Gut Microbiota and Enteral Nutrition Tolerance in Non-Abdominal Infection Septic ICU Patients: An Observational Study
Abstract
:1. Introduction
2. Method
2.1. Ethics Approval
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. 16s rDNA Analyses
2.4.1. Stool Sample Processing and DNA Extraction
2.4.2. Amplicon Generation
2.4.3. Sequencing
2.5. SFCA Measurement
2.6. Statistical Strategy
3. Result
3.1. Clinical Characteristics
3.2. Gut Microbiota Composition on Day 1 and Day 3
3.2.1. Relative Abundance of Patients on Phylum and Genus Level
3.2.2. Firmicutes/Bacteroidetes Ratio (F/B) in Tolerance Group and Intolerance Group
3.3. Gut Microbiota Diversity on Day 1 and Day 3
3.3.1. Alpha Diversity
3.3.2. Beta Diversity
3.4. The Contents of Short-Chain Fatty Acids
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McClave, S.A.; Martindale, R.G.; Vanek, V.W.; McCarthy, M.; Roberts, P.; Taylor, B.; Ochoa, J.B.; Napolitano, L.; Cresci, G.; American Society for Parenteral and Enteral Nutrition; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nu-trition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2009, 33, 277–316. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Chioléro, R.; Pannatier, A.; Cayeux, M.C.; Tappy, L. A 10-year survey of nutritional support in a sur gical ICU: 1986. Nutrition 1997, 13, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; McIlroy, K.; Plank, L.D.; Petrov, M.S.; Windsor, J.A. Prevalence, Outcomes, and Management of Enteral Tube Feeding Intolerance: A Retrospective Cohort Study in a Tertiary Center. J. Parenter. Enter. Nutr. 2016, 41, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Gungabissoon, U.; Hacquoil, K.; Bains, C.; Irizarry, M.; Dukes, G.; Williamson, R.; Deane, A.M.; Heyland, D.K. Prevalence, Risk Factors, Clinical Consequences, and Treatment of Enteral Feed Intolerance During Critical Illness. J. Parenter. Enter. Nutr. 2014, 39, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Ortiz, A.; Stoppe, C.; Patel, J.J.; Yeh, D.D.; Dukes, G.; Chen, Y.J.; Almansa, C.; Day, A.G. Incidence, Risk Factors, and Clinical Consequence of Enteral Feeding Intolerance in the Mechanically Ventilated Critically Ill: An Analysis of a Multicenter, Multiyear Database. Crit. Care Med. 2020, 49, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, C.; Müller, T.D.; Woods, S.C.; Berthoud, H.-R.; Seeley, R.J.; Tschöp, M.H. Gut-Brain Cross-Talk in Metabolic Control. Cell 2017, 168, 758–774. [Google Scholar] [CrossRef] [Green Version]
- Atasever, A.G.; Ozcan, P.E.; Kasali, K.; Abdullah, T.; Orhun, G.; Senturk, E. The frequency, risk factors, and complications of gastrointestinal dysfunction during enteral nutrition in critically ill patients. Ther. Clin. Risk Manag. 2018, 14, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, A.; Xu, X.; Colee, J.; Tompkins, T. Efficacy of a Multi-Strain Probiotic Formulation in Pediatric Populations: A Comprehensive Review of Clinical Studies. Nutrients 2021, 13, 1908. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Malbrain, M.L.; Starkopf, J.; Fruhwald, S.; Jakob, S.M.; De Waele, J.; Braun, J.P.; Poeze, M.; Spies, C. Gastrointestinal function in intensive care patients: Terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Med. 2012, 38, 384–394. [Google Scholar]
- Reintam Blaser, A.; Deane, A.M.; Preiser, J.C.; Arabi, Y.M.; Jakob, S.M. Enteral Feeding Intolerance: Updates in Definitions and Pathophysiology. Nutr. Clin. Pract. 2021, 36, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Pinhu, L.; Hu, K.; Deng, X.L.; Han, L.; Xiang, S.; Xiong, B. Development and validation of a predictive model for feeding intolerance in intensive care unit patients with sepsis. Saudi J. Gastroenterol. 2022, 28, 32. [Google Scholar] [CrossRef] [PubMed]
- Moron, R.; Galvez, J.; Colmenero, M.; Anderson, P.; Cabeza, J.; Rodriguez-Cabezas, M.E. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 2019, 11, 3002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojima, M.; Motooka, D.; Shimizu, K.; Gotoh, K.; Shintani, A.; Yoshiya, K.; Nakamura, S.; Ogura, H.; Iida, T.; Shimazu, T. Metagenomic Analysis Reveals Dynamic Changes of Whole Gut Microbiota in the Acute Phase of Intensive Care Unit Patients. Dig. Dis. Sci. 2015, 61, 1628–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.L.; Heaver, S.L.; Walters, W.A.; Ley, R.E. Microbiome and metabolic disease: Revisiting the bacterial phylum Bacteroidetes. J. Mol. Med. 2017, 95, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Falony, G.; Vieira-Silva, S.; Raes, J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat. Microbiol. 2018, 3, 526–528. [Google Scholar] [CrossRef]
- Prevel, R.; Enaud, R.; Orieux, A.; Camino, A.; Berger, P.; Boyer, A.; Delhaes, L.; Gruson, D. Gut bacteriobiota and mycobiota are both associated with Day-28 mortality among critically ill patients. Crit. Care 2022, 26, 105. [Google Scholar] [CrossRef]
- Delbeke, H.; Casteels, I.; Joossens, M. The Effect of Topical Anesthetics on 16S Ribosomal Ribonucleic Acid Amplicon Sequencing Results in Ocular Surface Microbiome Research. Transl. Vis. Sci. Technol. 2022, 11, 2. [Google Scholar] [CrossRef]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [Green Version]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Liu, S.; Dai, J.; Lan, X.; Fan, B.; Dong, T.; Zhang, Y.; Han, M. Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microb. Pathog. 2021, 151, 104747. [Google Scholar] [CrossRef] [PubMed]
- Chapple, L.-A.S.; Plummer, M.P.; Chapman, M.J. Gut dysfunction in the ICU: Diagnosis and management. Curr. Opin. Crit. Care 2021, 27, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Blaser, A.R.; Padar, M.; Mändul, M.; Elke, G.; Engel, C.; Fischer, K.; Giabicani, M.; Gold, T.; Hess, B.; Hiesmayr, M.; et al. Development of the Gastrointestinal Dysfunction Score (GIDS) for critically ill patients—A prospective multicenter observational study (iSOFA study). Clin. Nutr. 2021, 40, 4932–4940. [Google Scholar] [CrossRef] [PubMed]
Tolerance n = 14 | Intolerance n = 10 | p | |
---|---|---|---|
Age median (IQR) | 62 (50, 68) | 61 (52, 65) | 0.75 |
Male n (%) | 7 (50.00%) | 6 (60.00%) | 0.62 |
APACHE II median (IOR) | 12 (10, 21) | 15 (12, 23) | 0.26 |
SOFA median (IQR) | 6.5 (9, 4) | 9 (6, 14) | 0.09 |
Weight Kg | 48 (45, 68) | 50 (40, 82) | 0.72 |
mNutric | 5 (3, 6) | 5 (4, 6) | 0.73 |
Estimated energy intake (Kcal/day) Median (IOR) | 1000 (800, 1500) | 1000 (800, 1500) | 0.74 |
EN energy intake on day 3 (Kcal/day) Median (IQR) | 950 (700, 1000) | 500 (300, 600) | 0.02 |
28-day survival n (%) | 9 (64.28%) | 5 (50.00%) | |
Comorbidity | |||
Diabetes | 4 (28.57%) | 4 (40.00%) | 0.55 |
Hypertension | 6 (42.86%) | 5 (50.00%) | 0.72 |
COPD | 7 (50.00%) | 6 (60.00%) | 0.62 |
Coronary vascular disease | 5 (35.71%) | 6 (60.00%) | 0.23 |
Days before ICU | 5 (3, 14) | 4 (2, 10) | 0.21 |
Infection site n (%) | |||
Respiratory | 11 (78.57%) | 5 (50.00%) | 0.14 |
Blood | 2 (14.29%) | 1 (10.00%) | 0.75 |
Urine | 1 (7.14%) | 0 (0%) | 0.38 |
Central nervous system | 1 (7.14%) | 0 (0%) | 0.38 |
Maximal AGI from day 1 to day 3 n (%) | 6 (42.86%) | 3 (30.00%) | 0.52 # |
Grade I | 2 (14.29%) | 1 (10.00%) | |
Grade II | 4 (28.57%) | 2 (20.00%) | |
Grade III | 8 (57.14%) | 6 (60.00%) | |
Grade IV | 0 (0.00%) | 1 (10.00%) | |
GI symptoms from day 1 to day 3 n (%) | |||
Nausea/vomiting | 5 (35.71%) | 6 (60.00%) | 0.23 |
Diarrhea | 3 (21.43%) | 4 (40.00%) | 0.32 |
Abdominal distension | 5 (35.71%) | 5 (50.00%) | 0.48 |
Organ support | |||
Mechanical ventilation | 6 (42.86%) | 6 (60.00%) | 0.40 |
Vasopressor | 10 (71.43%) | 8 (80.00%) | 0.63 |
Antibiotic regimen n (%) | |||
Carbapenems | 10 (71.42%) | 6 (60.00%) | 0.56 |
The 3rd/4th generation of cephalosporin | 2 (14.29%) | 3 (30.00%) | 0.35 |
β-lactams/β-lactamase inhibitors | 2 (14.29%) | 1 (10.00%) | 0.75 |
Vancomycin | 4 (28.57%) | 3 (30.00%) | 0.97 |
Combination of any two above | 4 (28.57%) | 3 (30.00%) | 0.97 |
Pathogen n (%) | |||
Staphylococcus aureus | 1 (7.14%) | 1 (10.00%) | 0.80 |
Candida | 3 (21.43%) | 2 (20.00%) | 0.93 |
Enterobacteria | 1 (7.14%) | 3 (30.00%) | 0.19 |
Acinetobacter | 5 (35.72%) | 5 (50.00%) | 0.48 |
Undefined | 2 (14.29%) | 2 (20.00%) | 0.71 |
Day 1 | p | Day 3 | p | |||
---|---|---|---|---|---|---|
Tolerance | Intolerance | Tolerance | Intolerance | |||
genus level | ||||||
Enterococcus | 12.37% | 25.59% | 0.01 * | 15.78% | 39.10% | 0.01 * |
Bacteroides | 20.93% | 5.59% | 0.01 * | 13.46% | 12.42% | 0.8 |
Escherichia-Shigella | 7.86% | 2.91% | 0.12 | 13.14% | 0.16% | 0.01 * |
Alistipes | 3.21% | 1.61% | 0.46 | 6.72% | 6.29% | 0.20 |
Klebsiella | 0.43% | 9.52% | 0.01 * | 1.53% | 5.49% | 0.12 |
Bifidobacterium | 4.11% | 6.88% | 0.39 | 6.48% | 0.62% | 0.02 * |
Parabacteroides | 7.89% | 0.32% | 0.00 * | 4.09% | 1.83% | 0.33 |
Sphingomonas | 0.13% | 2.31% | 0.16 | 0.04% | 9.73% | 0.01 * |
Erysipelatoclostridium | 1.36% | 0.32% | 0.42 | 6.29% | 0.34% | 0.02 |
Subdoligranulum | 2.43% | 1.90% | 0.79 | 2.18% | 1.99% | 0.92 |
Others | 39.29% | 43.05% | 0.58 | 30.29% | 22.03% | 0.18 |
phylum level | ||||||
Firmicutes | 43.73% | 52.75% | 0.20 | 47.97% | 57.38% | 0.18 |
Bacteroidetes | 33.52% | 8.08% | 0.00* | 25.69% | 20.79% | 0.41 |
Proteobacteria | 10.54% | 24.39% | 0.09 | 15.16% | 17.82% | 0.61 |
Actinobacteria | 8.25% | 14.44% | 0.16 | 7.60% | 3.72% | 0.23 |
Verrucomicrobia | 2.93% | 0.03% | 0.08 | 2.80% | 0.01% | 0.09 |
Euryarchaeota | 0.58% | 0.00% | 1.00 | 0.70% | 0.00% | 1.00 |
Synergistetes | 0.19% | 0.01% | 1.00 | 0.01% | 0.00% | 1.00 |
Chloroflexi | 0.07% | 0.05% | 0.55 | 0.01% | 0.07% | 1.00 |
Acidobacteria | 0.03% | 0.06% | 0.21 | 0.01% | 0.05% | 0.21 |
Gemmatimonadetes | 0.05% | 0.03% | 0.72 | 0.01% | 0.01% | 1.00 |
Others | 0.11% | 0.16% | 0.44 | 0.05% | 0.15% | 0.04 * |
Firmicutes Abundance | Bacteroidetes Abundance | F/B | p | |
---|---|---|---|---|
Day 1 Tolerance (a) | 26.38 (14.89, 36.17) | 11.49 (1.14, 19.92) | 1.96 (0.63, 12.6) | a vs. b 0.72 |
Day 3 Tolerance (b) | 20.41 (17.09, 37.69) | 3.82 (0.29, 38.33) | 5.15 (0.29, 48.26) | b vs. d 0.08 |
Day 1 Intolerance (c) | 37.18 (11.12, 43.98) | 0.63 (0.04, 4.72) | 50.44 (3.95, 104.26) | a vs. c 0.02 |
Day 3 Intolerance (d) | 27.07 (11.10, 50.37) | 3.90 (0.17, 11.75) | 9.3 (3.16, 25.19) | c vs. d 0.04 |
SCFAs (ug/g) | Healthy Control n = 3 | Tolerant Group n = 14 Median (IQR) | Intolerant Group n = 10 Median (IQR) | p * |
---|---|---|---|---|
Acetic acid | 700.25 (758.10, 564.15) | 606.45 (948.10, 334.15) | 213.08 (514.27, 203.64) | 0.06 |
Propionic acid | 450.94 (500.08, 435.23) | 422.94 (181.88, 585.23) | 55.62 (31.47, 454.28) | 0.04 † |
Isobutyric acid | 57.84 (30.61, 60.3) | 42.84 # (14.61, 131.3) | 6.20 # (5.81, 45.04) | 0.04 † |
Isovaleric acid | 74.06 (35.86, 89.73) | 62.06 (18.76, 169.81) | 4.28 (4.00, 56.33) | 0.04 † |
Butyric acid | 360.38 (220.92, 480.02) | 241.38 # (107.62, 474.05) | 21.41 # (3.52, 250.16) | 0.03 † |
Valeric acid | 45.92 (12.26, 65.40) | 21.92 (7.26, 64.39) | 4.08 (1.07, 24.23) | 0.04 † |
Hexanoic acid | 13.38 (1.36, 15.34) | 9.43 (3.35, 10.79) | 6.25 (1.71, 9.71) | 0.09 |
Total SCFA | 1780.13 (865.64, 1929.40) | 1560.12 # (865.64, 1929.40) | 286.82 # (278.62, 1544.27) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhong, M.; Pan, T.; Qu, H.; Chen, E. Gut Microbiota and Enteral Nutrition Tolerance in Non-Abdominal Infection Septic ICU Patients: An Observational Study. Nutrients 2022, 14, 5342. https://doi.org/10.3390/nu14245342
Xu W, Zhong M, Pan T, Qu H, Chen E. Gut Microbiota and Enteral Nutrition Tolerance in Non-Abdominal Infection Septic ICU Patients: An Observational Study. Nutrients. 2022; 14(24):5342. https://doi.org/10.3390/nu14245342
Chicago/Turabian StyleXu, Wen, Ming Zhong, Tingting Pan, Hongping Qu, and Erzhen Chen. 2022. "Gut Microbiota and Enteral Nutrition Tolerance in Non-Abdominal Infection Septic ICU Patients: An Observational Study" Nutrients 14, no. 24: 5342. https://doi.org/10.3390/nu14245342
APA StyleXu, W., Zhong, M., Pan, T., Qu, H., & Chen, E. (2022). Gut Microbiota and Enteral Nutrition Tolerance in Non-Abdominal Infection Septic ICU Patients: An Observational Study. Nutrients, 14(24), 5342. https://doi.org/10.3390/nu14245342