/23) or KD (n = 18/24) for 8 weeks | ↑ motor and non-motor PD symptoms | Phillips et al. 2018 [110] |
1 Epilepsy Animal Studies | |||||
---|---|---|---|---|---|
Model Organism | Model Organism | Dietary Intervention | Seizure Test | Seizure Findings | Reference |
Sprague-Dawley rats | 5-weeks male | 50% CR, 35% CR, 10% CR, & KD (90%CR) for 20 days | PTZ administered until seizure | ↑ seizure threshold (KD = 50% CR) | Eagles et al. 2003 [117] |
Sprague-Dawley rats | 5-weeks male | 15% CR & KD (15% CR) for 28 days | hippocampal electrophysiology: I/O; paired pulse; MDA | ↓ PS amplitude (CR&KD); ↑ MDA threshold (CR&KD); MDA latency ↑ CR ↓ KD; ↓ SD events (CR&KD) | Bough et al. 2003 [115] |
Wistar rats | 3-weeks male | 15% CR for 30 days | amygdala electrophysiology: electrical kindling | ↑ after-discharge threshold | Phillips-Farfan et al. 2015 [120] |
Wistar rats | 8-weeks male | TRF (2 h/d) for 20 days | lithium-pilocarpine | ↓ seizure score; ↑ seizure latency; ↓ EEG power | Landgrave-Gomez et al. 2016 [119] |
EL mice | 4 & 10-weeks male & female | 30% CR, 15% CR, & KD for 10 weeks | handling induced stress | seizures (↓ 30%CR > ↓ KD) | Greene et al. 2001 [113] |
EL mice | 10-weeks female | 42% CR & KD (48% CR) for 10 weeks | handling induced stress | ↓ seizures (CR = KD) | Mantis et al. 2004 [114] |
NIH Swiss mice | 3–4 weeks male | 12 days of ADF & KD (wt. adjusted) | 6 Hz test, kainic acid, MES, & PTZ | 6 Hz threshold (↓ ADF ↑ KD); kainic acid seizures (↓ ADF); MES threshold (↓ ADF ↑ KD); | Hartman et al. 2010 [116] |
Depdc5cc+ mice and littermate control mice | 6–9 weeks male & female | 24-h fasting | PTZ consistent dose | ↑ seizures (Depdc5cc+) | Yuskaitis et al. 2022 [118] |
2 Epilepsy Human Studies | |||||
Patient Population | Age & Sex | Dietary Interventions | Clinical Findings | Reference | |
children with drug-resistant epilepsy | 1–14 male & female | 24–48 h fast (n = 24), or gradual initiation (n = 24) before 3 months of KD | ↓ seizure frequency (both); ↓ time to ketosis (FAST-KD) | Bergqvist et al. 2005 [126] | |
children with drug-resistant epilepsy on KD (prospective study) | 2–7 male & female | 5:2 partial IF (n = 6) during KD for 3 weeks-6 months | n/s | Hartman et al. 2013 [125] | |
adults with drug-resistant epilepsy | age 18–57 male & female | MAD (n = 22) or unchanged diet (n = 32) for 2 months | ↓ seizure frequency (MAD) | Zare et al. 2017 [127] | |
children with drug resistant epilepsy | age 1–15 male & female | KD (n = 55), MAD (n = 58), LGIT (n = 57) for 24 weeks | seizure frequency: ↓ 66% KD, ↓ 24% MAD, ↓ 54% LGIT | Sondhi et al. 2020 [128] |
1 Multiple Sclerosis Animal Studies | |||||
---|---|---|---|---|---|
Model Organism (Antigen) | Age & Sex | Dietary Interventions | Clinical Findings | Immune & Biomarkers | Reference |
Lewis rats, EAE (SCH) | 6-weeks male | 66% CR for 15 days pre-induction | ↓ clinical score | ↓ spleen & lymph IFN-γ | Esquifino et al. 2007 [132] |
SJL mice, EAE (PLP) | 5-weeks female | 40% CR for 5 weeks pre-induction | ↓ clinical score; ↑ survival; ↓ spinal cord inflammation, demyelination, & axon damage | ↑ corticosterone & adiponectin; ↓ leptin & IL-6 | Piccio et al. 2008 [133] |
C57BL/6 mice, EAE (MOG) | 13-weeks female | ADF for 8 weeks pre-induction, post-induction, or both | ↓ incidence (ADF post) | N/A | Kafami et al. 2010 [134] |
C57BL/6 mice, EAE (MOG) | 10-weeks female | FMD (3 cycles) at 10% symptomatic (S), at 100% symptomatic (T), or at 2 weeks post-symptoms (C-F) | ↓ clinical score (all); ↓ incidence (S); ↓ spinal cord inflammation & demyelination (T); ↑ myelin regeneration (T) | ↓ blood WBC, lymphocytes, monocytes, & granulocytes; ↓ CNS CD4 & CD8 T-cells; ↑ spleen naïve:active CD4 T-cell ratio (T) | Choi et al. 2016 [136] |
C57BL/6 mice, EAE (MOG) | 7-weeks female | ADF for 4 weeks pre-induction | ↓ clinical score; ↓ spinal cord inflammation & demyelination; | ↓ lymph T-cell IL-17 & IFN-γ; ↑ corticosterone & BHB; ↑ T-regs in small intestine | Cignarella et al. 2018 [135] |
C57BL/6 mice, EAE (MOG) | 8 weeks-female | ADF for 4 weeks pre-induction | ↓ clinical score | ↓ blood & CNS inflammatory monocytes; ↓ CNS monocyte TNFα, IL-1β, CXCL2 &CXCL10 | Jordan et al. 2019 [55] |
C57BL/6 mice, EAE (MOG) | 6-weeks female | FMD (2 cycles) at 3 weeks post-induction | ↓ incidence; ↓ clinical score; ↓ spinal cord inflammation & demyelination; ↑ myelin regeneration | ↓ spinal cord leukocytes & macrophages; ↓ CNS CD4 & CD8 T-cells; ↓ CNS T-cell IL-17 &↑ IFN-γ; ↑ spleen CD4 & CD11b T-cells | Bai et al. 2021 [137] |
2 Multiple Sclerosis Human Studies | |||||
Patient Population | Age & Sex | Dietary Interventions | Clinical Findings | Immune & Biomarkers | Reference |
Adult RRMS patients | 18–68 (mean: 45) male & female | 1-cycle of FMD followed by a Mediterranean diet (n = 18), KD (n = 18), or control diet (n = 12) for 6 months | ↑ QOL (FMD & KD) | n/s | Choi et al. 2016 [136] |
Adult RRMS patients undergoing relapse | 18–60 (mean: 41) male & female | <500 kcal ADF (n = 8) or control diet (n = 8) for 15 days | n/s | ↓ blood T&B cells; ↓ naïve CD4 T-cells; ↓ Leptin | Cignarella et al. 2018 [135] |
Adult RRMS patients not undergoing relapse | 18–50 (mean: 37) male & female | 75% CR 5:2 IF (n = 11), 22% CR (n = 11), or control diet (n = 9) for 8 weeks | n/s | ↓ memory T-cells and Th1 cells ↑ naïve CD4 T-cells | Fitzgerald et al. 2022 [138] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo, F.; Haase, J.; Brandhorst, S. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022, 14, 5086. https://doi.org/10.3390/nu14235086
Lobo F, Haase J, Brandhorst S. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients. 2022; 14(23):5086. https://doi.org/10.3390/nu14235086
Chicago/Turabian StyleLobo, Fleur, Jonathan Haase, and Sebastian Brandhorst. 2022. "The Effects of Dietary Interventions on Brain Aging and Neurological Diseases" Nutrients 14, no. 23: 5086. https://doi.org/10.3390/nu14235086
APA StyleLobo, F., Haase, J., & Brandhorst, S. (2022). The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients, 14(23), 5086. https://doi.org/10.3390/nu14235086