The Mediation Role of the Risk of Non-Alcoholic Fatty Liver Disease in Relationship between Lutein and Zeaxanthin and Cognitive Functions among Older Adults in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Lutein and Zeaxanthin in Dietary and Total Intake
2.3. NAFLD—Related Measurement
2.4. Cognitive Outcomes
2.5. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Association of Dietary L and Z Intake with Cognitive Functions
3.3. Association of the US FLI with Cognitive Functions
3.4. Association of Dietary L and Z Intake with US FLI
3.5. Mediation Effects of the US FLI on Relationship between Dietary or Total L and Z Intake and Cognitive Functions
4. Discussion
4.1. Association between Dietary L and Z Intake with Cognitive Functions
4.2. Dietary L and Z Intake, NAFLD and Cognitive Functions
4.3. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsentidou, G.; Moraitou, D.; Tsolaki, M. Cognition in Vascular Aging and Mild Cognitive Impairment. J. Alzheimers Dis. 2019, 72, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, W.; Zhang, D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). J. Alzheimers Dis. 2019, 72, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013, 9, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Nooyens, A.C.; Milder, I.E.; van Gelder, B.M.; Bueno-de-Mesquita, H.B.; van Boxtel, M.P.; Verschuren, W.M. Diet and cognitive decline at middle age: The role of antioxidants. Br. J. Nutr. 2015, 113, 1410–1417. [Google Scholar] [CrossRef] [Green Version]
- Lindbergh, C.A.; Mewborn, C.M.; Hammond, B.R.; Renzi-Hammond, L.M.; Curran-Celentano, J.M.; Miller, L.S. Relationship of Lutein and Zeaxanthin Levels to Neurocognitive Functioning: An fMRI Study of Older Adults. J. Int. Neuropsychol. Soc. 2017, 23, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Renzi, L.M.; Hammond, B.R., Jr. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthal. Physiol. Opt. 2010, 30, 351–357. [Google Scholar] [CrossRef]
- Johnson, E.J.; Vishwanathan, R.; Johnson, M.A.; Hausman, D.B.; Davey, A.; Scott, T.M.; Green, R.C.; Miller, L.S.; Gearing, M.; Woodard, J.; et al. Relationship between Serum and Brain Carotenoids, alpha-Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study. J. Aging Res. 2013, 2013, 951786. [Google Scholar] [CrossRef] [Green Version]
- Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 677–683. [Google Scholar] [CrossRef]
- Kang, J.H.; Ascherio, A.; Grodstein, F. Fruit and vegetable consumption and cognitive decline in aging women. Ann. Neurol. 2005, 57, 713–720. [Google Scholar] [CrossRef]
- Parrott, M.D.; Shatenstein, B.; Ferland, G.; Payette, H.; Morais, J.A.; Belleville, S.; Kergoat, M.J.; Gaudreau, P.; Greenwood, C.E. Relationship between diet quality and cognition depends on socioeconomic position in healthy older adults. J. Nutr. 2013, 143, 1767–1773. [Google Scholar] [CrossRef]
- Murillo, A.G.; DiMarco, D.M.; Fernandez, M.L. The Potential of Non-Provitamin a Carotenoids for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease. Biology 2016, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Park, S.H. Association between depression and nonalcoholic fatty liver disease: Contributions of insulin resistance and inflammation. J. Affect. Disord 2021, 278, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Clugston, R.D. Carotenoids and fatty liver disease: Current knowledge and research gaps. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 2020, 1865, 158597. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Na, H.J.; Kim, C.K.; Kim, J.Y.; Ha, K.S.; Lee, H.; Chung, H.T.; Kwon, H.J.; Kwon, Y.G.; Kim, Y.M. The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: Role of H(2)O(2) in NF-kappaB activation. Free Radic. Biol. Med. 2008, 45, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Gao, D.H.; Xiang, X.; Xiong, Y.F.; Zhu, T.S.; Liu, L.G.; Sun, X.F.; Hao, L.P. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats. World J. Gastroenterol. 2015, 21, 8061–8072. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.; Lawler, T.; Mares, J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003–2014. Nutrients 2019, 11, 1101. [Google Scholar] [CrossRef] [Green Version]
- Colognesi, M.; Gabbia, D.; De Martin, S. Depression and Cognitive Impairment-Extrahepatic Manifestations of NAFLD and NASH. Biomedicines 2020, 8, 229. [Google Scholar] [CrossRef]
- Lombardi, R.; Fargion, S.; Fracanzani, A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review. Dig. Liver Dis. 2019, 51, 1214–1222. [Google Scholar] [CrossRef]
- Elliott, C.; Frith, J.; Day, C.P.; Jones, D.E.; Newton, J.L. Functional impairment in alcoholic liver disease and non-alcoholic fatty liver disease is significant and persists over 3 years of follow-up. Dig. Dis. Sci. 2013, 58, 2383–2391. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. International Consensus P: MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef]
- NHANES Questionnaires, Datasets, and Related Documentation. Available online: https://wwwn.cdc.gov/nchs/nhanes/default.aspx (accessed on 3 December 2021).
- National Health and Nutrition Examination Survey Measuring Guides for the Dietary Recall Interview. Available online: https://www.cdc.gov/nchs/nhanes/measuring_guides_dri/measuringguides.htm (accessed on 3 December 2021).
- Calori, G.; Lattuada, G.; Ragogna, F.; Garancini, M.P.; Crosignani, P.; Villa, M.; Bosi, E.; Ruotolo, G.; Piemonti, L.; Perseghin, G. Fatty liver index and mortality: The Cremona study in the 15th year of follow-up. Hepatology 2011, 54, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment. Pharmacol. Ther. 2015, 41, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Pilz, S.; Grammar, T.B.; Boehm, B.O.; Stojakovic, T.; Obermayer-Pietsch, B.; Marz, W. The fatty liver index is associated with increased mortality in subjects referred to coronary angiography. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey 2011–2012 Data Documentation, codebook and Frequencies. Cognitive Functioning. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ_G.htm (accessed on 3 December 2021).
- National Health and Nutrition Examination Survey 2013–2014 Data Documentation, codebook and Frequencies. Cognitive Functioning. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CFQ_H.htm (accessed on 3 December 2021).
- National Health and Nutrition Examination Survey. NHANES Tutorials—Module 3—Weighting. Available online: https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx (accessed on 3 December 2021).
- Hayes, A.F.; Preacher, K.J. Statistical mediation analysis with a multicategorical independent variable. Br. J. Math. Stat. Psychol. 2014, 67, 451–470. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.; Gleason, C.E.; Mares, J.A. Dietary carotenoids and cognitive function among US adults, NHANES 2011–2014. Nutr. Neurosci. 2020, 23, 554–562. [Google Scholar] [CrossRef]
- Hammond, B.R., Jr.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef]
- Lindbergh, C.A.; Renzi-Hammond, L.M.; Hammond, B.R.; Terry, D.P.; Mewborn, C.M.; Puente, A.N.; Miller, L.S. Lutein and Zeaxanthin Influence Brain Function in Older Adults: A Randomized Controlled Trial. J. Int. Neuropsychol. Soc. 2018, 24, 77–90. [Google Scholar] [CrossRef]
- Li, S.Y.; Fung, F.K.; Fu, Z.J.; Wong, D.; Chan, H.H.; Lo, A.C. Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: In vivo and in vitro studies. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5976–5984. [Google Scholar] [CrossRef] [Green Version]
- Renzi, L.M.; Dengler, M.J.; Puente, A.; Miller, L.S.; Hammond, B.R., Jr. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol. Aging 2014, 35, 1695–1699. [Google Scholar] [CrossRef]
- Sujak, A.; Gabrielska, J.; Grudziński, W.; Borc, R.; Mazurek, P.; Gruszecki, W.I. Lutein and Zeaxanthin as Protectors of Lipid Membranes against Oxidative Damage: The Structural Aspects. Arch. Biochem. Biophys. 1999, 371, 301–307. [Google Scholar] [CrossRef]
- Erdman, J.W., Jr.; Smith, J.W.; Kuchan, M.J.; Mohn, E.S.; Johnson, E.J.; Rubakhin, S.S.; Wang, L.; Sweedler, J.V.; Neuringer, M. Lutein and Brain Function. Foods 2015, 4, 547–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targher, G.; Marra, F.; Marchesini, G. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: Causal effect or epiphenomenon? Diabetologia 2008, 51, 1947–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.E.; Clark, R.M.; Park, Y.; Lee, J.; Fernandez, M.L. Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutr. Res. Pract. 2012, 6, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Hu, S.; Park, Y.K.; Lee, J.Y. Health Benefits of Carotenoids: A Role of Carotenoids in the Prevention of Non-Alcoholic Fatty Liver Disease. Prev. Nutr. Food Sci. 2019, 24, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, K.; Mikkelsen, A.C.D.; Wernberg, C.W.; Gronkjaer, L.L.; Eriksen, P.L.; Damholdt, M.F.; Mookerjee, R.P.; Vilstrup, H.; Lauridsen, M.M.; Thomsen, K.L. Cognitive Dysfunction in Non-Alcoholic Fatty Liver Disease-Current Knowledge, Mechanisms and Perspectives. J. Clin. Med. 2021, 10, 673. [Google Scholar] [CrossRef]
Characteristic | All NHANES Participants Aged ≥ 60 Years (n = 3632) | NHANES Participants Included in this Analysis (n = 604) |
---|---|---|
Total (Weighted n) | 59,784,355 | 29,397,912 |
NHANES cycle, n % (SE) | ||
2011–2012 | 49.06 (0.03) | 51.11 (0.04) |
2013–2014 | 50.94 (0.03) | 48.89 (0.04) |
Age (years), mean ± SE | 69.40 ± 0.28 | 68.11 ± 0.32 |
Sex, n% (SE) | ||
Male | 44.52 (0.01) | 49.88 (0.02) |
Female | 55.48 (0.01) | 50.12 (0.02) |
Race/ethnicity, n% (SE) | ||
Mexican American | 3.82 (0.01) | 2.75 (0.01) |
Other Hispanic | 3.70 (0.01) | 2.61 (0.01) |
Non-Hispanic white | 77.45 (0.02) | 86.85 (0.02) |
Non-Hispanic Black | 8.99 (0.01) | 5.39 (0.01) |
Other/multiracial | 6.05 (0.01) | 2.40 (0.01) |
Education >12 years, n% (SE) | 80.87 (0.02) | 87.76 (0.02) |
GGT (IU/L), mean ± SE | 26.39 (1.07) | 24.90 (1.16) |
Fasting insulin (pmol /L), mean ± SE | 75.95 ± 2.81 | 75.40 ± 4.08 |
Waist circumference (cm), mean ± SE | 102.76 ± 0.79 | 102.96 ± 0.95 |
Fasting glucose (mg/ dL), mean ± SE | 112.77 ± 1.55 | 111.74 ± 1.80 |
Total energy intake (kcal), mean ± SE | 1842.587 ± 27.57 | 1937.78 ± 34.93 |
Dietary L and Z intake (mg/day), mean ± SE | 2091.91 ± 328.52 | 2592.69 ± 593.34 |
Total L and Z intake (mg/day), mean ± SE | 2344.65 ± 353.85 | 2841.43 ± 644.91 |
CERAD W-L: Total Score (3 Recall trials), mean ± SE | 19.82 ± 0.27 | 20.38 ± 0.27 |
Animal Fluency Test: Total Score, mean ± SE | 17.96 ± 0.23 | 18.93 ± 0.27 |
DSST: Total Score, mean ± SE | 51.71 ± 0.77 | 56.27 ± 0.92 |
Group | Q1 (n = 152) Weighted (n) = 6, 469, 326 | Q2 (n = 149) Weighted (n) = 6, 899, 307 | Q3 (n = 152) Weighted (n) = 7, 924, 034 | Q4 (n = 151) Weighted (n) = 8, 105, 244 | p-Value for Difference |
---|---|---|---|---|---|
Dietary L and Z intake | |||||
US FLI | 31.43 (21.81) | 34.46 (23.39) | 29.19 (22.01) | 23.48 (19.71) | <0.001 |
CERAD W-L: Total Score | 18.70 (4.36) | 19.46 (4.39) | 19.60 (4.61) | 20.39 (4.40) | <0.05 |
Animal Fluency Test: Total Score | 16.74 (5.54) | 17.56 (5.33) | 18.07 (5.31) | 18.81 (5.55) | <0.05 |
DSST: Total Score | 46.36 (16.96) | 49.49 (17.43) | 52.11 (16.13) | 54.01 (16.14) | <0.001 |
Z-score | −0.19 (0.79) | −0.05 (0.76) | 0.05 (0.79) | 0.19 (0.71) | <0.001 |
Total L and Z intake | |||||
US FLI | 31.82 (22.88) | 34.14 (23.68) | 28.60 (20.99) | 23.95 (19.38) | <0.001 |
CERAD W-L: Total Score | 18.56 (4.38) | 19.49 (4.42) | 19.75 (4.53) | 20.35 (4.40) | <0.05 |
Animal Fluency Test: Total Score | 16.46 (5.45) | 17.96 (5.99) | 18.09 (4.90) | 18.68 (5.29) | <0.05 |
DSST: Total Score | 45.14 (17.08) | 49.84 (17.59) | 52.88 (16.11) | 54.11 (15.37) | <0.001 |
Z-score | −0.24 (0.79) | −0.04 (0.78) | 0.09 (0.76) | 0.19 (0.70) | <0.001 |
CERAD W-L: Total Score | Animal Fluency Test: Total Score | DSST: Total Score | Z-Score | |
---|---|---|---|---|
Crude model | ||||
US FLI | −0.02 (−0.05, 0.00) | −0.03 (−0.05, −0.01) | −0.10 (−0.20, −0.01) | −0.004 (−0.01, −0.00) |
Quartile of dietary L and Z | ||||
Q2 vs. Q1 | 0.98 (−0.54, 2.51) | 0.83 (−0.68, 2.34) | 4.36 (−1.55, 10.26) | 0.19 (−0.07, 0.45) |
Q3 vs. Q1 | 1.22 (−0.10, 2.55) | 1.01 (−0.29, 2.31) | 5.34 (−0.40, 11.09) | 0.25 (0.02, 0.48) |
Q4 vs. Q1 | 1.93 (0.41, 3.45) | 2.64 (0.81, 4.47) | 7.93 (2.27, 13.59) | 0.42 (0.18, 0.66) |
Quartile of total L and Z | ||||
Q2 vs. Q1 | 0.71 (−0.44, 1.85) | 1.06 (-0.39, 2.50) | 5.03 (−1.26, 11.32) | 0.16 (−0.08, 0.40) |
Q3 vs. Q1 | 1.54 (0.45, 1.85) | 1.85 (0.47, 3.22) | 7.87 (2.17, 13.57) | 0.36 (0.13, 0.60) |
Q4 vs. Q1 | 1.88 (0.54, 3.22) | 2.54 (0.91, 4.18) | 8.93 (3.61, 14.25) | 0.42 (0.21, 0.63) |
Adjusted model | ||||
US FLI | −0.01 (−0.03, 0.01) | −0.03 (−0.06, −0.01) | −0.09 (−0.16, −001) | −0.004 (−0.01, −0.00) |
Quartile of dietary L and Z | ||||
Q2 vs. Q1 | 0.63 (−0.47, 1.72) | 0.66 (−0.53, 1.85) | 3.86 (−0.82, 8.55) | 0.14 (−0.06, 0.33) |
Q3 vs. Q1 | 1.07 (−0.01, 2.15) | 0.72 (−0.49, 1.93) | 4.28 (−0.48, 9.03) | 0.21 (0.03, 0.38) |
Q4 vs. Q1 | 1.32 (0.05, 2.59) | 2.15 (0.47, 3.84) | 4.71 (0.60, 8.82) | 0.29 (0.09, 0.49) |
Quartile of total L and Z | ||||
Q2 vs. Q1 | 0.69 (−0.19, 1.57) | 1.09 (−0.25, 2.44) | 4.87 (0.38, 9.35) | 0.16 (−0.02, 0.34) |
Q3 vs. Q1 | 1.42 (0.54, 2.31) | 1.47 (0.22, 2.72) | 6.13 (1.70, 10.57) | 0.31 (0.13, 0.49) |
Q4 vs. Q1 | 1.37 (0.19, 2.54) | 2.10 (0.44, 3.76) | 5.71 (1.58, 9.83) | 0.30 (0.11, 0.49) |
Q2 vs. Q1 | Q3 vs. Q1 | Q4 vs. Q1 | |
---|---|---|---|
Quartile of dietary L and Z intake | |||
US FLI (Crude model) | 1.22 (0.77) | −2.34 (0.61) | −10.99 (<0.01) |
US FLI (Adjusted model) | 0.74 (0.86) | −2.27 (0.61) | −10.23 (<0.01) |
Quartile of total L and Z intake | |||
US FLI (Crude model) | 0.75 (0.85) | −4.48 (0.32) | −10.75 (0.02) |
US FLI (Adjusted model) | 0.43 (0.91) | −4.22 (0.32) | −9.84 (0.02) |
Relative Mediation Analysis | Q2 vs. Q1 1 | Q3 vs. Q1 1 | Q4 vs. Q1 1 |
---|---|---|---|
CERAD W-L: Total Score | |||
Direct Effect (c’n) | 0.63 (−0.53, 1.76) | 1.04 (−0.07, 2.17) | 1.21 (0.09, 2.37) |
Indirect Effect (an × b) | −0.01 (−0.16, 0.06) | 0.03 (−0.03, 0.19) | 0.11 (−0.03, 0.35) |
PE (%) | - | - | - |
Animal Fluency Test: Total Score | |||
Direct Effect (c’n) | 0.68 (−0.77, 2.07) | 0.65 (−0.76, 2.02) | 1.86 (0.31, 3.31) |
Indirect Effect (an × b) | −0.02 (−0.30, 0.18) | 0.07 (−0.10, 0.35) | 0.30 (0.07, 0.75) |
PE (%) | - | - | 13.89 |
DSST: Total Score | |||
Direct Effect (c’n) | 3.93 (−0.11, 8.33) | 4.09 (0.20, 7.92) | 3.86 (−0.16, 7.97) |
Indirect Effect (an × b) | −0.06 (−0.66, 0.59) | 0.19 (−0.30, 0.98) | 0.84 (0.21, 1.95) |
PE (%) | - | - | 17.87 |
Z-score | |||
Direct Effect (c’n) | 0.14 (−0.05, 0.33) | 0.20 (0.01, 0.38) | 0.25 (0.05, 0.44) |
Indirect Effect (an × b) | −0.01 (−0.03, 0.04) | 0.01 (−0.01, 0.04) | 0.04 (0.01, 0.09) |
PE (%) | - | - | 13.79 |
Relative Mediation Analysis | Q2 vs. Q1 1 | Q3 vs. Q1 1 | Q4 vs. Q1 1 |
---|---|---|---|
CERAD W-L: Total Score | |||
Direct Effect (c’n) | 0.70 (−0.40, 1.83) | 1.38 (0.27, 2.51) | 1.26 (0.19, 2.43) |
Indirect Effect (an × b) | −0.004 (−0.14, 0.08) | 0.05 (−0.02, 0.22) | 0.11 (−0.03, 0.35) |
PE (%) | - | - | - |
Animal Fluency Test: Total Score | |||
Direct Effect (c’n) | 1.11 (−0.41, 2.53) | 1.34 (0.05, 2.72) | 1.80 (0.33, 3.19) |
Indirect Effect (an × b) | −0.01 (−0.30, 0.20) | 0.13 (−0.04, 0.47) | 0.30 (0.07, 0.76) |
PE (%) | - | - | 14.29 |
DSST: Total Score | |||
Direct Effect (c’n) | 4.90 (0.71, 9.34) | 5.80 (1.66, 9.84) | 4.92 (0.61, 9.18) |
Indirect Effect (an × b) | −0.03 (−0.60, 0.61) | 0.34 (−0.11, 1.18) | 0.78 (0.18, 1.81) |
PE (%) | - | - | 13.68 |
Z-score | |||
Direct Effect (c’n) | 0.16 (−0.03, 0.36) | 0.30 (0.12, 0.49) | 0.26 (0.07, 0.45) |
Indirect Effect (an × b) | −0.001 (−0.03, 0.02) | 0.01 (−0.004, 0.05) | 0.03 (0.01, 0.09) |
PE (%) | - | - | 10.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Lu, Z.; Zhang, D.; Li, S. The Mediation Role of the Risk of Non-Alcoholic Fatty Liver Disease in Relationship between Lutein and Zeaxanthin and Cognitive Functions among Older Adults in the United States. Nutrients 2022, 14, 578. https://doi.org/10.3390/nu14030578
Chen C, Lu Z, Zhang D, Li S. The Mediation Role of the Risk of Non-Alcoholic Fatty Liver Disease in Relationship between Lutein and Zeaxanthin and Cognitive Functions among Older Adults in the United States. Nutrients. 2022; 14(3):578. https://doi.org/10.3390/nu14030578
Chicago/Turabian StyleChen, Chen, Zhonghai Lu, Dongfeng Zhang, and Suyun Li. 2022. "The Mediation Role of the Risk of Non-Alcoholic Fatty Liver Disease in Relationship between Lutein and Zeaxanthin and Cognitive Functions among Older Adults in the United States" Nutrients 14, no. 3: 578. https://doi.org/10.3390/nu14030578
APA StyleChen, C., Lu, Z., Zhang, D., & Li, S. (2022). The Mediation Role of the Risk of Non-Alcoholic Fatty Liver Disease in Relationship between Lutein and Zeaxanthin and Cognitive Functions among Older Adults in the United States. Nutrients, 14(3), 578. https://doi.org/10.3390/nu14030578