Gestational Diabetes Mellitus Is Associated with Differences in Human Milk Hormone and Cytokine Concentrations in a Fully Breastfeeding United States Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Ascertainment of Gestational Diabetes Mellitus
2.3. Assessment of Covariates
2.4. Human Milk Collection and Assay
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrara, A. Increasing Prevalence of Gestational Diabetes Mellitus. Diabetes Care 2007, 30 (Suppl. 2), S141–S146. [Google Scholar] [CrossRef] [Green Version]
- Plows, J.; Stanley, J.; Baker, P.; Reynolds, C.; Vickers, M. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozma, M.-A.; Găman, M.-A.; Dobrică, E.-C.; Boroghină, S.C.; Iancu, M.A.; Crețoiu, S.M.; Simionescu, A.A. A Glimpse at the Size of the Fetal Liver—Is It Connected with the Evolution of Gestational Diabetes? Int. J. Mol. Sci. 2021, 22, 7866. [Google Scholar] [CrossRef] [PubMed]
- Nagel, E.M.; Kummer, L.; Jacobs, D.R., Jr.; Foster, L.; Duncan, K.; Johnson, K.; Harnack, L.; Haapala, J.; Kharoud, H.; Gallagher, T.; et al. Human Milk Glucose, Leptin, and Insulin Predict Cessation of Full Breastfeeding and Initiation of Formula Use. Breastfeed. Med. 2021, 16, 978–986. [Google Scholar] [CrossRef]
- Dabelea, D.; Crume, T. Maternal Environment and the Transgenerational Cycle of Obesity and Diabetes. Diabetes 2011, 60, 1849–1855. [Google Scholar] [CrossRef] [Green Version]
- Lowe, W.L., Jr.; Scholtens, D.M.; Kuang, A.; Linder, B.; Lawrence, J.M.; Lebenthal, Y.; McCance, D.; Hamilton, J.; Nodzenski, M.; Talbot, O.; et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care 2019, 42, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Harvey, S.M.; E Murphy, V.; Whalen, O.M.; Gibson, P.G.; E Jensen, M. Breastfeeding and Wheeze-Related Outcomes in High-Risk Infants: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2021, 113, 1609–1618. [Google Scholar] [CrossRef]
- Xue, M.; Dehaas, E.; Chaudhary, N.; O’Byrne, P.; Satia, I.; Kurmi, O.P. Breastfeeding and Risk of Childhood Asthma: A Systematic Review and Meta-Analysis. ERJ Open Res. 2021, 7, 00504. [Google Scholar] [CrossRef]
- Oddy, W.H. Breastfeeding Protects against Illness and Infection in Infants and Children: A Review of the Evidence. Breastfeed. Rev. 2001, 9, 11–18. [Google Scholar] [PubMed]
- Dewey, K.G.; Güngör, D.; Donovan, S.M.; Madan, E.M.; Venkatramanan, S.; Davis, T.; Kleinman, R.; Taveras, E.M.; Bailey, R.L.; Novotny, R.; et al. Breastfeeding and Risk of Overweight in Childhood and Beyond: A Systematic Review with Emphasis on Sibling-Pair and Intervention Studies. Am. J. Clin. Nutr. 2021, 114, 1774–1790. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Schneider, C.R.; Pavela, G. A Narrative Review of the Associations between Six Bioactive Components in Breast Milk and Infant Adiposity. Obesity 2016, 24, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregg, B.; Ellsworth, L.; Pavela, G.; Shah, K.; Berger, P.K.; Isganaitis, E.; VanOmen, S.; Demerath, E.W.; Fields, D.A. Bioactive Compounds in Mothers Milk Affecting Offspring Outcomes: A Narrative Review. Pediatr. Obes. 2022, e12892. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Rong, S.S.; Sun, X.; Ding, G.; Wan, W.; Zou, L.; Wu, S.; Li, M.; Wang, D. Associations of Breast Milk Adiponectin, Leptin, Insulin and Ghrelin with Maternal Characteristics and Early Infant Growth: A Longitudinal Study. Br. J. Nutr. 2018, 120, 1380–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreas, N.J.; Hyde, M.J.; Herbert, B.R.; Jeffries, S.; Santhakumaran, S.; Mandalia, S.; Holmes, E.; Modi, N. Impact of Maternal BMI and Sampling Strategy on the Concentration of Leptin, Insulin, Ghrelin and Resistin in Breast Milk Across a Single Feed: A Longitudinal Cohort Study. BMJ Open 2016, 6, e010778. [Google Scholar] [CrossRef] [Green Version]
- Ley, S.H.; Hanley, A.J.; Sermer, M.; Zinman, B.; O’Connor, D.L. Associations of Prenatal Metabolic Abnormalities with Insulin and Adiponectin Concentrations in Human Milk. Am. J. Clin. Nutr. 2012, 95, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, K.M.; Marino, R.C.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R.; Fontaine, P.L.; McGovern, P.M.; Schoenfuss, T.C.; et al. Associations of Maternal Weight Status Before, during, and after Pregnancy with Inflammatory Markers in Breast Milk. Obesity 2018, 26, 1659–1660. [Google Scholar] [CrossRef]
- Dadres, G.S.; Whitaker, K.M.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R., Jr.; Kharbanda, E.; McGovern, P.M.; Schoenfuss, T.C.; et al. Relationship of Maternal Weight Status Before, during, and after Pregnancy with Breast Milk Hormone Concentrations. Obesity 2019, 27, 621–628. [Google Scholar] [CrossRef]
- Lemas, D.; Young, B.E.; Baker, P.R.; Tomczik, A.C.; Soderborg, T.K.; Hernandez, T.L.; De La Houssaye, B.A.; Robertson, C.E.; Rudolph, M.C.; Ir, D.; et al. Alterations in Human Milk Leptin and Insulin are Associated with Early Changes in the Infant Intestinal Microbiome. Am. J. Clin. Nutr. 2016, 103, 1291–1300. [Google Scholar] [CrossRef]
- Retnakaran, R.; Hanley, A.J.G.; Raif, N.; Connelly, P.W.; Sermer, M.; Zinman, B. C-Reactive Protein and Gestational Diabetes: The Central Role of Maternal Obesity. J. Clin. Endocrinol. Metab. 2003, 88, 3507–3512. [Google Scholar] [CrossRef] [Green Version]
- Retnakaran, R.; Hanley, A.J.; Raif, N.; Connelly, P.W.; Sermer, M.; Zinman, B. Reduced Adiponectin Concentration in Women with Gestational Diabetes. Diabetes Care 2004, 27, 799–800. [Google Scholar] [CrossRef] [Green Version]
- Retnakaran, R.; Hanley, A.J.G.; Raif, N.; Hirning, C.R.; Connelly, P.W.; Sermer, M.; Kahn, S.E.; Zinman, B. Adiponectin and Beta Cell Dysfunction in Gestational Diabetes: Pathophysiological Implications. Diabetologia 2005, 48, 993–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.; Goruk, S.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.; Sears, M.R.; Field, C.J.; Azad, M.B.; et al. Adiponectin, Leptin and Insulin in Breast Milk: Associations with Maternal Characteristics and Infant Body Composition in the First year of Life. Int. J. Obes. 2018, 42, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.; Da Silva, C.H.; Bosa, V.L.; Bernardi, J.R.; Werlang, I.C.R.; Goldani, M.Z.; NESCA Group. Could a Remarkable Decrease in Leptin and Insulin Levels from Colostrum to Mature Milk Contribute to Early Growth Catch-up of SGA Infants? BMC Pregnancy Childbirth 2017, 17, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojcik, M.; Zieleniak, A.; Zurawska-Klis, M.; Cypryk, K.; Wozniak, L.A. Increased Expression of Immune-Related Genes in Leukocytes of Patients with Diagnosed Gestational Diabetes Mellitus (GDM). Exp. Biol. Med. 2015, 241, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.W.; Coustan, D.R. Criteria for Screening Tests for Gestational Diabetes. Am. J. Obstet. Gynecol. 1982, 144, 768–773. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, E.P. Breastfeeding after Gestational Diabetes Pregnancy: Subsequent Obesity and Type 2 Diabetes in Women and their Offspring. Diabetes Care 2007, 30 (Suppl. 2), S161–S168. [Google Scholar] [CrossRef] [Green Version]
- Peila, C.; Gazzolo, D.; Bertino, E.; Cresi, F.; Coscia, A. Influence of Diabetes during Pregnancy on Human Milk Composition. Nutrients 2020, 12, 185. [Google Scholar] [CrossRef] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Fetherston, C.M.; Wells, J.I.; Hartmann, P.E. Severity of Mastitis Symptoms as a Predictor of C-Reactive Protein in Milk and Blood during Lactation. Breastfeed. Med. 2006, 1, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Kolb, R.; Zhang, W. Obesity and Breast Cancer: A Case of Inflamed Adipose Tissue. Cancers 2020, 12, 1686. [Google Scholar] [CrossRef] [PubMed]
- Hajer, G.R.; van Haeften, T.W.; Visseren, F.L. Adipose Tissue Dysfunction in Obesity, Diabetes, and Vascular Diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastard, J.-P.; Jardel, C.; Delattre, J.; Hainque, B.; Bruckert, E.; Oberlin, F. Evidence for a Link Between Adipose Tissue Interleukin-6 Content and Serum C-Reactive Protein Concentrations in Obese Subjects. Circulation 1999, 99, 2221–2222. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhao, Y.H.; Chen, Y.P.; Yuan, X.L.; Wang, J.; Zhu, H.; Lu, C.M. Maternal Circulating Concentrations of Tumor Necrosis Factor-Alpha, Leptin, and Adiponectin in Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Sci. World J. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Subbaramaiah, K.; Howe, L.; Bhardwaj, P.; Du, B.; Gravaghi, C.; Yantiss, R.K.; Zhou, X.K.; Blaho, V.; Hla, T.; Yang, P.; et al. Obesity Is Associated with Inflammation and Elevated Aromatase Expression in the Mouse Mammary Gland. Cancer Prev. Res. 2011, 4, 329–346. [Google Scholar] [CrossRef] [Green Version]
- Retnakaran, R.; Qi, Y.; Connelly, P.W.; Sermer, M.; Zinman, B.; Hanley, A.J.G. Glucose Intolerance in Pregnancy and Postpartum Risk of Metabolic Syndrome in Young Women. J. Clin. Endocrinol. Metab. 2010, 95, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, T.J.; Trengove, N.J.; Graham, D.F.; Hartmann, P.E. Analysis of Insulin in Human Breast Milk in Mothers with Type 1 and Type 2 Diabetes Mellitus. Int. J. Endocrinol. 2012, 2012, 296368. [Google Scholar] [CrossRef]
- Young, B.E.; Patinkin, Z.; Palmer, C.; De La Houssaye, B.; Barbour, L.A.; Hernandez, T.; Friedman, J.E.; Krebs, N.F. Human Milk Insulin Is Related to Maternal Plasma Insulin and BMI: But Other Components of Human Milk Do Not Differ by BMI. Eur. J. Clin. Nutr. 2017, 71, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, S.; Trivedi, S.S.; Jain, A.; Bhattacharjee, J. Unusual Changes in Colostrum Composition in Lactating Indian Women Having Medical Complications during Pregnancy—A Pilot Study. Indian J. Clin. Biochem. 2002, 17, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Ferner, R.E.; Aronson, J.K. Cato Guldberg and Peter Waage, the History of the Law of Mass Action, and its Relevance to Clinical Pharmacology. Br. J. Clin. Pharmacol. 2015, 81, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.-Q. Biology of Glucose Transport in the Mammary Gland. J. Mammary Gland. Biol. Neoplasia 2014, 19, 3–17. [Google Scholar] [CrossRef]
- Neville, M.; Neifert, M. Lactation: Physiology, Nutrition, and Breast-Feeding; Neville, M., Neifert, M., Eds.; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Neville, M.C.; Hay, W.W.; Fennessey, P. Physiological Significance of the Concentration of Human Milk Glucose. Protoplasma 1990, 159, 118–128. [Google Scholar] [CrossRef]
- Gouon-Evans, V.; Lin, E.Y.; Pollard, J.W. Requirement of Macrophages and Eosinophils and Their Cytokines/Chemokines for Mammary Gland Development. Breast Cancer Res. 2002, 4, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Plaks, V.; Boldajipour, B.; Linnemann, J.R.; Nguyen, N.H.; Kersten, K.; Wolf, Y.; Casbon, A.-J.; Kong, N.; Bijgaart, R.J.V.D.; Sheppard, D.; et al. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev. Cell 2015, 34, 493–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, À. Premature Delivery Influences the Immunological Composition of Colostrum and Transitional and Mature Human Milk. J. Nutr. 2011, 141, 1181–1187. [Google Scholar] [CrossRef]
- Ustundag, B.; Yilmaz, E.; Dogan, Y.; Akarsu, S.; Canatan, H.; Halifeoglu, I.; Cikim, G.; Aygun, A.D. Levels of Cytokines (IL-1β, IL-2, IL-6, IL-8, TNF-α) and Trace Elements (Zn, Cu) in Breast Milk from Mothers of Preterm and Term Infants. Mediat. Inflamm. 2005, 2005, 331–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buescher, E.S.; Malinowska, I. Soluble Receptors and Cytokine Antagonists in Human Milk. Pediatr. Res. 1996, 40, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Mülberg, J.; Schooltink, H.; Stoyan, T.; Günther, M.; Graeve, L.; Buse, G.; Mackiewicz, A.; Heinrich, P.C.; Rose-John, S. The Soluble Interleukin-6 Receptor Is Generated by Shedding. Eur. J. Immunol. 1993, 23, 473–480. [Google Scholar] [CrossRef]
- Vasiu, I.; Dąbrowski, R.; Martinez-Subiela, S.; Ceron, J.J.; Wdowiak, A.; Pop, R.A.; Brudaşcă, F.G.; Pastor, J.; Tvarijonaviciute, A. Milk C-Reactive Protein in Canine Mastitis. Veter.-Immunol. Immunopathol. 2017, 186, 41–44. [Google Scholar] [CrossRef]
- Pedersen, S.; Wilkinson, A.L.; Andreasen, A.; Kinung ‘Hi, S.M.; Urassa, M.; Michael, D.; Todd, J.; Changalucha, J.; McDermid, J.M. Longitudinal Analysis of Mature Breastmilk and Serum Immune Composition among Mixed HIV-Status Mothers and their Infants. Clin. Nutr. 2015, 35, 871–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erliana, U.D.; Fly, A.D. The Function and Alteration of Immunological Properties in Human Milk of Obese Mothers. Nutrients 2019, 11, 1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, K.; Prins, J.; Venkatesh, B. Clinical Review: Adiponectin Biology and its Role in Inflammation and Critical Illness. Crit. Care 2011, 15, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xita, N.; Tsatsoulis, A. Adiponectin in Diabetes Mellitus. Curr. Med. Chem. 2012, 19, 5451–5458. [Google Scholar] [CrossRef]
- Kelesidis, T. Narrative Review: The Role of Leptin in Human Physiology: Emerging Clinical Applications. Ann. Intern. Med. 2010, 152, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef]
- Buonfiglio, D.C.; Ramos-Lobo, A.M.; Freitas, V.M.; Zampieri, T.T.; Nagaishi, V.S.; Magalhães, M.; Cipolla-Neto, J.; Cella, N.; Donato, J., Jr. Obesity Impairs Lactation Performance in Mice by Inducing Prolactin Resistance. Sci. Rep. 2016, 6, 22421. [Google Scholar] [CrossRef] [Green Version]
- Carli, J.F.M.; Trahan, G.D.; Jones, K.L.; Hirsch, N.; Rolloff, K.P.; Dunn, E.Z.; Friedman, J.E.; Barbour, L.A.; Hernandez, T.L.; MacLean, P.S.; et al. Single Cell RNA Sequencing of Human Milk-Derived Cells Reveals Sub-Populations of Mammary Epithelial Cells with Molecular Signatures of Progenitor and Mature States: A Novel, Non-invasive Framework for Investigating Human Lactation Physiology. J. Mammary Gland Biol. Neoplasia 2020, 25, 367–387. [Google Scholar] [CrossRef]
Variables | No GDM (n = 154) | GDM (n = 35) | p-Value a |
---|---|---|---|
Age (years) | 31.2 ± 4.1 | 34.2 ± 4.3 | <0.001 |
Ethnicity, n (%) | |||
Hispanic or Latino | 2 (1.3) | 1 (2.9) | 0.52 |
Not Hispanic or Latino | 148 (98.7) | 34 (97.1) | |
Race, n (%) | |||
White | 127 (84.1) | 24 (68.6) | 0.006 |
African American or Black | 10 (6.6) | 2 (5.7) | |
Asian | 4 (2.7) | 7 (20.0) | |
American Indian/Alaska Native | 3 (2.0) | 1 (2.9) | |
Other | 4 (2.7) | 1 (2.9) | |
Mixed race | 3 (2.0) | 0 (0) | |
Education, n (%) | |||
High school/GED/associate’s | 30 (19.5) | 8 (22.9) | 0.72 |
Bachelor’s degree | 60 (39.0) | 15 (42.9) | |
Graduate degree | 64 (41.6) | 12 (34.3) | |
Baseline parity, n (%) | |||
None | 71 (47.0) | 12 (36.4) | 0.18 |
1 | 52 (34.4) | 17 (51.5) | |
≥2 | 28 (18.5) | 4 (12.1) | |
Gestational age at birth (years) | 39.8 ± 1.1 | 38.2 ± 1.9 | <0.001 |
Mode of delivery, n (%) | <0.001 | ||
Vaginal | 120 (83.3) | 16 (48.5) | |
Cesarean | 24 (16.7) | 17 (51.5) | |
Pre-pregnancy BMI (kg/m2) | 26.5 ± 4.7 | 29.6 ± 7.4 | 0.002 |
1 h 50 g OGCT result (mg/dL) | 107 ± 17.7 | 158 ± 19.4 | <0.001 |
Gestational weight gain of mother (kg) | 13.6 ± 6 | 9.8 ± 5.3 | 0.001 |
Excessive gestational weight gain (IOM) yes, n (%) b | 77 (52.0) | 11 (32.4) | 0.03 |
Breast milk volume (mL) | |||
1 month postpartum | 72.9 ± 43.2 | 71.6 ± 45.3 | 0.87 |
3 months postpartum | 84.3 ± 51.5 | 86.1 ± 48.9 | 0.86 |
Exclusive breastfeeding at 3 months, n (%) | 143 (94.1) | 23 (92.0) | 0.69 |
Postpartum weight loss (kg) | |||
1 month postpartum | 9.9 ± 4.1 | 10.3 ± 2.3 | 0.57 |
3 months postpartum | 10.9 ± 4.8 | 9.7 ± 3.5 | 0.21 |
Postpartum BMI (kg/m2) | |||
1 month postpartum | 27.9 ± 4.4 | 29.5 ± 6.0 | 0.07 |
3 months postpartum | 27.3 ± 4.6 | 29.9 ± 6.2 | 0.02 |
Diet quality score assessed via HEI | |||
1 month postpartum | 65.8 ± 8.4 | 62.1 ± 10.6 | 0.04 |
3 months postpartum | 66.5 ± 8.9 | 63.0 ± 7.0 | 0.09 |
Mean Concentrations | Regression Estimates (Concentration in GDM as Compared to Non-GDM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Non-GDM | GDM | Unadjusted Model | Multivariable | Multivariable | ||||||
Model 1 c | Model 2 d | |||||||||
n | Unadjusted Mean ± SE b | n | Unadjusted Mean ± SE b | ß ± SE | p-Value | ß ± SE | p-Value | ß ± SE | p-Value | |
Milk glucose, mg/dL | ||||||||||
1 month postpartum | 151 | 29.66 ± 0.76 | 27 | 26.98 ± 1.79 | −2.68 ± 1.94 | 0.17 | −5.23 ± 2.22 | 0.02 | −4.77 ± 2.24 | 0.03 |
3 months postpartum | 151 | 28.94 ± 0.76 | 27 | 25.82 ± 1.79 | −3.11 ± 1.94 | 0.11 | −5.70 ± 2.22 | 0.01 | −5.45 ± 2.23 | 0.02 |
Log milk insulin, μIU/mL | ||||||||||
1 month postpartum | 151 | 3.17 ± 0.06 | 27 | 2.91 ± 0.14 | −0.26 ± 0.15 | 0.10 | −0.38 ± 0.17 | 0.03 | −0.45 ± 0.17 | 0.007 |
3 months postpartum | 151 | 3.18 ± 0.06 | 27 | 2.78 ± 0.14 | −0.40 ± 0.15 | 0.01 | −0.53 ± 0.17 | 0.003 | −0.60 ± 0.16 | <0.001 |
Log milk CRP, ng/mL | ||||||||||
1 month postpartum | 151 | 4.38 ± 0.10 | 27 | 5.89 ± 0.24 | 1.50 ± 0.26 | <0.001 | 1.46 ± 0.31 | <0.001 | 1.38 ± 0.29 | <0.001 |
3 months postpartum | 151 | 3.85 ± 0.10 | 27 | 5.58 ± 0.24 | 1.74 ± 0.26 | <0.001 | 1.69 ± 0.31 | <0.001 | 1.58 ± 0.29 | <0.001 |
Log milk IL-6, pg/mL | ||||||||||
1 month postpartum | 151 | 1.66 ± 0.11 | 27 | 1.54 ± 0.26 | −0.12 ± 0.28 | 0.67 | 0.003 ± 0.33 | 0.99 | −0.16 ± 0.32 | 0.60 |
3 months postpartum | 151 | 1.00 ± 0.11 | 27 | 0.71 ± 0.26 | −0.29 ± 0.28 | 0.31 | −0.17 ± 0.33 | 0.60 | −0.23 ± 0.32 | 0.47 |
Log milk leptin, pg/mL | ||||||||||
1 month postpartum | 151 | 6.23 ± 0.07 | 27 | 6.44 ± 0.16 | 0.21 ± 0.17 | 0.22 | 0.04 ± 0.19 | 0.85 | 0.05 ± 0.14 | 0.74 |
3 months postpartum | 151 | 6.03 ± 0.07 | 27 | 6.19 ± 0.16 | 0.16 ± 0.17 | 0.36 | −0.01 ± 0.19 | 0.96 | −0.12 ± 0.14 | 0.41 |
Log milk adiponectin, ng/mL | ||||||||||
1 month postpartum | 28 | 2.99 ± 0.03 | 27 | 2.90 ± 0.08 | −0.09 ± 0.08 | 0.27 | −0.07 ± 0.10 | 0.44 | −0.05 ± 0.10 | 0.61 |
3 months postpartum | 28 | 2.73 ± 0.06 | 27 | 2.65 ± 0.08 | −0.07 ± 0.10 | 0.47 | −0.06 ± 0.11 | 0.61 | −0.05 ± 0.11 | 0.67 |
Continuous (per 1-SD) among Non-GDM | ||
(Median 108 mg/dL), n = 149 | ||
ß ± SE | p-Value | |
Milk glucose, mg/dL | ||
Unadjusted model | 0.82 ± 0.78 | 0.30 |
Multivariable model 1 b | 1.19 ± 0.84 | 0.16 |
Multivariable model 2 c | 1.43 ± 0.87 | 0.10 |
Log milk insulin, μIU/mL | ||
Unadjusted model | 0.02 ± 0.05 | 0.69 |
Multivariable model 1 b | 0.03 ± 0.05 | 0.55 |
Multivariable model 2 c | 0.02 ± 0.05 | 0.74 |
Log milk CRP, ng/mL | ||
Unadjusted model | 0.22 ± 0.10 | 0.03 |
Multivariable model 1 b | 0.21 ± 0.11 | 0.06 |
Multivariable model 2 c | 0.16 ± 0.10 | 0.13 |
Log milk IL-6, pg/mL | ||
Unadjusted model | −0.11 ± 0.11 | 0.32 |
Multivariable model 1 b | −0.12 ± 0.12 | 0.31 |
Multivariable model 2 c | −0.23 ± 0.11 | 0.04 |
Log milk leptin, pg/mL | ||
Unadjusted model | 0.10 ± 0.06 | 0.09 |
Multivariable model 1 b | 0.10 ± 0.06 | 0.11 |
Multivariable model 2 c | 0.08 ± 0.04 | 0.07 |
Log milk adiponectin, ng/mL | ||
Unadjusted model | −0.05 ± 0.03 | 0.12 |
Multivariable model 1 b | −0.03 ± 0.03 | 0.28 |
Multivariable model 2 c | −0.03 ± 0.03 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Nagel, E.M.; Kharoud, H.; Johnson, K.E.; Gallagher, T.; Duncan, K.; Kharbanda, E.O.; Fields, D.A.; Gale, C.A.; Jacobs, K.; et al. Gestational Diabetes Mellitus Is Associated with Differences in Human Milk Hormone and Cytokine Concentrations in a Fully Breastfeeding United States Cohort. Nutrients 2022, 14, 667. https://doi.org/10.3390/nu14030667
Choi Y, Nagel EM, Kharoud H, Johnson KE, Gallagher T, Duncan K, Kharbanda EO, Fields DA, Gale CA, Jacobs K, et al. Gestational Diabetes Mellitus Is Associated with Differences in Human Milk Hormone and Cytokine Concentrations in a Fully Breastfeeding United States Cohort. Nutrients. 2022; 14(3):667. https://doi.org/10.3390/nu14030667
Chicago/Turabian StyleChoi, Yuni, Emily M. Nagel, Harmeet Kharoud, Kelsey E. Johnson, Tipper Gallagher, Katy Duncan, Elyse O. Kharbanda, David A. Fields, Cheryl A. Gale, Katherine Jacobs, and et al. 2022. "Gestational Diabetes Mellitus Is Associated with Differences in Human Milk Hormone and Cytokine Concentrations in a Fully Breastfeeding United States Cohort" Nutrients 14, no. 3: 667. https://doi.org/10.3390/nu14030667
APA StyleChoi, Y., Nagel, E. M., Kharoud, H., Johnson, K. E., Gallagher, T., Duncan, K., Kharbanda, E. O., Fields, D. A., Gale, C. A., Jacobs, K., Jacobs, D. R., Jr., & Demerath, E. W. (2022). Gestational Diabetes Mellitus Is Associated with Differences in Human Milk Hormone and Cytokine Concentrations in a Fully Breastfeeding United States Cohort. Nutrients, 14(3), 667. https://doi.org/10.3390/nu14030667