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Abstract: Malaria is a disease that affects thousands of people around the world every year. Its patho-
genesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower
levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative
stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies
have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment
of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation
with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as
part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among
the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress
during malaria, highlighting the production of RONS as a defense mechanism against the infection
induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism
of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative
stress is implicated as a cause are outlined, providing information about its mechanism of action, and
providing an evidence-based justification for its supplementation in malaria.

Keywords: lycopene; malaria; oxidative stress; carotenoids; supplementation; antioxidants; adjuvant
treatment

1. Introduction

Malaria is currently endemic in 85 countries and is found on most continents, but
it is mostly confined to tropical and subtropical regions. It is noteworthy that repeated
Plasmodium infection does not result in complete immunity, so populations in endemic
regions are continuously susceptible to infection, transmission, morbidity, and mortality.
Moreover, the lack of effective prevention strategies, including medications and/or vac-
cines, contributes significantly to this scenario. In 2020, there were 241 million cases, and
627,000 people died worldwide from the disease [1]. Almost all malaria-related deaths
result from Plasmodium falciparum infection.

The pathophysiological mechanisms involved in the disease are complex and multi-
factorial. Inflammatory molecules are greatly involved and related to several cell signaling
pathways. Indeed, after Plasmodium infection, an inflammatory reaction may be observed,
with a predominance of neutrophils, lymphocytes, and monocytes, which are attracted
by the presence of the parasite in the body [2–4]. Furthermore, leukocytes induce the
expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-2, IL-6, IL-17,
interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), that play an important role in
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the protection against malaria and elimination of parasites, by inducing monocyte phago-
cytosis, favoring the elimination of parasitized erythrocytes and limiting the progression of
uncomplicated malaria to malaria with serious complications [5–7].

Additionally, in the recovery phase, regulatory cytokines, including IL-4, IL-10,
chemokines, including IL-8, macrophage inflammatory protein (MIP)-1α, MIP-1β, macrophage
colony-stimulating factor (M-CSF), and granulocyte-macrophage colony-stimulating factor
(GM-CSF) [8–11] and transforming growth factor-β, neutralize the pro-inflammatory re-
sponse by inhibiting the production of T helper 1 cytokines, contributing to the elimination
of the parasite and reducing the risk of serious clinical complications [12–14].

However, a disturbance in the balance of pro- and anti-inflammatory cytokines and
the underlying inflammatory process has been implicated in the pathogenesis of cerebral
malaria and is associated with disease severity and death [11,15,16]. Such disturbance
may be promoted by oxidative stress, which is known to intensify inflammation through
tissue destruction and the release of danger signals by necrotic cells [17,18]. According
to Ty et al. [19], reactive oxygen and nitrogen species (RONS) play an important role in
triggering inflammation in malaria since these are produced in excess during infection and
are potent inducers of inflammatory cytokines, suggesting the important role of oxidative
stress in the pathophysiology of the disease [19–21].

Given the tropism of Plasmodium species for tissues such as blood [22], important sys-
temic effects, including the induction of cytokines and RONS, which are closely associated
with anemia, paroxysms, cerebral malaria, among other symptoms of systemic infection,
are marked during the disease [20,23–25].

The oxidative changes occurring during infection that led to oxidative stress are a
result of several different mechanisms, including the degradation of hemoglobin by the
malaria parasite, producing redox-active by-products, such as free heme and hydrogen
peroxide (H2O2) [26]. These radicals stimulate a series of oxidative reactions, leading to
a decrease in the antioxidant defense system, through the consumption of micronutri-
ents, including vitamin A, zinc, ascorbic acid (vitamin C), α-tocopherol (vitamin E), and
carotenoids, among others [27]. In fact, in malaria-endemic areas, P. falciparum-infected
individuals present lower plasma concentrations of various micronutrients compared to
healthy individuals [28].

On the other hand, these micronutrients play essential roles in the antioxidant system
and are implicated in resistance to malaria infection [29]. In this sense, it has been shown
that vitamin A, zinc, and selenium can interfere with the progression of oxidative reactions
during malaria in mice infected with P. berghei [30]. Additionally, studies have suggested
that the periodic supplementation of vitamin A and zinc can reduce the incidence of febrile
episodes and parasitemia, being an effective and low-cost strategy to decrease P. falciparum
morbidity in preschool children [31,32].

Other studies also support the hypothesis that the use of carotenoids by the host
increases during malaria, suggesting that the nutritional status is an important modulating
factor in the disease [28,33]. In this regard, it has been suggested that increased plasma
lycopene concentration is associated with faster resolution of parasitemia in children
infected with P. falciparum, being effective in maintaining the oxidative balance [34].

Considering the important involvement of oxidative stress mechanisms in malaria
and, therefore, the potential of antioxidant nutrients in preventing it, in the present revision,
we intend to demonstrate the beneficial effects of lycopene supplementation in malaria
patients and, consequently, in several other diseases mediated by oxidative stress.

2. Oxidative Stress

Oxidative stress occurs when RONS overwhelm cellular defenses, causing damage to
proteins, membranes, and deoxyribonucleic acid (DNA) [35]. It is the result of a disturbance
in the balance between RONS and antioxidants in favor of RONS [36]. Under physiological
conditions, endogenous RONS are generated by enzymatic systems, including nicotinamide
adenine dinucleotide phosphate oxidase (NADPH oxidase) and nitric oxide synthase (NOS),



Nutrients 2022, 14, 5303 3 of 31

as a by-product of mitochondrial electron transport chain reactions (Figure 1) or by metal-
catalyzed oxidation [37,38].
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In this regard, the free radical superoxide (O2
•−), resulting from the monoelectronic

reduction of oxygen, is considered the main precursor of other RONS since, after its
formation, it can react with other molecules giving rise to other free radicals, such as
hydroxyl (OH•), alkoxyl (RO-), and peroxyl (ROO-), in addition to other molecules that do
not meet the definition of free radicals, but take part of oxidative reactions in a meaningful
way, such as H2O2. Nitric oxide (NO) is among the molecules that can react with O2

•−, and
the reaction between them generates the free radical peroxynitrite (ONOO-). Additionally,
O2

•− can be unmuted to form H2O2, and it can be broken down through Fenton or Haber-
Weiss reactions, leading to the generation of OH• [39,40].

These RONS-generating chain reactions are initially controlled by antioxidant defense
systems that act quickly, neutralizing any molecule that can potentially develop into a
RONS or any free radical with the ability to induce the production of other pro-oxidants [41].
Three enzymes are critical in this process, including superoxide dismutase (SOD), cata-
lase (CAT), and glutathione peroxidase (GSH-Px). These enzymes, respectively, unmute
O2

•− and break down H2O2 or hydroperoxides (ROOH) into harmless molecules such as
H2O, alcohol, and oxygen (O2) [42]. The class of endogenous antioxidants also includes
glutathione reductase, and reduced glutathione (GSH), in addition to small molecules such
as coenzyme Q and uric acid (UA), among others [43]. Since they can be synthesized by
the body in response to oxidative aggression, we nominate endogenous antioxidants as
mobilizable antioxidant molecules.

However, in diseases in which oxidative stress is a pathogenic mediator, including can-
cer and malaria, mobilizable antioxidants are not sufficient to maintain cell homeostasis due
to the decreased synthesis of antioxidant enzymes and increased use of these antioxidants,
among other factors [44–46].

In these cases, supplementation with dietary antioxidants is essential to maintain
optimal cell function. Vitamins, including vitamins E and C, phenolic substances, such as
flavonoids, resveratrol, and carotenoids, including β-carotene and lycopene, and drugs,
such as N-acetylcysteine (NAC), among others, belong to this category [47,48]. Dietary
antioxidants neutralize or eliminate RONS by binding or donating electrons to pro-oxidants,
and in the process, they become free radicals but with less harmful effects. These “new
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radicals” are more easily neutralized and rendered completely harmless by other antiox-
idants in this group [49]. Thus, this class of antioxidant molecules can also be referred
to as consumable antioxidants, as they are consumed in the face of oxidative aggression.
Thus, consumable and mobilizable antioxidants act synergistically to fight the excessive
increase in RONS, which can be a primary cause or a secondary complication of various
diseases [50,51], as in malaria [52,53].

3. Oxidative Stress in Malaria

In malaria, oxidative stress is caused by four main mechanisms: a host defense
against Plasmodium infection; ischemia-reperfusion syndrome; direct production of oxida-
tive species by the parasite; and the metabolism of antimalarial drugs [54].

3.1. Oxidative Stress as a Host Defense Mechanism

RONS are essential for several physiological functions of the body, including cell
survival, growth, proliferation, and differentiation, as well as the immune response [55,56].

As for the immune response, RONS are important for phagocytes, including neu-
trophils and monocytes/macrophages, which are highly activated during malaria, helping
these cells phagocytize and destruct parasites [57,58].

In this sense, the body’s defense system responds to infection by primarily recruiting
neutrophils [59]. When neutrophils engulf the parasites, they induce a respiratory burst
(Figure 2), in which O2 enzymatically reacts with NADPH oxidase present in the plasma
and the phagosomal membrane of neutrophils, forming O2

•− [4]. O2
•− and its derivatives

H2O2 and OH•, when released by activated neutrophils in the phagosome, are essential to
kill ingested pathogens [60].
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In addition, activated neutrophils produce cytokines, such as GM-CSF and M-CSF,
and chemokines, including MIP-1α and MIP-1β, which attract these cells and are essential
for monocyte mobilization [61]. These leukocytes engulf and kill the parasites through the
oxidative action of O2

•−, which is generated in the same way as in neutrophils, as well as
by the action of NO, which is produced by the macrophage from the reaction of NOS with
L-arginine [62,63]. Additionally, the NO and O2

•− generated react to form other RONS,
such as ONOO-, intensifying the cytotoxicity directed against the parasites [64].

Furthermore, neutrophil and macrophage myeloperoxidase is activated and uses
H2O2 as a substrate to produce hypochlorous acid, a highly bactericidal compound [65,66].
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On the other hand, phagocytosis and the consequent action of RONS, including O2
•−

and NO, as well as other toxic products, can exacerbate the condition due to rupture of
the parasitized erythrocytes, during which normal uninfected erythrocytes can also be
destroyed, stimulating cytoadherence and, consequently, potentially blocking blood flow,
causing ischemia and anemia [67,68].

3.2. Oxidative Stress Due to Ischemia-Reperfusion Syndrome

In individuals with malaria, severe anemia induces microvascular dysfunction, leading
to recurrent episodes of initial restriction of blood supply to organs, which can lead to
ischemia and nutrient and oxygen deprivation, followed by subsequent restoration of
concurrent perfusion and reoxygenation [54,69]. This process is called ischemia-reperfusion
syndrome and can occur in malaria due to the sequestration of parasitized erythrocytes, as
a result of the destruction of erythrocytes caused by the parasites and RONS during the
paroxysm of malaria, and due to cytoadherence of erythrocytes to blood vessels [70].

Furthermore, this syndrome can trigger anaerobic metabolism, the production of lactic
acid, and the consequent depletion of adenosine triphosphate (ATP). As ATP availability is
reduced, ATP-dependent ion channels begin to fail. At the same time, calcium overload and
excessive RONS production open the mitochondrial permeability transition pore, further
reducing ATP levels [71,72]. During the ischemic process, the degradation of ATP causes
the accumulation of xanthine oxidase (XO) and hypoxanthine due to the lack of oxygen.
When the blood supply is resumed, XO acts on hypoxanthine resulting in the production of
O2

•− (Figure 3), which can later be converted into OH• in the presence of transition metals
and, consequently, trigger oxidative stress [73,74].
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During this process, UA is also formed, which is a weak organic acid present mainly
as monosodium urate at physiological pH [75]. UA can be found in the host organism
during malarial infection and can act by eliminating RONS and chelating transition metal
ions or even by reducing NOS expression, impairing NO release [76,77]. Previous studies
have shown that plasma UA levels in P. falciparum-infected children increase during acute
episodes and with disease severity, suggesting that UA is an important mediator in the
pathophysiology of malaria [78,79].

In the ischemia-reperfusion syndrome, RONS can be produced during ischemia but is
massively increased during reperfusion, amplifying and propagating oxidative damage
and destroying the integrity of proteins, membranes, and microvascular endothelium [80].
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3.3. Oxidative Stress Due to the Metabolism of the Parasite

Another important oxidative mechanism in malaria is mainly triggered by the
metabolism of the parasite, as well as by the potentially oxidative by-products gener-
ated and released from red blood cells destroyed by the action of the parasite [81]. Inside
the erythrocyte, the parasite digests hemoglobin in its acidic digestive vacuole, forming
essential amino acids for parasite development and proliferation [82]. However, in this
process, ferroprotoporphyrin IX or heme complex (FPIX) is released, which is toxic to the
parasite. On the other hand, this complex can still be detoxified within the parasite by
polymerization [83].

Although the parasite manages to polymerize FPIX, resulting in a nontoxic derivative,
hemozoin, also known as a malarial pigment, a significant amount escapes polymeriza-
tion [84]. Thus, the ferrous iron (Fe2+) from FPIX is oxidized to the ferric state (Fe3+),
with the consequent production of superoxide, which dismutates to H2O2 (Figure 4). This
oxidative reaction chain leads to the production of OH• from reactions involving H2O2 and
Fe3+, such as the Fenton and Haber–Weiss reactions [85].
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These free radicals can cause damage to the parasite’s digestive vacuole membrane,
eventually killing it [81]. However, the rapid development and proliferation of the parasite,
associated with the RONS generated and released inside the erythrocytes, cause structural
damage to the erythrocytes [86]. This results in increased membrane permeability for
ions, increased cell volume, oxidation of sulfhydryl groups, and reduced deformability,
contributing to the loss of erythrocyte function and cell lysis [67,87].

Consequently, all intra-erythrocyte content, including RONS, will be released to the
extracellular environment, resulting in damage to several biomolecules, such as lipids,
proteins, and DNA, as well as enzyme inactivation, apoptosis induction, modification of
surface adhesion molecule expression of leukocytes and endothelial cells, and alteration in
the bioavailability of NO, compromising homeostasis and, ultimately, its survival [88,89].
These changes expose the host organism to a highly oxidative environment (Figure 5),
implying the development of systemic complications such as reduced blood flow and
severe anemia and also facilitating the entry of parasites into tissues such as the lung and
brain, which can lead to organ failure [83,90–92].
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3.4. Oxidative Stress as a Consequence of the Metabolization of Antimalarial Drugs

The drug treatment of malaria is specially designed to interrupt parasite proliferation,
responsible for the pathogenesis and clinical manifestations of the infection, to destroy
the latent forms of the parasite (hypnozoites) to prevent late relapses, and to prevent the
transmission of the parasite, through the use of drugs that prevent the development of
sexual forms of the parasites [93,94].

In this context, one of the main targets of antimalarial drugs is the intracellular pathway
of heme metabolism, which is implicated in the production of RONS and the consequent
death of the parasite [95,96]. Therefore, chloroquine, a quinoline blood schizonticidal
drug used to treat severe and uncomplicated cases of malaria, can act by preventing FPIX
polymerization, causing the accumulation of FPIX in the parasite’s digestive vacuole and
consequent lethal oxidative stress in the parasite [97–99]. However, there are increasing
reports of P. falciparum resistance to quinoline antimalarials, highlighting the importance
of the P. falciparum chloroquine resistance transporter, a member of the drug/metabolite
transporter superfamily located in the parasite’s digestive vacuole, as the main responsible
for chloroquine resistance [100–102].

Other studies indicate that, in addition to showing chemical similarity with chloro-
quine and a similar mechanism of action, other quinolines, such as quinine, amodiaquine,
lumefantrine, and mefloquine are effective against many strains of parasites resistant to
chloroquine [103–105]. In addition, some of these drugs are widely used in combina-
tion therapies with artemisinin derivatives, including artemether plus lumefantrine and
artesunate plus amodiaquine, and provide synergistic antimalarial activity along with
preventing the development of antimalarial drug resistance [106–108].

The site of action of artemisinin and its derivatives dihydroartemisinin, artemether,
arteether, and artesunate is believed to be the parasite’s digestive vacuole, where these
drugs can interfere with the FPIX complex, giving rise to RONS, leading to damage to
nearby proteins, and still interacting with the mitochondrial electron transport chain of the
parasite, enhancing RONS production, impairing mitochondrial functions, and killing the
parasite [109–111].

Artemisinins act quickly and are very potent against blood-stage parasites. They are
active against the sex stages of the parasite, which is important for blocking transmis-
sion [112,113]. However, due to their short half-life, these drugs are used in conjunction
with other long-acting drugs that remain in the body for longer to fight potential remaining
parasites [114,115].
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Accordingly, studies show that primaquine increases the effect of combination therapy
with artemisinin derivatives in eliminating malaria and reduces the risk of artemisinin-
resistant infections [116].

Furthermore, only primaquine is recognized for completely eliminating P. vivax and
P. ovale that form hypnozoites—the latent form of the parasite that remains in the liver and
is responsible for disease relapse in individuals infected by these parasites—refractory to
most drugs and for providing a radical cure [93,117]. Primaquine, an 8-aminoquinoline,
can act directly on erythrocytes leading to massive production of RONS and consequent
lipid peroxidation of the cytoskeleton and membrane, as well as hemolysis [118]. However,
the use of primaquine in individuals with glucose-6-phosphate dehydrogenase deficiency
can result in clinical manifestations of hemolysis, such as severe anemia, fatigue, jaundice,
and acute renal failure, thereby limiting its use [119,120].

In this scenario, as a product of the normal host’s metabolism or from the metabolism
of the parasite, or as an effect of pharmacological treatment, intensely produced RONS
cause damage to lipids, proteins, and DNA, leading to oxidative stress that impairs the
normal functioning of the infected organism [98]. Therefore, the search for adjuvant
therapies that can improve the clinical outcomes of malaria continues because, despite their
benefits, treatments eventually cause oxidative damage, which limits their use [121].

3.5. Nitric Oxide in Malaria

Scientific evidence demonstrates that a specific RONS is particularly involved in the
pathophysiology of this disease: NO [122,123]. It has been suggested that the low bioavail-
ability of NO promotes oxidative stress in tissues such as the brain and lungs [124]. On the
other hand, it has been shown that NO at high concentrations can kill Plasmodium [125,126].
NO is an important mediator of biological processes such as vascular homeostasis, neu-
rotransmission, immunity, and inflammation [127–129]. Furthermore, it is a free radical
produced by three different nitric oxide synthase enzymes, neuronal NOS (nNOS or NOS1),
endothelial NOS (eNOS or NOS3), which are constitutively expressed, and the inducible
NOS (iNOS or NOS2), which is induced by inflammatory stimuli [130–133]. NO is very
reactive and has a very short half-life. For this reason, nitrite and nitrate measurements,
which are the final metabolites of NO, have been used to measure the concentration of NO
indirectly [134,135].

Experimental evidence indicates that NO plays an important role in the defense against
plasmodia in vitro and in vivo [136,137]. In this context, studies have shown that circulating
levels of nitrite and nitrate were higher in anopheline mosquitoes—a natural vector of
malaria in humans—infected with Plasmodium and that increased NO concentrations at
the beginning of the sporozoite stage induced the formation of toxic metabolites, limiting
parasite development [138].

In children and adults with malaria, elevated plasma levels of nitrites and nitrates
have been associated with more rapid parasite clearance [139]. Indeed, previous studies
have shown that children infected with P. falciparum had elevated levels of NO and iNOS
activity, suggesting the protective role of NO in children with malaria [140]. Protection
against severe malaria in this population of children appears to be associated, at least in
part, with a polymorphism in the iNOS gene, which produces high levels of NO during
an inflammatory event [141]. These studies suggest that NO production during malaria
depends on the severity of the disease and the degree of patient immunity [142].

In an animal model of experimental cerebral malaria (ECM), Serghides et al. [143]
demonstrated that pretreatment with inhaled NO reduced the accumulation of parasitized
erythrocytes in the brain, decreased endothelial cell expression, and preserved vascular
integrity. From these results, the authors suggested that prophylaxis with NO inhalation can
reduce systemic inflammation and endothelial activation during ECM. In a similar model,
Ong et al. [144] showed that cerebrovascular dysfunction is characterized by vascular
constriction, occlusion, and cell damage, resulting in impaired perfusion and reduced
cerebral blood flow and oxygenation, and was associated with low NO bioavailability.
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Given the critical importance of NO-derived and -non-derived oxidative stress in
the underlying pathophysiological mechanisms of the disease, studies have shown that
natural or synthetic exogenous antioxidants, including vitamin A, E, zinc, selenium,
NAC, curcumin, Agaricus sylvaticus mushroom, and carotenoids, can benefit the treat-
ment of malaria [145–148]. Several studies have indicated an association between the
use of carotenoids and a decrease in oxidative changes, suggesting that the antioxidant
properties of these compounds are an important factor against malaria-induced oxidative
stress [149,150]. The recent interest in carotenoids has focused on the role of lycopene in
human health [151,152].

4. Lycopene

Lycopene is a natural constituent synthesized by plants and microorganisms [153]. It
is a red pigment found in some fruits and vegetables, such as guava, watermelon, papaya,
pitanga (Eugenia uniflora—Myrtaceae), tomatoes, and their derivatives [154–157] and can
be extracted from these vegetables by chemical reactions using organic solvents, such as
ethanol and ethyl acetate and/or using a supercritical fluid such as supercritical carbon
dioxide, or by heat treatment at different temperatures ranging from 60 to 140 ◦C [158–163].
It is widely used as a supplement in functional foods, nutraceuticals, and pharmaceuticals,
as well as an additive in cosmetics [164,165].

Lycopene is an intermediate product of the β-carotene biosynthetic pathway that
does not have provitamin A activity, as it does not have the β-ionone ring in its structure,
which is responsible for this characteristic [166]. This compound is a noncyclic, fat-soluble
hydrocarbon that contains 11 conjugated double bonds and 2 unconjugated double bonds,
thereby offering it greater reactivity. This polyene can also exist in all-trans and cis-lycopene
isomeric forms (Figure 6). Conversion from all-trans- to cis-lycopene forms can occur by
geometric isomerism induced by light, thermal energy, or chemical reactions [167,168].
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4.1. Sources

Tomatoes and tomato products are the main source of lycopene and are considered
an important source of carotenoids in the human diet. In raw or fresh tomatoes, lycopene
occurs mainly as a trans isomer [169]. However, cis isomers are better absorbed by the
human body than trans isomers. Cis isomers form during cooking, food processing, and
storage, which do not affect the total lycopene content [170].

Studies have shown higher plasma lycopene concentrations after ingestion of pro-
cessed tomatoes compared to raw tomatoes [171,172]. In fact, processing and homoge-
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nization induce the disruption of the food membrane, converting lycopene from the trans
to cis form, increasing its solubility and, consequently, its availability [173]. In addition,
the acidic pH of the stomach also appears to secondarily contribute to such conversion,
as it can lead to the transformation of the trans to cis form [174]. Thus, lycopene can be
rapidly and completely absorbed without energy expenditure in the intestinal wall after
oral administration in animals and humans [175].

4.2. Absorption

After absorption, lycopene can be found in high concentrations in human body fluids
and tissues, such as breast milk, prostate, testis, and skin [176]. Furthermore, it is the
predominant carotenoid in human plasma, naturally present in a higher concentration
than β-carotene and other dietary carotenoids, which may indicate its greater biological
significance for the human defense system [177].

Studies suggest that lycopene is transported between cells to target organs by specific
proteins or migrates aggregated to chylomicrons, with the isometric form of lycopene being
decisive for this process [178]. This is because, after passing through the stomach, trans
isomers can readily aggregate within the intestine and form crystals, greatly reducing
their absorption by micelles, while the cis form allows lycopene to be more efficiently
incorporated into mixed micelles [179]. The lycopene-loaded micelles are then absorbed
into enterocytes, from where they are released in chylomicrons, which exit to the lymph,
passing from there to the systemic circulation to the liver. The liver stores and secretes
carotenoids as very low-density lipoproteins (VLDL), which are subsequently absorbed
by various tissues, including adrenal, kidney, adipose, splenic, lung, and reproductive
organ tissues, and are subsequently recovered as other low-density (LDL) and high-density
(HDL) lipoproteins [178,180]. During absorption, lycopene taken up by the enterocyte can
also be cleaved by β-carotene 9′,10′-oxygenase (BCO2) to form apo-lycopenoids, including
apo-lycopenal, -lycopenol, and -lycopenoic acid [181–183].

4.3. Metabolism

Lycopene can be metabolized through isomerization, followed by oxidation to produce
epoxides, or undergo eccentric cleavage by BCO2 to form apo-lycopenoids [181,182,184,
185]. Additionally, lycopene cleavage products can be generated through autoxidation,
via reaction with free radicals [186], by processes that simulate biological tissues [187],
or even by chemical reactions that cause the interruption of the polyene chain, affecting
the carbon-carbon double bond system, and by addition or cleavage, resulting in several
isomers and apo-lycopenoids [159,188].

Among the most interesting lycopene metabolites formed by oxidative degradation
of the hydrocarbon chain are the apo-lycopenoids [189]. Apo-lycopenoids have already
been detected in animal tissues, such as ferret lungs [182] and the liver of rats [190], after
treatment with lycopene. In addition, several apo-lycopenoids have been isolated from
fruits, vegetables, and human plasma [191].

Increasing evidence suggests that many of lycopene’s biological actions may be medi-
ated, at least in part, by its metabolites and/or oxidation products [192–194]. In this regard,
lycopenols were shown to reduce the proliferation of cancer cells, induce apoptosis, regulate
the cell cycle, induce the expression of nuclear transcription factors, and enhance cell-to-cell
communication [189,195–198]. Furthermore, the study by Böhm et al. [199] showed that
the cis isomers obtained from processed foods had an antioxidant potential twice as intense
as β-carotene. Additionally, studies by Lian and Wang [200] showed that treatment of
human bronchial epithelial cells (BEAS-2B) with apo-10’-lycopenoic acid (10 µM) increased
GSH levels and suppressed RONS production and oxidative damage induced by H2O2
in vitro. In addition, it was reported that apo-10’-lycopenoic acid induced the expression
of phase II antioxidant enzymes mediated by factor 2-related nuclear erythroid factor 2
(Nrf2), including heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1),
glutathione S-transferases (GST), GR, and γ-glutamylcysteine synthetase (γ-GCS) [200].
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Apolycopenol treatment also inhibited methemoglobin-induced lipid peroxidation in
a chemical model of postprandial oxidative stress in the gastric compartment [201].

In another in vitro study, both apo-10’-lycopenoic acid and apo-14’-lycopenoic acid
inhibited RONS production and oxidative DNA damage induced by H2O2 and cigarette
smoke. This effect was accompanied by the inhibition of mitogen-activated protein kinase
(MAPK) phosphorylation, the expression of heat shock proteins (hsp)70 and hsp90, and
the inactivation of NF-κB, molecules that are activated in situations of oxidative stress
and which have also been implicated in the modulation of various intracellular redox
functions [202].

5. Antioxidant Effects of Lycopene

Among the carotenoids, lycopene is the most effective antioxidant against RONS and
may contribute to preventing or reducing oxidative damage to cells and tissues in vivo and
in vitro [203]. Evidence supports the role of lycopene as a potent antioxidant, capable of
scavenging singlet oxygen (1O2) and other free radicals, such as ROO-, with a potential
twice as high as β-carotene, and ten times as efficient as α -tocopherol, although lycopene
circulates at much lower concentrations than vitamin E [204,205]. During the elimination
of 1O2, energy is transferred from this radical to the lycopene molecule and, as it has an
open chain with 11 conjugated double bonds in its structure, this favors stabilization of the
unpaired electron of the radical by resonance [206,207]. Additionally, it was observed that
lycopene effectively eliminates other RONS, such as OH•, O2

•−, and ONOO- [208].
Furthermore, the lipophilic characteristic of lycopene favors its interaction with the

lipid bilayer of the cell membrane, thereby preventing the breakdown of fatty acids and
the oxidation of lipids, proteins, and DNA [180]. In this sense, Suwannalert et al. [209],
investigating serum levels of lycopene and malondialdehyde (MDA) in elderly susceptible
to oxidative stress, demonstrated that lycopene levels were inversely related to MDA levels.
Additionally, Yonar and Sakin [206] demonstrated that lycopene treatment prevented
deltamethrin-induced oxidative stress by decreasing MDA levels in fish (Cyprinus carpio)
and significantly increasing SOD, CAT, and GSH-Px activities and the level of GSH. Similar
results were found by Kujawska et al. [210], who reported that treatment with tomato
extract enriched with lycopene was able to suppress the oxidative stress induced by N-
nitrosodiethylamine in rats and increase the enzymatic antioxidant activity in these animals.

5.1. Cardioprotective Effect of Lycopene

Oxidative stress produced by RONS is implicated in the development of several
diseases, including atherosclerosis and several heart diseases [50,211], but studies suggest
that lycopene supplementation or consumption of tomato and its derivatives can improve
endothelial function and lead to reduced blood pressure [187]. In this sense, Mohamadin
et al. [212] investigated the cardioprotective potential of lycopene against isoproterenol-
induced oxidative stress and cardiac lysosomal damage in rats. According to the authors,
lycopene supplementation (4 mg/kg/day) significantly improved lysosomal membrane
damage, as well as changes in cardiac enzymes, including aspartate aminotransferase,
creatine kinase isoenzyme MB, and troponin T, as well as oxidative stress markers such as
MDA, GSH, GSH-Px, SOD, and CAT.

Previously, Bose and Agrawal [213] had already observed, in a clinical study with
grade I hypertensive patients, that tomato supplementation for 60 days improved the levels
of antioxidant capacity and reduced lipid peroxidation in these patients. Ferreira-Santos
et al. [151] reported that a lycopene-supplemented diet prevented angiotensin II-induced
hypertension with no effect in normotensive rats. The authors suggested that the infusion
of angiotensin II caused a decrease in the activity of antioxidant enzymes, and the treatment
with lycopene improved the antioxidant balance, increasing the activity of GSH-Px and
SOD, reducing oxidative stress, and improving cardiovascular remodeling. These results
confirm the antihypertensive potential of lycopene without the risk of causing hypotension
in normotensive individuals.
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5.2. Anti-Atherosclerotic Effect of Lycopene

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation
of lipids and inflammatory cells in the walls of medium and large-caliber arteries, which
is the main cause of heart disease and mortality in Western societies. The pathogenesis of
atherosclerosis involves the activation of inflammatory mediators, cytokines, and increased
oxidative stress [214,215].

In evaluating the effect of lycopene in an animal model of atherosclerosis,
Renju et al. [216] demonstrated that CAT, SOD, and GSH-Px activities and GSH levels
were increased, while the levels of thiobarbituric acid reactive substances (TBARS), total
cholesterol, triglyceride, low-density lipoprotein (LDL), very-low-density lipoprotein, and
inflammatory mediators, including cyclooxygenase-2 (COX-2) and 15-lipoxygenase, de-
creased after treatment with lycopene isolated from the alga Chlorella marina. Additionally,
Martín-Pozuelo et al. [217] showed that tomato consumption improved the expression
of genes such as fatty acid-binding protein 2, which encodes enzymes involved in lipid
metabolism, thus reducing the synthesis of fatty acids, triglycerides, and cholesterol, pre-
venting their accumulation and modulating the progression of steatosis induced in rats.
Moreover, according to Navarro-González et al. [218], lycopene competes with hydrox-
ymethylglutaryl coenzyme A in the liver, thus preventing the formation of mevalonate,
and consequently reducing cholesterol synthesis by reducing the activity of the enzyme
3-hydroxy-3-methylglutaryl-coenzyme A reductase. For this reason, the consumption of
tomato juice and the accumulation of lycopene in the liver were able to improve plasma
cholesterol levels in steatosis induced in animals [218].

In this sense, Kumar et al. [219] observed that treatment with lycopene induced an
increase in high-density lipoprotein and reduced levels of total cholesterol, LDL, triglyc-
erides, and TBARS in rats fed a high-cholesterol diet. Brito et al. [220] also demonstrated
that lycopene extracted from guava (Psidium guajava L.) reduced MDA and triglyceride
levels, as well as reduced plasma activity of myeloperoxidase and hepatic steatosis in an
animal model of dyslipidemia. The results indicated that lycopene has hypolipidemic and
anti-atherogenic potential.

5.3. Hepatoprotective Effect of Lycopene

Oxidative stress is believed to be an important contributor to the pathogenesis of
liver diseases, ranging from simple steatosis to its more severe form or even the genesis of
hepatocellular carcinoma [221]. When investigating the role of lycopene in an animal model
of hepatotoxicity, studies demonstrated that lycopene improved biochemical indices, both
in the blood and in the liver of animals. Furthermore, lycopene restored the antioxidant
capacity and increased the levels of GSH, GSH-Px, glutathione S-transferase (GST), CAT,
and SOD, which, together with lycopene, could limit the production of oxidants [222–224].
Similar results were observed in the study by Abdel-Daim et al. [225], where zinc oxide
poisoning in fish caused severe lipid peroxidation with a significant increase in the level
of MDA in the liver, kidney, and gill tissues, and treatment with lycopene significantly
reduced the production of this oxidative stress biomarker

Recently, Ni et al. [152] demonstrated that lycopene inhibited and reversed lipotoxicity-
induced insulin resistance, preventing nonalcoholic steatohepatitis in mice, attenuating
hepatic lipid accumulation, and increasing lipolysis. The beneficial effects of lycopene were
attributed in part to decreased hepatic recruitment of T cells and macrophages, and to a
reduction in macrophage M1/Kupffer cells, which attenuated insulin resistance, as well
as liver inflammation and fibrosis, in preexisting steatohepatitis. These effects have been
associated with a decrease in oxidative stress in cells.

5.4. Anti-Diabetic Effect of Lycopene

Lycopene appears to have beneficial effects in improving factors related to diabetes
progression, including oxidative stress, inflammation, and endothelial dysfunction [226]. It
was observed that the administration of lycopene in rats decreased glucose levels, increased
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insulin concentration, reduced H2O2, TBARS, and iNOS levels, increased cNOS activity
and NO levels, as well as increased total antioxidant capacity with increased CAT, SOD,
and GSH-Px activity [227–229].

In humans, in a placebo-controlled clinical trial with patients with type 2 diabetes
mellitus, Neyestani et al. [230] found a negative correlation between total antioxidant
capacity and MDA in the lycopene-treated group, indicating that lycopene supplementa-
tion attenuates oxidative stress in these patients. According to Yin et al. [231], lycopene
strengthens the antioxidant defense system against oxidative stress, attenuating insulin
signaling deficits, inhibiting neuroinflammation, and improving cognitive function. These
studies suggest that lycopene may help improve the progression of diabetes in humans.

5.5. Anti-Cataract Effect of Lycopene

The ocular environment is rich in endogenous sources of RONS. Although there are
several physiological defenses to protect ocular lenses from the toxic effects of light and
oxidative damage, evidence suggests that long-term chronic exposure to oxidation can
damage the lens and predispose it to the development of cataracts [232]. In this sense,
Gupta et al. [233] showed that lycopene supplementation in rats restored GSH, SOD,
CAT, and GST levels and, consequently, prevented sodium selenite-induced cataracts.
According to the authors, lycopene protects against the experimental development of
cataracts due to its antioxidant properties and may be useful for cataract prophylaxis
or therapy [234]. Also, Göncü et al. [235] demonstrated the anti-inflammatory effect of
lycopene on lipopolysaccharide-induced uveitis in rats. According to the authors, the
anti-inflammatory activity of lycopene was mediated by the inhibition of TNF-α, NO, and
IL-6 production, resulting in reduced inflammation and uveal oxidative stress.

5.6. Anti-Cancer Effects of Lycopene

Studies have shown that lycopene can reduce the risk of cancer by inducing antioxidant
enzymes and phase II detoxifying enzymes such as NAD(P)H quinone oxidoreductase 1 and
γ-glutamylcysteine synthetase [236]. These enzymes eliminate many harmful substances,
converting them into hydrophilic metabolites that can be readily excreted from the body.
In fact, lycopene administration significantly suppressed gastric cancer in vivo, reducing
lipid peroxidation, increasing the levels of vitamin C, vitamin E, and GSH, and increasing
circulating activity dependent on enzymes such as GSH-Px and GST [237]. Lycopene
also prevented experimental oral carcinogenesis by inhibiting oxidative stress through the
upregulation of detoxification pathways [238]. Recently, Cheng et al. [239] demonstrated
the efficacy of lycopene in inhibiting the oxidative stress induced by cigarette smoke in
lung cancer epithelial cells.

Other potentially beneficial effects of lycopene include inhibition of carcinogenic
activation, proliferation, angiogenesis, invasion, and metastasis, blocking tumor cell cycle
progression, and induction of apoptosis through its antioxidant activity and changes in
various signaling pathways [240–244]. In addition, lycopene improved communication
between cells by stimulating gap junctions, which is believed to be one of the protective
mechanisms related to the cancer-preventive activities attributed to lycopene [195].

In in vitro studies, lycopene treatment selectively interfered with cell growth and
induced apoptosis in cancer cells without affecting normal cells [200,245]. In vivo studies
have shown the protective effects of lycopene against liver cell carcinoma and prostate
cancer [197,237,246–253]. In addition to the correlation between lycopene and prostate
cancer demonstrated in clinical studies, increasing evidence suggests that lycopene plays an
important role in preventing cancer in other organs such as the breast, lung, gastrointestinal
tract, pancreas, cervix, and ovaries [254–257].

6. Effects of Lycopene on Malaria

The use of antioxidant compounds in the treatment of tropical diseases has increased,
including Chagas disease, dengue, and malaria, as several studies have suggested
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the involvement of oxidative stress in the pathogenesis and progression of these
diseases [54,258,259]. In this context, studies show that the discovery of new antimalarial
drugs is necessary, and natural antioxidant products are important sources for obtain-
ing new antimalarial compounds or even as adjuvant therapy, enhancing the activity of
antimalarial drugs [260–264].

A study by Metzger et al. [34] demonstrated that natural products can be used in
malaria chemotherapy. According to this study, increased plasma lycopene concentration
was associated with faster clearance of parasites in children. In a related study, Caulfield
et al. [265] demonstrated that the nutritional deficiency of the host is associated with the
morbidity and mortality of children with severe malaria. In this sense, previous studies
suggest that changes in plasma concentrations of micronutrients, including vitamins A
(retinol) and C, β-carotene, α-carotene, β-cryptoxanthin, lutein, and lycopene, occur due
to increased use of these antioxidants in patients with malaria, suggesting that there may
be a need for vitamin supplementation in patients with malaria [266]. In corroborating
this suggestion, the nutritional deficit seems to be associated with a redirection of these
antioxidants to the liver to aid in the synthesis of acute-phase proteins in other organs,
repair tissue damage caused by the infectious organism, and aid in the host’s oxidative
defense mechanisms [33].

In fact, Sondo et al. [32] had already reported that periodic supplementation of high
doses of vitamin A and zinc could reduce the morbidity caused by malaria. In this sense,
Agarwal et al. [147] investigated the effect of lycopene on the growth of P. falciparum
in vitro, monitoring the progression at different stages. These authors showed that lycopene
treatment induced an increased production of RONS in the cytoplasm of the parasite, which
caused the parasite to lose its mitochondrial membrane potential and cytotoxicity, resulting
in merozoites not being released from the erythrocytes of the host, suggesting that the
inclusion of lycopene in the diet may be useful in changing the clinical outcomes of malaria.

Preliminary results from our research group demonstrated that lycopene supplemen-
tation in mice (BALB/c; 3.11 mg/kg) infected with the P. berghei strain showed a delay in
the induction and a decreased progression of parasitemia. Also, the animals supplemented
with lycopene showed a higher rate of survival compared to the positive control [267],
suggesting lycopene prophylactic and antiparasitic activity, which may be due to the cyto-
toxic effect of lycopene against the parasite [147], suggesting an important role of lycopene
supplementation in preventing malaria.

6.1. Neuroprotective Effect of Lycopene

Individuals infected with P. falciparum can rapidly progress to severe anemia, respira-
tory distress, and cerebral malaria [268]. Cerebral malaria is associated with debilitating
neurological impairments in survivors, as well as higher number of malaria deaths [269].
Although there is no complete understanding of the exact mechanisms and processes that
lead to neuronal cell death in cerebral malaria, studies demonstrate that elevated levels
of the inflammatory cytokines and RONS contribute to neuronal cell death in cerebral
malaria [270,271].

Furthermore, considerable evidence suggests that microvascular dysfunction, seques-
tration of parasitized blood cells in the microcirculation, an abrupt reduction in blood flow,
and cerebral hypoxia are essential for ischemic stroke, characterized by the presence of both
ischemic and reperfusion-induced injuries in the brain, leading to neuronal dysfunction and
death [272]. In this context, studies by Paul et al. [273] and Farouk et al. [274] point out that
lycopene is a powerful antioxidant, permeable to the blood-brain barrier, with neuropro-
tective activity. Previously, Hsiao et al. [275] showed that treatment with lycopene in rats
(4 mg/kg) prevented ischemic brain injury induced by middle cerebral artery occlusion by
inhibiting microglia activation and NO production, resulting in reduced infarction volume
in brain injury by the ischemia-reperfusion syndrome. Additionally, lycopene has been
shown to protect the brain from ischemic damage by its ability to increase GSH production
and decrease RONS production. Furthermore, lycopene activates the expression of nuclear
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factor erythroid 2 related factor 2 and heme oxygenase-1, one of the antioxidant pathways
involved in the attenuation of oxidative stress and the maintenance of the redox state in
various tissues and organs, such as the brain tissue [276].

Oxidative stress is also strongly implicated in the pathogenesis of neurodegenerative
diseases, such as Alzheimer’s disease (AD) [277] and Parkinson’s disease (PD) [278]. In this
sense, Kaur et al. [279] demonstrated that lycopene supplementation in rats (10 mg/kg)
for 30 days was able to reduce oxidative stress in rotenone-induced PD, restoring GSH
and SOD levels and reversing complex I inhibition of the electron transport chain, exerting
a protective effect on motor and cognitive deficits. Furthermore, according to Prema
et al. [280], lycopene induces increased expression of the antiapoptotic protein B-cell
lymphoma 2 protein (BCL-2) and decreased release of the proapoptotic proteins cytochrome
c, protein x associated with BCL-2 (BAX), and caspases-3, 8, and 9, preventing apoptosis in
mice with PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Previously, studies have shown the activation of inositol-requiring enzyme 1, induc-
tion of X box-binding protein 1, upregulation of BAX, downregulation of BCL-2, and
cleavage of caspase-3 indicating the endoplasmic reticulum stress-mediated apoptotic
pathway in PbA-infected mouse brains involved in neuronal cell death in severe/cerebral
malaria [270]. Thus, lycopene reverses neurochemical deficits, oxidative stress, apoptosis,
and physiological abnormalities in malaria and PD-induced mice.

Other studies reinforce the importance of lycopene in neuronal mitochondrial function.
In a rat cortical neuron culture model using an established paradigm of β-amyloid (Aβ)
peptide-induced cell injury, Qu et al. [281] found that lycopene significantly inhibited
intracellular RONS and prevented Aβ-induced mitochondrial fragmentation. Furthermore,
it inhibited the opening of mitochondrial permeability transition pores as well as the
release of cytochrome c. Lycopene also prevented a decrease in the enzymatic activity of
the mitochondrial complex and a reduction in the generation of ATP, besides preventing
the occurrence of damage to the mitochondrial DNA and improving the level of the
mitochondrial transcription factor A in the mitochondria. These results suggest that the
ability of lycopene to prevent Aβ-induced neurotoxicity is closely related to the inhibition
of mitochondrial oxidative stress and improvement of mitochondrial function [281,282].

Behavioral experiments confirmed that lycopene consistently reduced Aβ accumu-
lation in elderly CD-1 mice [283]. Lycopene also attenuated age-associated cognitive
impairments, including those involving locomotor activity, working memory, and spatial
cognitive memory. Lycopene administration reversed the systemic and oxidative stress
responses of the central nervous system induced by aging. Furthermore, lycopene down-
regulated the expression of inflammatory mediators and prevented synaptic dysfunction in
aged mouse brains [284]. Huang et al. [285] also showed the antagonistic effect of lycopene
on neuronal oxidative damage induced by tert-butyl hydroperoxide in vitro. Moreover,
lycopene increased cell viability, improved neuron morphology, increased GSH levels,
and decreased the production of RONS. Lycopene also reduced the expression of BAX,
cytochrome c, and caspase-3 and increased the expression of BCL-2 and phosphoinositide
3-kinase/Akt (PI3K/Akt) [285]. Recent studies confirm that lycopene prevents neuronal
apoptosis through the activation of the PI3K/Akt signaling pathway, important regulators
for preventing mitochondrial damage and apoptosis induced by oxidative stress, ischemia-
reperfusion syndrome, that play an important role in severe/cerebral malaria [286–288].

6.2. Effects of Lycopene as an Immunomodulator

Other factors related to neuronal injury and death in severe/cerebral malaria include
the release of RONS, mitochondrial dysfunction, induction of programmed cell death,
microglia activation, and release of inflammatory mediators [289,290].

Studies indicate that in malaria infection, increased expression of high mobility group
box-1 is observed, which interacts with cell surface receptors such as toll-like receptor-4
(TLR-4), leading to the overproduction of pro-inflammatory cytokines (IL-1β, IL-6, IL-12,
TNF-α, and IFN-γ) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) [288,290–292].
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The action of these cytokines in conjunction with disturbances present in the microcircula-
tion can affect both the integrity and functions of the blood-brain barrier, leading to vascular
congestion, disruption of the blood-brain barrier, cerebral edema, impaired perfusion, and
neuronal damage [293,294].

Several studies have highlighted the ability of carotenoids and their metabolites to
regulate intracellular signaling cascades, modulating gene expression and protein transla-
tion in metabolic pathways associated with inflammatory and oxidative stress [295,296].
In this sense, studies indicate that lycopene can modulate the production of IL-1β, TNF-α,
IL-2, IL-10, and IFN-γ, exerting an immunomodulatory effect on the peripheral blood
mononuclear cells of healthy individuals [297], as well as suppressing the production of
NO, IL-6, and TNF-α [298,299]. According to Feng et al. [298] and Vasconcelos et al. [300],
lycopene interferes with the phosphorylation of the inhibitory protein kappa B, protecting
it from degradation and preventing the release and translocation of NF-κB, a transcrip-
tion factor that plays an important role in regulating the expression of genes responsible
for inflammation, such as TNF-α, IL-1β, iNOS, and COX-2, proliferation, and apoptosis
(Figure 7).
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MCP-1, monocyte chemoattractant protein 1.

Other studies reinforce that the blockade of NF-κB activation by lycopene appears not
to be tissue- or cell-type specific and may represent a way in which lycopene can inhibit
the production of other inflammatory mediators, including TNF-α, NO, and IL-6, resulting
in reduced inflammation [301,302]. In this sense, Gouranton et al. [303] showed that
lycopene reduced TNF-α-induced activation of the NF-κB signaling pathway in adipocytes.
According to the authors, this effect was fundamental for the TNF-α-mediated decrease
in the expression of proinflammatory cytokines and chemokines in adipocytes and pre-
adipocyte 3T3-L1 cells. The same effect was observed in human adipocytes, where lycopene
decreased the expression of IL-6, monocyte chemotactic protein 1, and IL-1β induced by
TNF-α [303].

The reduced production of the proinflammatory cytokines IL-1β and TNF-α, as well
as the increased secretion of the anti-inflammatory cytokine IL-10, indicate that lycopene
can boost anti-inflammatory responses [304]. In addition, lycopene can increase IL-12 and
IFN-γ secretion in human peripheral blood mononuclear cells, indicating that lycopene
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enhances the immune response of the host [305]. In this sense, evidence from an ex vivo
study indicates the stimulatory effect of lycopene on cytokine production by T-helper
1 lymphocytes, resulting in a cell-mediated immune response. Yamaguchi et al. [306]
observed that the oral administration of lycopene in mice (5 mg/kg/day) significantly
suppressed capsaicin-induced production of IL-2, IFN-γ, and IL-4 in lymphoid tissue cells
in the small intestine wall, cytokines that are involved in the development of immunity
to the antigens present there. Furthermore, lycopene did not alter the T lymphocyte
population, indicating that lycopene accelerates and/or suppresses T-helper cytokines in
these cells, acting to modulate the immune response.

Other studies have also verified the potential anti-inflammatory effect of lycopene
combined with other substances, such as lutein, omega-3, and carnosic acid [307,308]. In this
sense, Phan et al. [309] showed a reduction in IL-8 secretion by human colorectal Caco-2 cells
in the presence of lycopene and anthocyanin mixtures. Previous studies have shown that the
association with substances such as lutein, selenium, and β-carotene promotes a synergistic
effect, intensifying NO, TNF-α, SOD, and prostaglandin E2 production inhibition, as
well as MDA derived from the down-regulation of iNOS, COX-2, NADPH oxidase, or
5-lipoxygenase expression, and inhibition of TNF-α secretion [310,311].

Together, these data support the anti-inflammatory and immunomodulatory effect of
lycopene on major cell subtypes, namely, adipocytes, pre-adipocytes, and macrophages,
cells that are involved in the production of inflammatory cytokines and chemokines
in malaria.

7. Future Trends and Conclusions

The benefits provided by lycopene can be attributed mainly to its direct antioxidant
activity [229]. This activity is generally responsible for protecting the cellular system from
a variety of RONS, including 1O2, O2

•−, NO, and OONO-, as well as having an indirect
action through the upregulation of antioxidant substances, in addition to preventing other
diseases [312]. Finally, Figure 8 summarizes the mechanisms of action considered in the
present review.
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3-kinase/AKT.
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Furthermore, the antioxidant status of lycopene, similar to other carotenoids, has also
been implicated in the pathogenesis of malaria in vitro and in vivo [33]. In a previous study,
Agarwal et al. [147] showed the cytotoxic effects of lycopene against P. falciparum in vitro,
suggesting an important role of lycopene in preventing malaria. Although treatment
regimens with various antimalarials are used in clinical practice, there are still no substances
that can prevent the disease. Thus, it can be suggested that dietary lycopene may be
useful in changing the clinical outcomes of malaria. This review provides evidence of
the antioxidant and anti-inflammatory benefits of lycopene supplementation, therefore
suggesting it be included when formulating new prevention strategies to fight malaria and
several other diseases.

Author Contributions: E.L.P.V., A.R.Q.G., A.d.S.B.d.S., and E.P.d.C. collected data and wrote the
first draft of the manuscript; V.V.V. conducted data analysis and reviewed the manuscript; S.P.
conceptualization of the study and final writing of the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: E.L.P.V., A.R.Q.G., and A.d.S.B.d.S. received scholarships from Coordenação de Aperfeiçoa-
mento de Pessoal de Nivel Superior (CAPES—Education Ministry, Brazil), E.L.P.V. also received a
scholarship from Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA), and publications
costs are funded by the Pro-Reitoria de Pesquisa e Pós-Graduação of the Federal University of Pará
(PROPESP/UFPA, Brazil).

Acknowledgments: Authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES; Brazil) and Fundação Amazônia de Amparo a Estudos e Pesquisas FAPESPA;
Brazil) for scholarships.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

1O2 singlet oxygen
ATP Adenosine triphosphate
UA Uric acid
Aβ β-amyloid
BAX Protein x associated with BCL-2
BCL-2 B-cell lymphoma protein 2
CAT Catalase
COX-2 Cyclooxygenase-2
AD Alzheimer’s disease
DNA deoxyribonucleic acid
PD Parkinson’s disease
eNOS or NOS3 endothelial nitric oxide synthase
Fe Iron
Fe2+ ferrous iron
Fe3+ ferric iron
FPIX Ferroprotoporphyrin IX or heme complex
GM-CSF Granulocyte and macrophage colony-stimulating factor
GSH reduced glutathione
GSH-Px Glutathione peroxidase
GST Glutathione S-transferases
H2O2 Hydrogen peroxide
IFN-γ Interferon-gamma
IL interleukin
iNOS or NOS2 inducible nitric oxide synthase
Keap1 Kelch-like inhibitory protein 1
LDL Low-density lipoprotein
MAPK mitogen-activated protein kinase
ECM experimental cerebral malaria
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M-CSF macrophage colony-stimulating factor
MDA malondialdehyde
MIP-1α macrophage-1α inflammatory protein
MIP-1β macrophage-1β inflammatory protein
NAC N-acetylcysteine
NADPH oxidase nicotinamide adenine dinucleotide phosphate oxidase
NF-κB nuclear factor kappa B
nNOS or NOS1 neuronal nitric oxide synthase
NO nitric oxide
NOS nitric oxide synthase
O2 Oxygen
O2

•− superoxide radical
OH• hydroxyl radical
ONOO− peroxynitrite radical
PI3K/Akt phosphoinositide 3-kinase/Akt
RO− alkoxy radical
RONS reactive oxygen and nitrogen species
ROO− peroxyl radical
ROOH hydroperoxide
SOD superoxide dismutase
TBARS thiobarbituric acid reactive substances
TNF-α tumor necrosis factor-alpha
XO xanthine oxidase
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235. Göncü, T.; Oğuz, E.; Sezen, H.; Koçarslan, S.; Oğuz, H.; Akal, A.; Adıbelli, F.M.; Çakmak, S.; Aksoy, N. Anti-Inflammatory Effect
of Lycopene on Endotoxin-Induced Uveitis in Rats. Arq. Bras. Oftalmol. 2016, 79, 357–362. [CrossRef] [PubMed]

236. Ben-Dor, A.; Steiner, M.; Gheber, L.; Danilenko, M.; Dubi, N.; Linnewiel, K.; Zick, A.; Sharoni, Y.; Levy, J. Carotenoids Activate the
Antioxidant Response Element Transcription System. Mol. Cancer Ther. 2005, 4, 177–186. [CrossRef] [PubMed]

237. Velmurugan, B.; Bhuvaneswari, V.; Nagini, S. Antiperoxidative Effects of Lycopene during N-Methyl-N′-Nitro-N-
Nitrosoguanidine-Induced Gastric Carcinogenesis. Fitoterapia 2002, 73, 604–611. [CrossRef] [PubMed]

238. Bhuvaneswari, V.; Velmurugan, B.; Balasenthil, S.; Ramachandran, C.R.; Nagini, S. Chemopreventive Efficacy of Lycopene on
7,12-Dimethylbenz[a]Anthracene-Induced Hamster Buccal Pouch Carcinogenesis. Fitoterapia 2001, 72, 865–874. [CrossRef]

239. Cheng, J.; Miller, B.; Balbuena, E.; Eroglu, A. Lycopene Protects against Smoking-Induced Lung Cancer by Inducing Base Excision
Repair. Antioxidants 2020, 9, 643. [CrossRef]

240. Chiang, H.-S.; Wu, W.-B.; Fang, J.-Y.; Chen, D.-F.; Chen, B.-H.; Huang, C.-C.; Chen, Y.-T.; Hung, C.-F. Lycopene Inhibits PDGF-BB-
Induced Signaling and Migration in Human Dermal Fibroblasts through Interaction with PDGF-BB. Life Sci. 2007, 81, 1509–1517.
[CrossRef]

241. Lo, H.M.; Hung, C.F.; Tseng, Y.L.; Chen, B.H.; Jian, J.S.; Wu, W. Bin Lycopene Binds PDGF-BB and Inhibits PDGF-BB-Induced
Intracellular Signaling Transduction Pathway in Rat Smooth Muscle Cells. Biochem. Pharmacol. 2007, 74, 54–63. [CrossRef]

242. Chen, C.-P.; Hung, C.-F.; Lee, S.-C.; Lo, H.-M.; Wu, P.-H.; Wu, W.-B. Lycopene Binding Compromised PDGF-AA/-AB Signal-
ing and Migration in Smooth Muscle Cells and Fibroblasts: Prediction of the Possible Lycopene Binding Site within PDGF.
Naunyn-Schmiedeb. Arch. Pharmacol. 2010, 381, 401–414. [CrossRef]

243. Chen, M.-L.; Lin, Y.-H.; Yang, C.-M.; Hu, M.-L. Lycopene Inhibits Angiogenesis Both in Vitro and in Vivo by Inhibiting MMP-
2/UPA System through VEGFR2-Mediated PI3K-Akt and ERK/P38 Signaling Pathways. Mol. Nutr. Food Res. 2012, 56, 889–899.
[CrossRef]

http://doi.org/10.3390/nu11020393
http://doi.org/10.1152/ajpgi.00246.2015
http://doi.org/10.1006/abbi.2001.2611
http://doi.org/10.3305/nh.2010.25.2.460l
http://doi.org/10.1501/Vetfak_0000002886
http://doi.org/10.1016/j.etap.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/30953933
http://doi.org/10.1039/C5FO00004A
http://doi.org/10.1080/00365510802658473
http://www.ncbi.nlm.nih.gov/pubmed/19148834
http://doi.org/10.3109/13880209.2011.574707
http://doi.org/10.1111/1750-3841.14505
http://doi.org/10.1007/BF03349224
http://doi.org/10.1016/j.neuropharm.2014.07.020
http://doi.org/10.1080/02713683.2020.1809002
http://doi.org/10.1016/S0899-9007(03)00140-0
http://doi.org/10.1079/BJN2002659
http://www.ncbi.nlm.nih.gov/pubmed/12323084
http://doi.org/10.5935/0004-2749.20160102
http://www.ncbi.nlm.nih.gov/pubmed/28076559
http://doi.org/10.1158/1535-7163.177.4.1
http://www.ncbi.nlm.nih.gov/pubmed/15657364
http://doi.org/10.1016/S0367-326X(02)00216-2
http://www.ncbi.nlm.nih.gov/pubmed/12490218
http://doi.org/10.1016/S0367-326X(01)00321-5
http://doi.org/10.3390/antiox9070643
http://doi.org/10.1016/j.lfs.2007.09.018
http://doi.org/10.1016/j.bcp.2007.03.017
http://doi.org/10.1007/s00210-010-0501-1
http://doi.org/10.1002/mnfr.201100683


Nutrients 2022, 14, 5303 29 of 31

244. Cheng, J.; Miao, B.; Hu, K.-Q.; Fu, X.; Wang, X.-D. Apo-10′-Lycopenoic Acid Inhibits Cancer Cell Migration and Angiogenesis and
Induces Peroxisome Proliferator-Activated Receptor γ. J. Nutr. Biochem. 2018, 56, 26–34. [CrossRef] [PubMed]

245. Park, Y.O.; Hwang, E.-S.; Moon, T.W. The Effect of Lycopene on Cell Growth and Oxidative DNA Damage of Hep3B Human
Hepatoma Cells. BioFactors 2005, 23, 129–139. [CrossRef] [PubMed]

246. Karas, M.; Amir, H.; Fishman, D.; Danilenko, M.; Segal, S.; Nahum, A.; Koifmann, A.; Giat, Y.; Levy, J.; Sharoni, Y. Lycopene
Interferes with Cell Cycle Progression and Insulin-like Growth Factor I Signaling in Mammary Cancer Cells. Nutr. Cancer 2000,
36, 101–111. [CrossRef] [PubMed]

247. Liu, C.; Lian, F.; Smith, D.E.; Russell, R.M.; Wang, X.-D. Lycopene Supplementation Inhibits Lung Squamous Metaplasia and
Induces Apoptosis via Up-Regulating Insulin-like Growth Factor-Binding Protein 3 in Cigarette Smoke-Exposed Ferrets. Cancer
Res. 2003, 63, 3138–3144.

248. Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.; Korse, C.M.; Van Doorn, J.; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.; Van
Leeuwen, F.E.; et al. Lycopene Supplementation Elevates Circulating Insulin-like Growth Factor- Binding Protein-1 and -2
Concentrations in Persons at Greater Risk of Colorectal Cancer. Am. J. Clin. Nutr. 2007, 86, 1456–1462. [CrossRef]

249. Huang, C.-S.; Liao, J.-W.; Hu, M.-L. Lycopene Inhibits Experimental Metastasis of Human Hepatoma SK-Hep-1 Cells in Athymic
Nude Mice. J. Nutr. 2008, 138, 538–543. [CrossRef]

250. Tang, F.Y.; Pai, M.H.; Wang, X.D. Consumption of Lycopene Inhibits the Growth and Progression of Colon Cancer in a Mouse
Xenograft Model. J. Agric. Food Chem. 2011, 59, 9011–9021. [CrossRef]

251. Yang, C.-M.; Yen, Y.-T.; Huang, C.-S.; Hu, M.-L. Growth Inhibitory Efficacy of Lycopene and β-Carotene against Androgen-
Independent Prostate Tumor Cells Xenografted in Nude Mice. Mol. Nutr. Food Res. 2011, 55, 606–612. [CrossRef]

252. Ip, B.C.; Liu, C.; Ausman, L.M.; von Lintig, J.; Wang, X.-D. Lycopene Attenuated Hepatic Tumorigenesis via Differential
Mechanisms Depending on Carotenoid Cleavage Enzyme in Mice. Cancer Prev. Res. 2014, 7, 1219–1227. [CrossRef]

253. Li, C.; Liu, C.; Fu, M.; Hu, K.; Aizawa, K.; Takahashi, S.; Hiroyuki, S.; Cheng, J.; Lintig, J.; Wang, X. Tomato Powder Inhibits
Hepatic Steatosis and Inflammation Potentially Through Restoring SIRT1 Activity and Adiponectin Function Independent of
Carotenoid Cleavage Enzymes in Mice. Mol. Nutr. Food Res. 2018, 62, 1700738. [CrossRef]

254. Omoni, A.O.; Aluko, R.E. The Anti-Carcinogenic and Anti-Atherogenic Effects of Lycopene: A Review. Trends Food Sci. Technol.
2005, 16, 344–350. [CrossRef]

255. Kirsh, V.A.; Mayne, S.T.; Peters, U.; Chatterjee, N.; Leitzmann, M.F.; Dixon, L.B.; Urban, D.A.; Crawford, E.D.; Hayes, R.B. A
Prospective Study of Lycopene and Tomato Product Intake and Risk of Prostate Cancer. Cancer Epidemiol. Biomarkers Prev. 2006,
15, 92–98. [CrossRef] [PubMed]

256. Liu, A.; Pajkovic, N.; Pang, Y.; Zhu, D.; Calamini, B.; Mesecar, A.L.; van Breemen, R.B. Absorption and Subcellular Localization of
Lycopene in Human Prostate Cancer Cells. Mol. Cancer Ther. 2006, 5, 2879–2885. [CrossRef] [PubMed]

257. Ford, N.A.; Elsen, A.C.; Zuniga, K.; Lindshield, B.L.; Erdman, J.W. Lycopene and Apo-12′-Lycopenal Reduce Cell Proliferation
and Alter Cell Cycle Progression in Human Prostate Cancer Cells. Nutr. Cancer 2011, 63, 256–263. [CrossRef] [PubMed]

258. Aqeel, S.; Naheda, A.; Raza, A.; Khan, K.; Khan, W. Differential Status and Significance of Non-Enzymatic Antioxidants (Reactive
Oxygen Species Scavengers) in Malaria and Dengue Patients. Acta Trop. 2019, 195, 127–134. [CrossRef]

259. Sánchez-Villamil, J.P.; Bautista-Niño, P.K.; Serrano, N.C.; Rincon, M.Y.; Garg, N.J. Potential Role of Antioxidants as Adjunctive
Therapy in Chagas Disease. Oxid. Med. Cell. Longev. 2020, 2020, 9081813. [CrossRef]

260. Ngouela, S.; Lenta, B.N.; Noungoue, D.T.; Ngoupayo, J.; Boyom, F.F.; Tsamo, E.; Gut, J.; Rosenthal, P.J.; Connolly, J.D. Anti-
Plasmodial and Antioxidant Activities of Constituents of the Seed Shells of Symphonia Globulifera Linn F. Phytochemistry 2006,
67, 302–306. [CrossRef]

261. Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines.
Part II. Non-Alkaloidal Natural Products. Molecules 2009, 14, 3037–3072. [CrossRef]

262. Soh, P.N.; Witkowski, B.; Olagnier, D.; Nicolau, M.L.; Garcia-Alvarez, M.C.; Berry, A.; Benoit-Vical, F. In Vitro and in Vivo
Properties of Ellagic Acid in Malaria Treatment. Antimicrob. Agents Chemother. 2009, 53, 1100–1106. [CrossRef]

263. Ferreira, J.F.S.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as Antioxidants and Their Potential
Synergism with Artemisinin against Malaria and Cancer. Molecules 2010, 15, 3135–3170. [CrossRef]

264. Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al.
High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin. Nature 2013, 496, 528–532. [CrossRef] [PubMed]

265. Richard, S.A.; Black, R.E.; Caulfield, L.E. Undernutrition as An Underlying Cause of Malaria Morbidity and Mortality in Children
Less Than Five Years Old. Am. J. Trop. Med. Hyg. 2004, 71, 55–63. [CrossRef]

266. Akpotuzor, J.O.; Udoh, A.E.; Etukudo, M.H. Total Antioxidant Status, Vitamins A, C and β-Carotene Levels of Children with
P. falciparum Infection in University of Calabar Teaching Hospital (UCTH), Calabar. Pakistan J. Nutr. 2007, 6, 485–489. [CrossRef]

267. Varela, E.L.P.; Gomes, A.R.Q.; Santos, A.S.B.; Cruz, J.N.; Carvalho, E.P.; Prazeres, B.A.P.; Dolabela, M.F.; Percário, S. Antiparasitic
Effect of Lycopene in Experimental Malaria. AABC 2022, submitted.

268. Voloc, A.; Kuissi Kamgaing, E.; Ategbo, S.; Djoba Siawaya, J.F. Outcomes of Severe Malaria and Its Clinical Features in Gabonese
Children. Front. Trop. Dis. 2022, 3, 97. [CrossRef]

269. Seydel, K.B.; Kampondeni, S.D.; Valim, C.; Potchen, M.J.; Milner, D.A.; Muwalo, F.W.; Birbeck, G.L.; Bradley, W.G.; Fox, L.L.;
Glover, S.J.; et al. Brain Swelling and Death in Children with Cerebral Malaria. N. Engl. J. Med. 2015, 372, 1126–1137. [CrossRef]

http://doi.org/10.1016/j.jnutbio.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29454996
http://doi.org/10.1002/biof.5520230302
http://www.ncbi.nlm.nih.gov/pubmed/16410635
http://doi.org/10.1207/S15327914NC3601_14
http://www.ncbi.nlm.nih.gov/pubmed/10798222
http://doi.org/10.1093/ajcn/86.5.1456
http://doi.org/10.1093/jn/138.3.538
http://doi.org/10.1021/jf2017644
http://doi.org/10.1002/mnfr.201000308
http://doi.org/10.1158/1940-6207.CAPR-14-0154
http://doi.org/10.1002/mnfr.201700738
http://doi.org/10.1016/j.tifs.2005.02.002
http://doi.org/10.1158/1055-9965.EPI-05-0563
http://www.ncbi.nlm.nih.gov/pubmed/16434593
http://doi.org/10.1158/1535-7163.MCT-06-0373
http://www.ncbi.nlm.nih.gov/pubmed/17121935
http://doi.org/10.1080/01635581.2011.523494
http://www.ncbi.nlm.nih.gov/pubmed/21207319
http://doi.org/10.1016/j.actatropica.2019.04.033
http://doi.org/10.1155/2020/9081813
http://doi.org/10.1016/j.phytochem.2005.11.004
http://doi.org/10.3390/molecules14083037
http://doi.org/10.1128/AAC.01175-08
http://doi.org/10.3390/molecules15053135
http://doi.org/10.1038/nature12051
http://www.ncbi.nlm.nih.gov/pubmed/23575629
http://doi.org/10.4269/ajtmh.2004.71.55
http://doi.org/10.3923/pjn.2007.485.489
http://doi.org/10.3389/fitd.2022.985890
http://doi.org/10.1056/NEJMoa1400116


Nutrients 2022, 14, 5303 30 of 31

270. Anand, S.S.; Babu, P.P. Endoplasmic Reticulum Stress and Neurodegeneration in Experimental Cerebral Malaria. Neurosignals
2013, 21, 99–111. [CrossRef]

271. Vanka, R.; Nakka, V.P.; Kumar, S.P.; Baruah, U.K.; Babu, P.P. Molecular Targets in Cerebral Malaria for Developing Novel
Therapeutic Strategies. Brain Res. Bull. 2020, 157, 100–107. [CrossRef]

272. Peng, T.; Li, S.; Liu, L.; Yang, C.; Farhan, M.; Chen, L.; Su, Q.; Zheng, W. Artemisinin Attenuated Ischemic Stroke Induced
Cell Apoptosis through Activation of ERK1/2/CREB/BCL-2 Signaling Pathway in Vitro and in Vivo. Int. J. Biol. Sci. 2022,
18, 4578–4594. [CrossRef]

273. Paul, R.; Mazumder, M.K.; Nath, J.; Deb, S.; Paul, S.; Bhattacharya, P.; Borah, A. Lycopene—A Pleiotropic Neuroprotective
Nutraceutical: Deciphering Its Therapeutic Potentials in Broad Spectrum Neurological Disorders. Neurochem. Int. 2020,
140, 104823. [CrossRef]

274. Farouk, S.M.; Gad, F.A.; Almeer, R.; Abdel-Daim, M.M.; Emam, M.A. Exploring the Possible Neuroprotective and Antioxidant
Potency of Lycopene against Acrylamide-Induced Neurotoxicity in Rats’ Brain. Biomed. Pharmacother. 2021, 138, 111458. [CrossRef]
[PubMed]

275. Hsiao, G.; Fong, T.H.; Tzu, N.H.; Lin, K.H.; Chou, D.S.; Sheu, J.R. A Potent Antioxidant, Lycopene, Affords Neuroprotection
against Microglia Activation and Focal Cerebral Ischemia in Rats. In Vivo 2004, 18, 351–356. [PubMed]

276. Lei, X.; Lei, L.; Zhang, Z.; Cheng, Y. Neuroprotective Effects of Lycopene Pretreatment on Transient Global Cerebral Ischemia-
Reperfusion in Rats: The Role of the Nrf2/HO-1 Signaling Pathway. Mol. Med. Rep. 2016, 13, 412–418. [CrossRef] [PubMed]

277. Ferreira, M.E.S.; de Vasconcelos, A.S.; da Costa Vilhena, T.; da Silva, T.L.; da Silva Barbosa, A.; Gomes, A.R.Q.; Dolabela, M.F.;
Percário, S. Oxidative Stress in Alzheimer’s Disease: Should We Keep Trying Antioxidant Therapies? Cell. Mol. Neurobiol. 2015,
35, 595–614. [CrossRef] [PubMed]

278. Percário, S.; da Silva Barbosa, A.; Varela, E.L.P.; Gomes, A.R.Q.; Ferreira, M.E.S.; de Nazaré Araújo Moreira, T.; Dolabela, M.F.
Oxidative Stress in Parkinson’s Disease: Potential Benefits of Antioxidant Supplementation. Oxid. Med. Cell. Longev. 2020,
2020, 2360872. [CrossRef] [PubMed]

279. Kaur, H.; Chauhan, S.; Sandhir, R. Protective Effect of Lycopene on Oxidative Stress and Cognitive Decline in Rotenone Induced
Model of Parkinson’s Disease. Neurochem. Res. 2011, 36, 1435–1443. [CrossRef] [PubMed]

280. Prema, A.; Janakiraman, U.; Manivasagam, T.; Arokiasamy, J.T. Neuroprotective Effect of Lycopene against MPTP Induced
Experimental Parkinson’s Disease in Mice. Neurosci. Lett. 2015, 599, 12–19. [CrossRef]

281. Qu, M.; Jiang, Z.; Liao, Y.; Song, Z.; Nan, X. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and
Dysfunctions in Cultured Rat Cortical Neurons. Neurochem. Res. 2016, 41, 1354–1364. [CrossRef]

282. Yi, F.; He, X.; Wang, D. Lycopene Protects Against MPP+-Induced Cytotoxicity by Maintaining Mitochondrial Function in
SH-SY5Y Cells. Neurochem. Res. 2013, 38, 1747–1757. [CrossRef]

283. Zhao, B.; Liu, H.; Wang, J.; Liu, P.; Tan, X.; Ren, B.; Liu, Z.; Liu, X. Lycopene Supplementation Attenuates Oxidative Stress,
Neuroinflammation, and Cognitive Impairment in Aged CD-1 Mice. J. Agric. Food Chem. 2018, 66, 3127–3136. [CrossRef]

284. Prakash, A.; Kumar, A. Implicating the Role of Lycopene in Restoration of Mitochondrial Enzymes and BDNF Levels in β-Amyloid
Induced Alzheimers Disease. Eur. J. Pharmacol. 2014, 741, 104–111. [CrossRef] [PubMed]

285. Huang, C.; Wen, C.; Yang, M.; Gan, D.; Fan, C.; Li, A.; Li, Q.; Zhao, J.; Zhu, L.; Lu, D. Lycopene Protects against T-BHP-Induced
Neuronal Oxidative Damage and Apoptosis via Activation of the PI3K/Akt Pathway. Mol. Biol. Rep. 2019, 46, 3387–3397.
[CrossRef] [PubMed]

286. Fang, Y.; Ou, S.; Wu, T.; Zhou, L.; Tang, H.; Jiang, M.; Xu, J.; Guo, K. Lycopene Alleviates Oxidative Stress via the
PI3K/Akt/Nrf2pathway in a Cell Model of Alzheimer’s Disease. PeerJ 2020, 2020, e9308. [CrossRef] [PubMed]

287. Xu, X.D.; Teng, Y.; Zou, J.Y.; Ye, Y.; Song, H.; Wang, Z.Y. Effects of Lycopene on Vascular Remodeling through the LXR–PI3K–AKT
Signaling Pathway in APP/PS1 Mice: Lycopene in Vascular Remodeling via the LXR–PI3K–AKT Pathway. Biochem. Biophys. Res.
Commun. 2020, 526, 699–705. [CrossRef]

288. Techarang, T.; Jariyapong, P.; Viriyavejakul, P.; Punsawad, C. High Mobility Group Box-1 (HMGB-1) and Its Receptors in the
Pathogenesis of Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in a Mouse Model. Heliyon 2021,
7, e08589. [CrossRef]

289. Matsuda, S.; Umeda, M.; Uchida, H.; Kato, H.; Araki, T. Alterations of Oxidative Stress Markers and Apoptosis Markers in the
Striatum after Transient Focal Cerebral Ischemia in Rats. J. Neural Transm. 2009, 116, 395–404. [CrossRef]

290. Wu, X.; Brombacher, F.; Chroneos, Z.C.; Norbury, C.C.; Gowda, D.C. IL-4Rα Signaling by CD8α+ Dendritic Cells Contributes
to Cerebral Malaria by Enhancing Inflammatory, Th1, and Cytotoxic CD8+ T Cell Responses. J. Biol. Chem. 2021, 296, 100615.
[CrossRef]

291. Harawa, V.; Njie, M.; Kessler, A.; Choko, A.; Kumwenda, B.; Kampondeni, S.; Potchen, M.; Kim, K.; Jaworowski, A.; Taylor, T.;
et al. Brain Swelling Is Independent of Peripheral Plasma Cytokine Levels in Malawian Children with Cerebral Malaria. Malar. J.
2018, 17, 435. [CrossRef]

292. Kanoi, B.N.; Egwang, T.G. Sex Differences in Concentrations of HMGB1 and Numbers of Pigmented Monocytes in Infants and
Young Children with Malaria. Parasitol. Int. 2021, 84, 102387. [CrossRef]

293. Chandana, M.; Anand, A.; Ghosh, S.; Das, R.; Beura, S.; Jena, S.; Suryawanshi, A.R.; Padmanaban, G.; Nagaraj, V.A. Malaria
Parasite Heme Biosynthesis Promotes and Griseofulvin Protects against Cerebral Malaria in Mice. Nat. Commun. 2022, 13, 4028.
[CrossRef]

http://doi.org/10.1159/000336970
http://doi.org/10.1016/j.brainresbull.2020.01.020
http://doi.org/10.7150/ijbs.69892
http://doi.org/10.1016/j.neuint.2020.104823
http://doi.org/10.1016/j.biopha.2021.111458
http://www.ncbi.nlm.nih.gov/pubmed/33711552
http://www.ncbi.nlm.nih.gov/pubmed/15341191
http://doi.org/10.3892/mmr.2015.4534
http://www.ncbi.nlm.nih.gov/pubmed/26572165
http://doi.org/10.1007/s10571-015-0157-y
http://www.ncbi.nlm.nih.gov/pubmed/25616523
http://doi.org/10.1155/2020/2360872
http://www.ncbi.nlm.nih.gov/pubmed/33101584
http://doi.org/10.1007/s11064-011-0469-3
http://www.ncbi.nlm.nih.gov/pubmed/21484267
http://doi.org/10.1016/j.neulet.2015.05.024
http://doi.org/10.1007/s11064-016-1837-9
http://doi.org/10.1007/s11064-013-1079-z
http://doi.org/10.1021/acs.jafc.7b05770
http://doi.org/10.1016/j.ejphar.2014.07.036
http://www.ncbi.nlm.nih.gov/pubmed/25066110
http://doi.org/10.1007/s11033-019-04801-y
http://www.ncbi.nlm.nih.gov/pubmed/31006097
http://doi.org/10.7717/peerj.9308
http://www.ncbi.nlm.nih.gov/pubmed/32551202
http://doi.org/10.1016/j.bbrc.2020.02.063
http://doi.org/10.1016/j.heliyon.2021.e08589
http://doi.org/10.1007/s00702-009-0194-0
http://doi.org/10.1016/j.jbc.2021.100615
http://doi.org/10.1186/s12936-018-2590-0
http://doi.org/10.1016/j.parint.2021.102387
http://doi.org/10.1038/s41467-022-31431-z


Nutrients 2022, 14, 5303 31 of 31

294. Namazzi, R.; Opoka, R.; Datta, D.; Bangirana, P.; Batte, A.; Berrens, Z.; Goings, M.J.; Schwaderer, A.L.; Conroy, A.L.; John, C.C.
Acute Kidney Injury Interacts with Coma, Acidosis, and Impaired Perfusion to Significantly Increase Risk of Death in Children
With Severe Malaria. Clin. Infec. Dis. 2022, 75, 1511–1519. [CrossRef] [PubMed]

295. Rafi, M.M.; Yadav, P.N.; Reyes, M. Lycopene Inhibits LPS-Induced Proinflammatory Mediator Inducible Nitric Oxide Synthase in
Mouse Macrophage Cells. J. Food Sci. 2007, 72, S069–S074. [CrossRef] [PubMed]

296. Kaulmann, A.; Bohn, T. Carotenoids, Inflammation, and Oxidative Stress—Implications of Cellular Signaling Pathways and
Relation to Chronic Disease Prevention. Nutr. Res. 2014, 34, 907–929. [CrossRef] [PubMed]

297. Bessler, H.; Salman, H.; Bergman, M.; Alcalay, Y.; Djaldetti, M. In Vitro Effect of Lycopene on Cytokine Production by Human
Peripheral Blood Mononuclear Cells. Immunol. Investig. 2008, 37, 183–190. [CrossRef]

298. Feng, D.; Ling, W.H.; Duan, R.D. Lycopene Suppresses LPS-Induced NO and IL-6 Production by Inhibiting the Activation of ERK,
P38MAPK, and NF-KB in Macrophages. Inflamm. Res. 2010, 59, 115–121. [CrossRef] [PubMed]

299. El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Hamada, O.B. Suppression of Inducible Nitric Oxide Synthase and Tumor
Necrosis Factor-Alpha Level by Lycopene Is Comparable to Methylprednisolone in Acute Pancreatitis. Dig. Liver Dis. 2018,
50, 601–607. [CrossRef]

300. Vasconcelos, A.G.; das GN Amorim, A.; dos Santos, R.C.; Souza, J.M.T.; de Souza, L.K.M.; de SL Araújo, T.; Nicolau, L.A.D.; de
Lima Carvalho, L.; de Aquino, P.E.A.; da Silva Martins, C.; et al. Lycopene Rich Extract from Red Guava (Psidium Guajava L.)
Displays Anti-Inflammatory and Antioxidant Profile by Reducing Suggestive Hallmarks of Acute Inflammatory Response in
Mice. Food Res. Int. 2017, 99, 959–968. [CrossRef]

301. Trejo-Solís, C.; Pedraza-Chaverrí, J.; Torres-Ramos, M.; Jiménez-Farfán, D.; Cruz Salgado, A.; Serrano-García, N.; Osorio-Rico,
L.; Sotelo, J. Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition. Evid. Based Complement.
Altern. Med. 2013, 2013, 705121. [CrossRef]

302. Jeong, Y.; Lim, J.W.; Kim, H. Lycopene Inhibits Reactive Oxygen Species-Mediated Nf-Kb Signaling and Induces Apoptosis in
Pancreatic Cancer Cells. Nutrients 2019, 11, 762. [CrossRef]

303. Gouranton, E.; Thabuis, C.; Riollet, C.; Malezet-Desmoulins, C.; El Yazidi, C.; Amiot, M.J.; Borel, P.; Landrier, J.F. Lycopene
Inhibits Proinflammatory Cytokine and Chemokine Expression in Adipose Tissue. J. Nutr. Biochem. 2011, 22, 642–648. [CrossRef]

304. Hazewindus, M.; Haenen, G.R.M.M.; Weseler, A.R.; Bast, A. The Anti-Inflammatory Effect of Lycopene Complements the
Antioxidant Action of Ascorbic Acid and α-Tocopherol. Food Chem. 2012, 132, 954–958. [CrossRef]

305. Huang, C.-S.; Chuang, C.-H.; Lo, T.-F.; Hu, M.-L. Anti-Angiogenic Effects of Lycopene through Immunomodualtion of Cytokine
Secretion in Human Peripheral Blood Mononuclear Cells. J. Nutr. Biochem. 2013, 24, 428–434. [CrossRef] [PubMed]

306. Yamaguchi, M.; Hasegawa, I.; Yahagi, N.; Ishigaki, Y.; Takano, F.; Ohta, T. Carotenoids Modulate Cytokine Production in Peyer’s
Patch Cells Ex Vivo. J. Agric. Food Chem. 2010, 58, 8566–8572. [CrossRef]

307. Armoza, A.; Haim, Y.; Basiri, A.; Wolak, T.; Paran, E. Tomato Extract and the Carotenoids Lycopene and Lutein Improve
Endothelial Function and Attenuate Inflammatory NF-KB Signaling in Endothelial Cells. J. Hypertens. 2013, 31, 521–529.
[CrossRef] [PubMed]

308. Hadad, N.; Levy, R. Combination of EPA with Carotenoids and Polyphenol Synergistically Attenuated the Transformation of
Microglia to M1 Phenotype Via Inhibition of NF-KB. Neuromol. Med. 2017, 19, 436–451. [CrossRef]

309. Phan, M.A.T.; Bucknall, M.P.; Arcot, J. Interferences of Anthocyanins with the Uptake of Lycopene in Caco-2 Cells, and Their
Interactive Effects on Anti-Oxidation and Anti-Inflammation in Vitro and Ex Vivo. Food Chem. 2019, 276, 402–409. [CrossRef]

310. Bonvissuto, G.; Minutoli, L.; Morgia, G.; Bitto, A.; Polito, F.; Irrera, N.; Marini, H.; Squadrito, F.; Altavilla, D. Effect of Serenoa
Repens, Lycopene, and Selenium on Proinflammatory Phenotype Activation: An In Vitro And In Vivo Comparison Study. Urology
2011, 77, 248.e9–248.e16. [CrossRef]

311. Hadad, N.; Levy, R. The Synergistic Anti-Inflammatory Effects of Lycopene, Lutein, β-Carotene, and Carnosic Acid Combinations
via Redox-Based Inhibition of NF-KB Signaling. Free Radic. Biol. Med. 2012, 53, 1381–1391. [CrossRef]

312. Chisté, R.C.; Freitas, M.; Mercadante, A.Z.; Fernandes, E. Carotenoids Inhibit Lipid Peroxidation and Hemoglobin Oxidation, but
Not the Depletion of Glutathione Induced by ROS in Human Erythrocytes. Life Sci. 2014, 99, 52–60. [CrossRef]

http://doi.org/10.1093/cid/ciac229
http://www.ncbi.nlm.nih.gov/pubmed/35349633
http://doi.org/10.1111/j.1750-3841.2006.00219.x
http://www.ncbi.nlm.nih.gov/pubmed/17995901
http://doi.org/10.1016/j.nutres.2014.07.010
http://www.ncbi.nlm.nih.gov/pubmed/25134454
http://doi.org/10.1080/08820130801967809
http://doi.org/10.1007/s00011-009-0077-8
http://www.ncbi.nlm.nih.gov/pubmed/19693648
http://doi.org/10.1016/j.dld.2018.01.131
http://doi.org/10.1016/j.foodres.2017.01.017
http://doi.org/10.1155/2013/705121
http://doi.org/10.3390/nu11040762
http://doi.org/10.1016/j.jnutbio.2010.04.016
http://doi.org/10.1016/j.foodchem.2011.11.075
http://doi.org/10.1016/j.jnutbio.2012.01.003
http://www.ncbi.nlm.nih.gov/pubmed/22704783
http://doi.org/10.1021/jf101295y
http://doi.org/10.1097/HJH.0b013e32835c1d01
http://www.ncbi.nlm.nih.gov/pubmed/23235359
http://doi.org/10.1007/s12017-017-8459-5
http://doi.org/10.1016/j.foodchem.2018.10.012
http://doi.org/10.1016/j.urology.2010.07.514
http://doi.org/10.1016/j.freeradbiomed.2012.07.078
http://doi.org/10.1016/j.lfs.2014.01.059

	Introduction 
	Oxidative Stress 
	Oxidative Stress in Malaria 
	Oxidative Stress as a Host Defense Mechanism 
	Oxidative Stress Due to Ischemia-Reperfusion Syndrome 
	Oxidative Stress Due to the Metabolism of the Parasite 
	Oxidative Stress as a Consequence of the Metabolization of Antimalarial Drugs 
	Nitric Oxide in Malaria 

	Lycopene 
	Sources 
	Absorption 
	Metabolism 

	Antioxidant Effects of Lycopene 
	Cardioprotective Effect of Lycopene 
	Anti-Atherosclerotic Effect of Lycopene 
	Hepatoprotective Effect of Lycopene 
	Anti-Diabetic Effect of Lycopene 
	Anti-Cataract Effect of Lycopene 
	Anti-Cancer Effects of Lycopene 

	Effects of Lycopene on Malaria 
	Neuroprotective Effect of Lycopene 
	Effects of Lycopene as an Immunomodulator 

	Future Trends and Conclusions 
	References

