Nutrition, Food and Diet in Health and Longevity: We Eat What We Are
Abstract
:1. Introduction
2. Nutrition for Healthy Ageing
3. Food for Healthy Ageing
4. Diet and Culture for Healthy and Long Life
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stambler, I. Longevity foods in myth, legend and history. In Nutrition, Food and Diet in Ageing and Longevity; Rattan, S.I.S., Kaur, G., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 411–435. [Google Scholar]
- Leng, G.; Adan, R.A.; Belot, M.; Brunstrom, J.M.; de Graaf, K.; Dickson, S.L.; Hare, T.; Maier, S.; Menzies, J.; Preissl, H.; et al. The determinants of food choice. Proc. Nutr. Soc. 2017, 76, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Monterrosa, E.C.; Frongillo, E.A.; Drewnowski, A.; de Pee, S.; Vandevijvere, S. Sociocultural Influences on Food Choices and Implications for Sustainable Healthy Diets. Food Nutr. Bull. 2020, 41, 59S–73S. [Google Scholar] [CrossRef]
- Rattan, S.I.S.; Kaur, G. Nutrition, food and diet in ageing and longevity. In Healthy Ageing and Longevity; Rattan, S.I.S., Ed.; Springer: Cham, Switzerland, 2021; Volume 14. [Google Scholar]
- Rattan, S.I.S. Biology of ageing: Principles, challenges and perspectives. Rom. J. Morphol. Embryol. 2015, 56, 1251–1253. [Google Scholar]
- Rattan, S.I.S. Biogerontology: Research status, challenges and opportunities. Acta Biomed. 2018, 89, 291–301. [Google Scholar]
- Sholl, J.; Rattan, S.I.S. Explaining Health Across the Sciences; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Sharma, S.; Kaur, G. Intermittent dietary restriction as a practical intervention in aging. Ann. N. Y. Acad. Sci. 2007, 1114, 419–427. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.; Kaur, M.; Kaur, G. Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin 1 protein levels in male Wistar rats. Biogerontology 2010, 11, 197–209. [Google Scholar] [CrossRef]
- Vaclavik, V.A.; Christian, E.W.; Campbell, T. Essentials of Food Science; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Shlisky, J.; Bloom, D.E.; Beaudreault, A.R.; Tucker, K.L.; Keller, H.H.; Freund-Levi, Y.; Fielding, R.A.; Cheng, F.W.; Jensen, G.L.; Wu, D.; et al. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease. Adv. Nutr. 2017, 8, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Christmas, C.; Rogus-Pulia, N. Swallowing Disorders in the Older Population. J. Am. Geriatr. Soc. 2019, 67, 2643–2649. [Google Scholar] [CrossRef]
- Braun, T.; Doerr, J.M.; Peters, L.; Viard, M.; Reuter, I.; Prosiegel, M.; Weber, S.; Yeniguen, M.; Tschernatsch, M.; Gerriets, T.; et al. Age-related changes in oral sensitivity, taste and smell. Sci. Rep. 2022, 12, 1533. [Google Scholar] [CrossRef]
- Chapman, L.E.; Darling, A.L.; Brown, J.E. Association between metformin and vitamin B12 deficiency in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab. 2016, 42, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.S.H. Metformin-induced vitamin B12 deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes. Diabetes Obes. Metab. 2022, 24, 1423–1428. [Google Scholar] [CrossRef]
- Malafarina, V.; Uriz-Otano, F.; Gil-Guerrero, L.; Iniesta, R. The anorexia of ageing: Physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas 2013, 74, 293–302. [Google Scholar] [CrossRef]
- Kehoe, L.; Walton, J.; Flynn, A. Nutritional challenges for older adults in Europe: Current status and future directions. Proc. Nutr. Soc. 2019, 78, 221–233. [Google Scholar] [CrossRef]
- Medawar, E.; Huhn, S.; Villringer, A.; Veronica Witte, A. The effects of plant-based diets on the body and the brain: A systematic review. Transl. Psychiatry 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, L.J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy Aging and Dietary Patterns. Nutrients 2022, 14, 889. [Google Scholar] [CrossRef]
- Barham, P. The Science of Cooking; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Son, T.G.; Camandola, S.; Mattson, M.P. Hormetic dietary phytochemicals. Neuromol. Med. 2008, 10, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, E.J.; Blain, R.B. Hormesis and plant biology. Environ. Pollut. 2009, 157, 42–48. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Bachmann, K.A.; Bailer, A.J.; Bolger, P.M.; Borak, J.; Cai, L.; Cedergreen, N.; Cherian, M.G.; Chiueh, C.C.; Clarkson, T.W.; et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol. 2007, 222, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Rattan, S.I.S. Primary stress response pathways for pre-conditioning and physiological hormesis. In The Science of Hormesis in Health and Longevity; Rattan, S.I.S., Kyriazis, M., Eds.; Academic Press: London, UK, 2019; pp. 35–54. [Google Scholar]
- Rattan, S.I.S.; Kyriazis, M. The Science of Hormesis in Health and Longevity UK; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Rattan, S.I.S. Rationale and methods of discovering hormetins as drugs for healthy ageing. Expert. Opin. Drug Discov. 2012, 7, 439–448. [Google Scholar] [CrossRef]
- Rattan, S.I.S. Hormetins as drugs for healthy aging. In Anti-Aging Drugs: From Basic Rsearch to Clinical Practice; Vaiserman, M., Ed.; The Royal Society of Chemistry: London, UK, 2017; pp. 170–180. [Google Scholar]
- Rattan, S.I.S. Physiological hormesis and hormetins in biogerontology. Curr. Opin. Toxicol. 2022, 29, 19–24. [Google Scholar] [CrossRef]
- Rattan, S.I.; Kryzch, V.; Schnebert, S.; Perrier, E.; Nizard, C. Hormesis-based anti-aging products: A case study of a novel cosmetic. Dose Response 2013, 11, 99–108. [Google Scholar] [CrossRef]
- Boyajian, J.L.; Ghebretatios, M.; Schaly, S.; Islam, P.; Prakash, S. Microbiome and Human Aging: Probiotic and Prebiotic Potentials in Longevity, Skin Health and Cellular Senescence. Nutrients 2021, 13, 4550. [Google Scholar] [CrossRef]
- Sharma, R. Emerging Interrelationship Between the Gut Microbiome and Cellular Senescence in the Context of Aging and Disease: Perspectives and Therapeutic Opportunities. Probiotics Antimicrob. Proteins 2022, 14, 648–663. [Google Scholar] [CrossRef]
- Kadyan, S.; Sharma, A.; Arjmandi, B.H.; Singh, P.; Nagpal, R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022, 14, 1726. [Google Scholar] [CrossRef]
- Koppula, S.; Akther, M.; Haque, M.E.; Kopalli, S.R. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021, 13, 4058. [Google Scholar] [CrossRef]
- Duan, H.; Pan, J.; Guo, M.; Li, J.; Yu, L.; Fan, L. Dietary strategies with anti-aging potential: Dietary patterns and supplements. Food Res. Int. 2022, 158, 111501. [Google Scholar] [CrossRef]
- Akan, O.D.; Qin, D.; Guo, T.; Lin, Q.; Luo, F. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Foods 2022, 11, 2955. [Google Scholar] [CrossRef]
- Naik, S.R.; Thakare, V.N.; Joshi, F.P. Functional foods and herbs as potential immunoadjuvants and medicines in maintaining healthy immune system: A commentry. J. Compl. Integr. Med. 2010, 7, 46. [Google Scholar] [CrossRef]
- Holmquist, D.D. Milk and other dairy product trends in health and longevity. In Nutrition, Food and Diet in Ageing and Longevity; Rattan, S.I.S., Kaur, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 193–198. [Google Scholar]
- Currenti, W.; Godos, J.; Castellano, S.; Caruso, G.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F. Association between Time Restricted Feeding and Cognitive Status in Older Italian Adults. Nutrients 2021, 13, 191. [Google Scholar] [CrossRef]
- Kessler, K.; Pivovarova-Ramich, O. Meal Timing, Aging, and Metabolic Health. Int. J. Mol. Sci. 2019, 20, 1911. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef]
- Mattson, M.P. Challenging oneself intermittently to improve health. Dose Response 2014, 12, 600–618. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev. Neurosci. 2018, 19, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kaur, G. Fasting and caloric restriction for healthy ageing and longevity. In Nutrition, Food and Diet in Ageing and Longevity; Rattan, S.I.S., Kaur, G., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 507–523. [Google Scholar]
- Singh, H.; Kaur, T.; Manchanda, S.; Kaur, G. Intermittent fasting combined with supplementation with Ayurvedic herbs reduces anxiety in middle aged female rats by anti-inflammatory pathways. Biogerontology 2017, 18, 601–614. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.H.; Wu, C.Y.; Peng, H.H.; Hwang, T.L.; Ko, Y.F.; Young, J.D.; Ojcius, D.M. Recent advances in the field of caloric restriction mimetics and anti-aging molecules. Ageing Res. Rev. 2021, 66, 101240. [Google Scholar] [CrossRef]
- Robbins, P.D.; Jurk, D.; Khosla, S.; Kirkland, J.L.; LeBrasseur, N.K.; Miller, J.D.; Passos, J.F.; Pignolo, R.J.; Tchkonia, T.; Niedernhofer, L.J. Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 779–803. [Google Scholar] [CrossRef]
- Melo Pereira, S.; Ribeiro, R.; Logarinho, E. Approaches towards Longevity: Reprogramming, Senolysis, and Improved Mitotic Competence as Anti-Aging Therapies. Int. J. Mol. Sci. 2019, 20, 938. [Google Scholar] [CrossRef] [Green Version]
- Rattan, S.I.S. Naive extrapolations, overhyped claims and empty promises in ageing research and interventions need avoidance. Biogerontology 2017, 21, 415–422. [Google Scholar] [CrossRef]
- Duregon, E.; Pomatto-Watson, L.C.; Bernier, M.; Price, N.L.; de Cabo, R. Intermittent fasting: From calories to time restriction. Geroscience 2021, 43, 1083–1092. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattan, S.I.S.; Kaur, G. Nutrition, Food and Diet in Health and Longevity: We Eat What We Are. Nutrients 2022, 14, 5376. https://doi.org/10.3390/nu14245376
Rattan SIS, Kaur G. Nutrition, Food and Diet in Health and Longevity: We Eat What We Are. Nutrients. 2022; 14(24):5376. https://doi.org/10.3390/nu14245376
Chicago/Turabian StyleRattan, Suresh I. S., and Gurcharan Kaur. 2022. "Nutrition, Food and Diet in Health and Longevity: We Eat What We Are" Nutrients 14, no. 24: 5376. https://doi.org/10.3390/nu14245376
APA StyleRattan, S. I. S., & Kaur, G. (2022). Nutrition, Food and Diet in Health and Longevity: We Eat What We Are. Nutrients, 14(24), 5376. https://doi.org/10.3390/nu14245376