Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort and Study Design
2.2. Maternal and Neonatal Variables
2.3. Maternal Body Composition
2.4. Maternal Adherence to the Healthy Food Pyramid
2.5. Breast Milk Collection
2.6. Breast Milk Processing and Fatty Acids Determination
2.7. Statistical Analysis
3. Results
3.1. Maternal Sociodemographic, Obstetrical Characteristics and Body Composition
3.2. Neonatal Variables at Birth
3.3. Differences in Breast Milk Fatty Acids at Days 7, 14 and 28 of Lactation
3.4. Correlations between Maternal Body Composition, Adherence to HFP and BM Fatty Acids
3.5. Association between BM Fatty Acids and Maternal Body Composition and Nutritional Habits
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khor, G.L.; Tan, S.S.; Stoutjesdijk, E.; Ng, K.W.T.; Khouw, I.; Bragt, M.; Schaafsma, A.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients 2021, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Cortijo, D.; Singh, P.; Liu, Y.; Medina-Morales, E.; Yakah, W.; Freedman, S.D.; Martin, C.R. Breast Milk Lipids and Fatty Acids in Regulating Neonatal Intestinal Development and Protecting Against Intestinal Injury. Nutrients 2020, 12, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gila-Diaz, A.; Carrillo, G.H.; Singh, P.; Ramiro-Cortijo, D. Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants 2021, 10, 933. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of Linoleic Acid and Alpha-Linolenic Acid to Long-Chain Polyunsaturated Fatty Acids (LCPUFAs), with a Focus on Pregnancy, Lactation and the First 2 Years of Life. Matern. Child Nutr. 2011, 7, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Barrera, C.; Valenzuela, R.; Chamorro, R.; Bascuñán, K.; Sandoval, J.; Sabag, N.; Valenzuela, F.; Valencia, M.; Puigrredon, C.; Valenzuela, A. The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women. Nutrients 2018, 10, 839. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, H.; Yu, L.; Xu, G.; Ge, H.; Wang, L.; Zhang, Y.; Zhou, Y.; Li, Y.; Bai, M.; et al. A Correlation Study of DHA Dietary Intake and Plasma, Erythrocyte and Breast Milk DHA Concentrations in Lactating Women from Coastland, Lakeland, and Inland Areas of China. Nutrients 2016, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, R.; Bascuñán, K.; Chamorro, R.; Barrera, C.; Sandoval, J.; Puigrredon, C.; Parraguez, G.; Orellana, P.; Gonzalez, V.; Valenzuela, A. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. Nutrients 2015, 7, 6405–6424. [Google Scholar] [CrossRef] [Green Version]
- Fiorella, K.J.; Milner, E.M.; Bukusi, E.; Fernald, L.C. Quantity and Species of Fish Consumed Shape Breast-Milk Fatty Acid Concentrations Around Lake Victoria, Kenya. Public Health Nutr. 2018, 21, 1589. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, A.; Leone, L.; Agostoni, C.; Pali-Schöll, I. The Secrets of the Mediterranean Diet. Does [Only] Olive Oil Matter? Nutrients 2019, 11, 2941. [Google Scholar] [CrossRef] [Green Version]
- Antonakou, A.; Skenderi, K.P.; Chiou, A.; Anastasiou, C.A.; Bakoula, C.; Matalas, A. Breast Milk Fat Concentration and Fatty Acid Pattern during the First Six Months in Exclusively Breastfeeding Greek Women. Eur. J. Nutr. 2012, 52, 963–973. [Google Scholar] [CrossRef]
- SENC. Pirámide De La Alimentación Comunitaria. 2015. Available online: https://www.nutricioncomunitaria.org/es/noticia/piramide-de-la-alimentacion-saludable-senc-2015 (accessed on 12 June 2022).
- Diolintzi, A.; Panagiotakos, D.B.; Sidossis, L.S. From Mediterranean Diet to Mediterranean Lifestyle: A Narrative Review. Public Health Nutr. 2019, 22, 2703–2713. [Google Scholar] [CrossRef] [PubMed]
- Krešić, G.; Dujmović, M.; Mandić, M.L.; Delaš, I. Relationship between Mediterranean Diet and Breast Milk Fatty Acid Profile: A Study in Breastfeeding Women in Croatia. Dairy Sci. Technol. 2013, 93, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Demmelmair, H.; Koletzko, B. Detailed Knowledge of Maternal and Infant Factors and Human Milk Composition could Inform Recommendations for Optimal Composition. Acta Paediatr. 2022, 111, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Daniel, A.I.; Shama, S.; Ismail, S.; Bourdon, C.; Kiss, A.; Mwangome, M.; Bandsma, R.H.J.; O’Connor, D.L. Maternal BMI is Positively Associated with Human Milk Fat: A Systematic Review and Meta-Regression Analysis. Am. J. Clin. Nutr. 2021, 113, 1009–1022. [Google Scholar] [CrossRef]
- Giuffrida, F.; Fleith, M.; Goyer, A.; Samuel, T.M.; Elmelegy-Masserey, I.; Fontannaz, P.; Cruz-Hernandez, C.; Thakkar, S.K.; Monnard, C.; De Castro, C.A.; et al. Human Milk Fatty Acid Composition and its Association with Maternal Blood and Adipose Tissue Fatty Acid Content in a Cohort of Women from Europe. Eur. J. Nutr. 2022, 61, 2167–2182. [Google Scholar] [CrossRef]
- Gila-Díaz, A.; Díaz-Rullo Alcántara, N.; Herranz Carrillo, G.; Singh, P.; Arribas, S.M.; Ramiro-Cortijo, D. Multidimensional Approach to Assess Nutrition and Lifestyle in Breastfeeding Women during the First Month of Lactation. Nutrients 2021, 13, 1766. [Google Scholar] [CrossRef]
- Gila-Díaz, A.; Arribas, S.M.; López de Pablo, Á.L.; López-Giménez, M.R.; Phuthong, S.; Ramiro-Cortijo, D. Development and Validation of a Questionnaire to Assess Adherence to the Healthy Food Pyramid in Spanish Adults. Nutrients 2020, 12, 1656. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Pyramid Today. Science and Cultural Updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Freedman, S.D.; Blanco, P.G.; Zaman, M.M.; Shea, J.C.; Ollero, M.; Hopper, I.K.; Weed, D.A.; Gelrud, A.; Regan, M.M.; Laposata, M.; et al. Association of Cystic Fibrosis with Abnormalities in Fatty Acid Metabolism. N. Engl. J. Med. 2004, 350, 560–569. [Google Scholar] [CrossRef]
- Most, J.; Dervis, S.; Haman, F.; Adamo, K.B.; Redman, L.M. Energy Intake Requirements in Pregnancy. Nutrients 2019, 11, 1812. [Google Scholar] [CrossRef]
- Duttaroy, A.K.; Basak, S. Maternal Fatty Acid Metabolism in Pregnancy and its Consequences in the Feto-Placental Development. Front. Physiol. 2021, 12, 787848. [Google Scholar] [CrossRef]
- Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Andersons, J.; Volkovs, V.; Ceļmalniece, K. Impact of Maternal Diet on Human Milk Composition among Lactating Women in Latvia. Medicina 2019, 55, 173. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Moreno, L.; Shamir, R. Palmitic Acid and Health: Introduction. Crit. Rev. Food Sci. Nutr. 2016, 56, 1941–1942. [Google Scholar] [CrossRef]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human Milk Fatty Acid Composition is Associated with Dietary, Genetic, Sociodemographic, and Environmental Factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef]
- Jonsson, K.; Barman, M.; Moberg, S.; Sjöberg, A.; Brekke, H.K.; Hesselmar, B.; Johansen, S.; Wold, A.E.; Sandberg, A. Fat Intake and Breast Milk Fatty Acid Composition in Farming and Nonfarming Women and Allergy Development in the Offspring. Pediatr. Res. 2016, 79, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Gnoni, A.; Longo, S.; Damiano, F.; Gnoni, V.G.; Giudetti, A.M. Oleic Acid and Olive Oil Polyphenols Downregulate Fatty Acid and Cholesterol Synthesis in Brain and Liver Cells. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press-Elsevier: Cambridge, MA, USA, 2020; pp. 651–657. [Google Scholar]
- Lopez-Lopez, A.; Lopez-Sabater, M.C.; Campoy-Folgoso, C.; Rivero-Urgell, M.; Castellote-Bargallo, A.I. Fatty Acid and Sn-2 Fatty Acid Composition in Human Milk from Granada (Spain) and in Infant Formulas. Eur. J. Clin. Nutr. 2002, 56, 1242–1254. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhu, M.; Liu, X.; Chen, X.; Yuan, Y.; Li, L.; Liu, J.; Lu, Y.; Cheng, J.; Chen, Y. Oleic Acid Ameliorates Palmitic Acid Induced Hepatocellular Lipotoxicity by Inhibition of ER Stress and Pyroptosis. Nutr. Metab. 2020, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Rueda, R.; Ramírez, M.; García-Salmerón, J.L.; Maldonado, J.; Gil, A. Gestational Age and Origin of Human Milk Influence Total Lipid and Fatty Acid Contents. Ann. Nutr. Metab. 1998, 42, 12–22. [Google Scholar] [CrossRef]
- Ribeiro, M.; Balcao, V.; Guimaraes, H.; Rocha, G.; Moutinho, C.; Matos, C.; Almeida, C.; Casal, S.; Guerra, A. Fatty Acid Profile of Human Milk of Portuguese Lactating Women: Prospective Study from the 1st to the 16th Week of Lactation. Ann. Nutr. Metab. 2008, 53, 50–56. [Google Scholar] [CrossRef]
- Read, W.W.; Lutz, P.G.; Tashjian, A. Human Milk Lipids. II. the Influence of Dietary Carbohydrates and Fat on the Fatty Acids of Mature Milk. A Study in Four Ethnic Groups. Am. J. Clin. Nutr. 1965, 17, 180–183. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Dewey, K.G.; Perez-Exposito, A.B.; Nurhasan, M.; Lauritzen, L.; Roos, N. Food Sources and Intake of N-6 and N-3 Fatty Acids in Low-Income Countries with Emphasis on Infants, Young Children (6–24 Months), and Pregnant and Lactating Women. Matern. Child Nutr. 2011, 7, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Tressou, J.; Buaud, B.; Simon, N.; Pasteau, S.; Guesnet, P. Very Low Inadequate Dietary Intakes of Essential N-3 Polyunsaturated Fatty Acids (PUFA) in Pregnant and Lactating French Women: The INCA2 Survey. Prostaglandins Leukot. Essent. Fat. Acids 2019, 140, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Pakseresht, M.; Wattar, N.; Wildgrube, J.; Sontag, S.; Andrews, M.; Subhan, F.B.; McCargar, L.; Field, C.J. Women Who Take N-3 Long-Chain Polyunsaturated Fatty Acid Supplements during Pregnancy and Lactation Meet the Recommended Intake. Appl. Physiol. Nutr. Metab. 2015, 40, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Barreiro, R.; Díaz-Bao, M.; Cepeda, A.; Regal, P.; Fente, C.A. Fatty Acid Composition of Breast Milk in Galicia (NW Spain): A Cross-Country Comparison. Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 102–114. [Google Scholar] [CrossRef]
- Nakamura, M.T.; Nara, T.Y. Structure, Function, and Dietary Regulation of Delta6, Delta5, and Delta9 Desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef]
- Brenna, J.T.; Salem, N.; Sinclair, A.J.; Cunnane, S.C. A-Linolenic Acid Supplementation and Conversion to N-3 Long-Chain Polyunsaturated Fatty Acids in Humans. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 85–91. [Google Scholar] [CrossRef]
- Scholtz, S.A.; Kerling, E.H.; Shaddy, D.J.; Li, S.; Thodosoff, J.M.; Colombo, J.; Carlson, S.E. Docosahexaenoic Acid (DHA) Supplementation in Pregnancy Differentially Modulates Arachidonic Acid and DHA Status Across FADS Genotypes in Pregnancy. Prostaglandins Leukot. Essent. Fat. Acids 2014, 94, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Park, W.J.; Kothapalli, K.S.D.; Lawrence, P.; Tyburczy, C.; Brenna, J.T. An Alternate Pathway to Long-Chain Polyunsaturates: The FADS2 Gene Product Delta8-Desaturates 20:2n-6 and 20:3n-3. J. Lipid Res. 2009, 50, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Lands, B. A Critique of Paradoxes in Current Advice on Dietary Lipids. Prog. Lipid Res. 2008, 47, 77–106. [Google Scholar] [CrossRef]
- Cleland, L.G.; James, M.J.; Neumann, M.A.; D’Angelo, M.; Gibson, R.A. Linoleate Inhibits EPA Incorporation from Dietary Fish-Oil Supplements in Human Subjects. Am. J. Clin. Nutr. 1992, 55, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.; McDonald, B.E.; Gerrard, J.M.; Bruce, V.M.; Weaver, B.J.; Holub, B.J. Effect of Dietary A-linolenic Acid and its Ratio to Linoleic Acid on Platelet and Plasma Fatty Acids and Thrombogenesis. Lipids 1993, 28, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Mantzioris, E.; James, M.J.; Gibson, R.A.; Cleland, L.G. Dietary Substitution with an A-Linolenic Acid-Rich Vegetable Oil Increases Eicosapentaenoic Acid Concentrations in Tissues. Am. J. Clin. Nutr. 1994, 59, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Bopp, M.; Lovelady, C.; Hunter, C.; Kinsella, T. Maternal Diet and Exercise: Effects on Long-Chain Polyunsaturated Fatty Acid Concentrations in Breast Milk. J. Am. Diet. Assoc. 2005, 105, 1098–1103. [Google Scholar] [CrossRef]
- BØrsheim, E.; Knardahl, S.; HØstmark, A.T. Short-Term Effects of Exercise on Plasma very Low Density Lipoproteins (Vldl) and Fatty Acids. Med. Sci. Sport. Exerc. 1999, 31, 522–530. [Google Scholar] [CrossRef]
- Maples, J.M.; McCarley, C.; Blankenship, M.M.; Yoho, K.; Johnson, K.P.; Fortner, K.B.; Tinius, R.A. Metabolic Flexibility and Weight Status may Contribute to Inter-Individual Changes in Breastmilk Lipid Content in Response to an Acute Bout of Exercise: Preliminary Findings from a Pilot Study. Int. J. Exerc. Sci. 2020, 13, 1756–1769. [Google Scholar]
- Wilson, N.A.; Mantzioris, E.; Middleton, P.F.; Muhlhausler, B.S. Influence of Sociodemographic, Lifestyle and Genetic Characteristics on Maternal DHA and Other Polyunsaturated Fatty Acid Status in Pregnancy: A Systematic Review. Prostaglandins Leukot. Essent. Fat. Acids 2020, 152, 102037. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, E.; Martín-Grau, C.; Bedmar, C.; Serrat Orus, N.S.; Basora, J.; Arija, V. The Eclipses Study Group. Maternal Factors Associated with Levels of Fatty Acids, Specifically N-3 PUFA during Pregnancy: ECLIPSES Study. Nutrients 2021, 13, 317. [Google Scholar] [CrossRef]
- Gila-Diaz, A.; Witte Castro, A.; Herranz Carrillo, G.; Singh, P.; Yakah, W.; Arribas, S.M.; Ramiro-Cortijo, D. Assessment of Adherence to the Healthy Food Pyramid in Pregnant and Lactating Women. Nutrients 2021, 13, 2372. [Google Scholar] [CrossRef]
- Jansen, E.C.; Conroy, D.A.; Burgess, H.J.; O’Brien, L.M.; Cantoral, A.; Téllez-Rojo, M.M.; Peterson, K.E.; Baylin, A. Plasma DHA is Related to Sleep Timing and Duration in a Cohort of Mexican Adolescents. J. Nutr. 2020, 150, 592–598. [Google Scholar] [CrossRef]
- Gil, A.; Ruiz-Lopez, M.D.; Fernandez-Gonzalez, M.; Martinez de Victoria, E. The Finut Healthy Lifestyles Guide: Beyond the Food Pyramid. Nutr. Hosp. Organo Of. Soc. Española Nutr. Parenter. Enter. 2015, 31, 2313–2323. [Google Scholar] [CrossRef] [PubMed]
- Takumi, H.; Kato, K.; Nakanishi, H.; Tamura, M.; Ohto-N, T.; Nagao, S.; Hirose, J. Comprehensive Analysis of Lipid Composition in Human Foremilk and Hindmilk. J. Oleo Sci. 2022, 71, 947–957. [Google Scholar] [CrossRef] [PubMed]
nmol% | Day 7 (n = 41) | Day 14 (n = 36) | Day 28 (n = 36) | p |
---|---|---|---|---|
Palmitic acid | 19.1 [17.9; 19.9] a | 18.8 [17.2; 20.7] a | 17.1 [16.3; 19.1] b | 0.010 |
Saturated fatty acids | 47.1 [43.2; 50.9] | 46.8 [44.4; 50.4] | 45.0 [43.0; 48.1] | 0.185 |
Oleic acid | 30.5 [27.9; 32.6] | 31.7 [28.1; 33.5] | 30.2 [28.6; 33.4] | 0.787 |
Mono-saturated fatty acids | 35.9 [32.3; 38.9] | 35.5 [32.2; 37.7] | 35.7 [33.7; 40.2] | 0.890 |
Linoleic acid (LA) | 12.3 [10.8; 14.5] a | 13.5 [11.4; 16.0] ab | 15.2 [11.7; 17.4] b | 0.044 |
Dihomo-γ-Linolenic acid | 0.64 [0.59; 0.75] | 0.58 [0.52; 0.74] | 0.61 [0.54; 0.72] | 0.129 |
Arachidonic acid (ARA) | 0.76 [0.67; 0.85] a | 0.67 [0.53; 0.75] bc | 0.66 [0.55; 0.78] c | 0.007 |
α-Linolenic acid (ALA) | 0.59 [0.47; 0.70] | 0.63 [0.51; 0.78] | 0.72 [0.52; 0.84] | 0.096 |
Eicosapentaenoic acid | 0.05 [0.04; 0.08] | 0.06 [0.04; 0.08] | 0.07 [0.04; 0.10] | 0.285 |
Docosahexaenoic acid (DHA) | 0.54 [0.42; 0.65] | 0.43 [0.35; 0.55] | 0.40 [0.28; 0.64] | 0.071 |
LA:ALA | 20.4 [15.3; 25.9] | 21.1 [15.7; 27.2] | 22.3 [14.7; 29.5] | 0.914 |
ARA:DHA | 1.43 [1.19; 1.86] | 1.44 [1.17; 1.90] | 1.59 [1.08; 2.35] | 0.844 |
LA:DHA | 25.0 [16.3; 29.6] a | 30.8 [23.6; 43.6] ab | 40.2 [26.2; 44.9] b | 0.006 |
n-6:n-3 | 11.4 [8.40; 14.3] | 12.9 [9.46; 15.3] | 13.3 [10.0; 17.1] | 0.334 |
PA | SFAs | OA | MUFAs | LA | DGLA | ARA | |
---|---|---|---|---|---|---|---|
Maternal age | 0.06 ± 0.19 (p = 0.774) | −0.03 ± 0.10 (p = 0.749) | |||||
BMI | −0.23 ± 0.27 (p = 0.399) | −0.01 ± 0.02 (p = 0.735) | |||||
WHI | 11.78 ± 6.49 (p = 0.080) | ||||||
Body fat | 0.06 ± 0.17 (p = 0.711) | −0.01 ± 0.01 (p = 0.694) | |||||
Basal metabolism | 0.01 ± 0.003 (p = 0.175) | 0.00 ± 0.00 (p = 0.541) | |||||
Physical activity | −0.28 ± 1.67 (p = 0.866) | −0.25 ± 0.08 (p = 0.003) | |||||
Healthy habits | −2.30 ± 4.35 (p = 0.600) | −0.21 ± 0.22 (p = 0.350) | |||||
Hydration | −0.53 ± 0.25 (p = 0.043) | ||||||
Grains | 11.48 ± 3.87 (p = 0.005) | −7.52 ± 2.15 (p = 0.001) | −7.31 ± 2.45 (p = 0.005) | ||||
Vegetables | −0.34 ± 0.10 (p = 0.002) | ||||||
Oil type | −3.19 ± 1.40 (p = 0.030) | ||||||
Dairy products | −11.47 ± 14.71 (p = 0.441) | 6.56 ± 8.95 (p = 0.469) | 6.34 ± 10.19 (p = 0.538) | ||||
Proteins | −5.07 ± 3.86 (p = 0.199) | ||||||
Snacks | −0.38 ± 0.3 (p = 0.136) | ||||||
AP-Q | −0.31 ± 0.70 (p = 0.662) | ||||||
Adjusted R2 | 0.47 | 0.24 | 0.30 | 0.22 | 0.13 | 0.14 | 0.48 |
AIC | 188.3 | 272.1 | 236.9 | 248.5 | 333.4 | −17.5 | −50.3 |
ALA | EPA | DHA | LA:ALA | ARA:DHA | LA:DHA | n-6:n-3 | |
---|---|---|---|---|---|---|---|
Maternal age | 0.003 ± 0.001 (p = 0.029) | 0.02 ± 0.01 (p = 0.002) | −0.07 ± 0.02 (p = 0.004) | −1.84 ± 0.58 (p = 0.003) | −0.43 ± 0.11 (p = 0.001) | ||
BMI | −0.002 ± 0.01 (p = 0.879) | −0.001 ± 0.001 (p = 0.423) | −0.001 ± 0.01 (p = 0.856) | 0.06 ± 0.26 (p = 0.825) | 0.13 ± 0.13 (p = 0.306) | ||
Physical activity | −0.90 ± 0.31 (p = 0.007) | −0.06 ± 0.04 (p = 0.131) | 0.09 ± 0.08 (p = 0.244) | 7.24 ± 7.79 (p = 0.360) | 2.30 ± 1.79 (p = 0.208) | ||
Healthy habits | −0.80 ± 0.36 (p = 0.036) | −0.14 ± 0.08 (p = 0.103) | −0.31 ± 0.13 (p = 0.023) | −3.62 ± 9.11 (p = 0.694) | 0.71 ± 1.68 (p = 0.678) | 1.63 ± 2.91 (p = 0.580) | |
Hydration | 0.08 ± 0.39 (p = 0.832) | 0.02 ± 0.04 (p = 0.618) | 0.42 ± 0.19 (p = 0.037) | 3.83 ± 9.61 (p = 0.693) | −0.77 ± 0.74 (p = 0.306) | 3.89 ± 11.00 (p = 0.726) | 2.34 ± 3.67 (p = 0.528) |
Grains | −0.09 ± 0.29 (p = 0.762) | −10.3 ± 7.04 (p = 0.153) | |||||
Fruits | −0.02 ± 0.03 (p = 0.650) | 0.09 ± 0.15 (p = 0.539) | 17.85 ± 15.13 (p = 0.247) | ||||
Vegetables | −0.03 ± 0.04 (p = 0.476) | 0.80 ± 0.82 (p = 0.338) | |||||
Oil type | −0.68 ± 0.63 (p = 0.293) | ||||||
Dairy products | −0.03 ± 0.16 (p = 0.849) | −0.11 ± 2.37 (p = 0.965) | |||||
Proteins | 0.12 ± 0.40 (p = 0.769) | −0.03 ± 0.08 (p = 0.683) | 0.36 ± 0.18 (p = 0.052) | −39.0 ± 10.0 (p < 0.001) | −0.25 ± 1.11 (p = 0.824) | −55.17 ± 19.17 (p = 0.007) | −17.88 ± 3.73 (p < 0.001) |
AP-Q | 0.39 ± 0.15 (p = 0.016) | 0.05 ± 0.03 (p = 0.109) | 1.79 ± 3.81 (p = 0.643) | −0.58 ± 0.40 (p = 0.159) | |||
Adjusted R2 | 0.53 | 0.43 | 0.61 | 0.62 | 0.59 | 0.64 | 0.71 |
AIC | −3.5 | −197.7 | −55.2 | 286.0 | 82.0 | 365.5 | 227.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramiro-Cortijo, D.; Herranz Carrillo, G.; Gila-Diaz, A.; Ruvira, S.; Singh, P.; Braojos, C.; Martin, C.R.; Arribas, S.M. Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation. Nutrients 2022, 14, 5280. https://doi.org/10.3390/nu14245280
Ramiro-Cortijo D, Herranz Carrillo G, Gila-Diaz A, Ruvira S, Singh P, Braojos C, Martin CR, Arribas SM. Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation. Nutrients. 2022; 14(24):5280. https://doi.org/10.3390/nu14245280
Chicago/Turabian StyleRamiro-Cortijo, David, Gloria Herranz Carrillo, Andrea Gila-Diaz, Santiago Ruvira, Pratibha Singh, Cheyenne Braojos, Camilia R. Martin, and Silvia M. Arribas. 2022. "Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation" Nutrients 14, no. 24: 5280. https://doi.org/10.3390/nu14245280
APA StyleRamiro-Cortijo, D., Herranz Carrillo, G., Gila-Diaz, A., Ruvira, S., Singh, P., Braojos, C., Martin, C. R., & Arribas, S. M. (2022). Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation. Nutrients, 14(24), 5280. https://doi.org/10.3390/nu14245280