Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance
Abstract
:1. Introduction
Mechanisms for the Regulation of Postprandial Hyperglycemia
2. Effects of Macronutrients in Foods and Meals on Postprandial Hyperglycemia and IR
2.1. Effects of Diet on Postprandial Hyperglycemia and IR
2.2. Effects of Weight Loss on Postprandial Glycemia and IR
2.2.1. Low Calorie Diets for Weight Loss
2.2.2. Low(er)-Fat Diets
2.2.3. Low(er)-Carbohydrate Diets
Study | Health Status Age (Years) BMI (kg/m2) | Duration and Design of Dietary Intervention | Sample Size | Description of Groups | Dietary Intervention | Selected Clinical Outcomes |
---|---|---|---|---|---|---|
Effect of lifestyle interventions on glycemia and other major metabolic outcomes in T2DM individuals | ||||||
Look AHEAD Research Group, 2010 [123] | T2DM 58.6 ± 6.8 35.9 ± 6.0 | 11 Years Randomized, controlled trial | 5145 | Intensive lifestyle intervention (ILI) Diabetes support and education (DSE, control group) | ILI: usual medical care combined with an intensive 4-year program designed to increase physical activity and reduce initial weight by 7% or more. DSE: usual medical care, provided by their own primary care physicians, plus three group educational sessions per year for the first 4 years | After 4 years: BW (kg) −6.15% in ILI vs −0.88% in DSE HbA1c (mmol/L) −0.36% in ILI vs 0.09% in DSE systolic BP (mmHg) −5.33 in ILI vs −2.97 in DSE diastolic BP (mmHg) −2.92 in ILI vs −2.48 in DSE HDL (mg/dL) 3.67 in ILI vs 1.97 in DSE TG (mg/dL) −25.56 in ILI vs −19.75 in DSE |
Johansen, et al., 2017 [148] | T2DM 54.6 25–40 | 12 months Randomized, assessor-blinded, single-center study | 98 | Lifestyle group (LG) Standard care (SC) | LG: 5–6 weekly aerobic sessions of 30–60 min, with 2–3 sessions of resistance training and an individual dietary plan with 45–60% CHO, 15–20% PRO, and 20–35% FAT (<7% saturated fat) SC: medical counseling, lifestyle advice | HbA1c (mmol/L) 6.65–6.34% in LG 6.74–6.66% in SC Reduction in Glu-lowering medications −73.5% in LG −26.4% in SC |
Linmans, et al., 2011 [149] | IGT or T2DM 62.9 ± 11.8 30.4 ± 4.9 | 1 year Randomized trial | 2818 | Intervention group (IG) Control group (CG) | IG: with lifestyle coaches supervising the program, >30 min exercise for >5 days/wk CG: usual care according to a diabetes management program | IG group: HbA1c (mmol/L) −0.12% Fasting Glu (mmol/L) −0.17 NS changes in the CG |
Chee, et al., 2017 [150] | Overweight/obese, T2DM, and HbA1c 7%–11% 30–65 >23 | 6 months Randomized controlled clinical trial | 230 | Usual care (UC) Τrans-cultural diabetes nutrition algorithm-conventional counseling (tDNA-CC) Τrans-cultural diabetes nutrition algorithm-motivational interviewing (tDNA-MI) | UC: clinical care according to Malaysian Clinical Practice Guidelines for T2DM (2009) and low-calorie diet (1200 or 1500 kcal/day) tDNA-CC low-calorie meal plan (1200 or 1500 kcal/day) and a physical activity prescription for >150 min/wk with conventional counseling tDNA-MI low-calorie meal plan (1200 or 1500 kcal/day) and a physical activity prescription for >150 min/wk with motivational interviewing | tDNA-MI BW (kg) −6.9 ± 1.3 in tDNA-MI −5.3 ± 1.2 in tDNA-CC −0.8 ± 0.5 NS in UC HbA1c (mmol/L) −1.1 ± 0.1% in tDNA-MI −0.5 ± 0.1% in tDNA-CC −0.2 ± 0.1%, NS in UC Fasting plasma Glu (mmol/L) −1.1 ± 0.3 in tDNA-MI −0.6 ± 0.3, NS in tDNA-CC 0.1 ± 0.3, NS in UC Systolic BP (mm Hg) −9 ± 2 in tDNA-MI −9 ± 2 in tDNA-CC −1 ± 2, NS in UC |
Effect of lifestyle interventions on glycemia and other major metabolic outcomes in individuals with impaired glucose tolerance or at high risk for T2DM | ||||||
Lindström, et al., 2006 [135] | Overweight with IGT 55 31.1 | 7 years Randomized controlled trial | 522 | Intervention group (IG) Control group (CG) | IG: <30% FAT, <10% saturated FAT, >15 g per 1000 kcal Fibers, and moderately intense physical activity 30 min per day or more CG: general health information at baseline without specific individualized advice | Incidence of T2DM 4.3 per 100 person-years (IG) vs 7.4 per100 person-years (CG) ↓43% relative risk in IG |
Diabetes Prevention Program Research Group 2015 [136] | At high risk for T2DM 50.6 ± 10.7 34.0 ± 6.7 | 15 years Randomized controlled clinical trial | 3234 | Intensive lifestyle intervention (ILS) Metformin (MET) Placebo (PLBO) | ILS: low calorie and low lipid diet, plus 150 min physical activity per week MET: 850 mg x2/day PLBO: x2/day | ILS: ↓18% diabetes incidence rate MET: ↓27% diabetes incidence rate ILS: ↓8.7% aggregate microvascular prevalence in women |
Ujvari, et al., 2014 [151] | 18–40 PCOS and BMI >27 kg/m2 Healthy overweight/obese women (OB-C) PCOS and normal weight BMI 18.5–25 Healthy women and BMI 18.5–25 | 3 months Randomized trial | 49 | Overweight/obese women with PCOS (OB-PCOS) Overweight/obese controls (OB-C) Normal-weight PCOS (NW-PCOS) Healthy normal-weight controls (NW-C) | OB: PCOS-dietary restriction diet high in PRO and low in CHO (40% CHO, 30% FAT, and 30% PRO), and activity for 45 min 2–3 times/wk | BW (kg) −4.7 Ins (uU/mL) −11.9 Relative mRNA levels IRS1 +0.28 GLUT1 +0.06 |
O’ Brien, et al., 2017 [152] | IGT 45.1 ± 12.5 33.3 ± 6.5 | 12 months Randomized, pilot study | 96 | Intensive lifestyle intervention (ILI) Metformin (MET) Standard care (SC) | ILI: weight loss (5–7% of initial body weight) by improving dietary patterns (decreasing fat and calories) and promoting moderate physical activity (≥150 min per week) MET: 850 mg of metformin x2/day SC: medical care and educational materials on diabetes prevention from the National Diabetes Education Program | BW (kg) −4.0 in ILI −0.9 in MET +0.8 in SC Waist circumference (cm) −4 in ILI −1.8 in MET −0.2 in SC |
Slentz, et al., 2016 [153] | Overweight/obese) 45–75 25–35 | 6 months Randomized, parallel clinical trial | 150 | High amount/moderate intensity physical activity (1) High amount/vigorous intensity physical activity (2) Low amount/moderate intensity physical activity (3) Lifestyle intervention with low amount/moderate intensity physical activity + diet (4) | (1) High amount—(67 KKW)/moderate intensity: equivalent of expending 67 KKW (~22.3 km (13.8 miles) per week) with moderate-intensity exercise (2) High amount (67KKW)/vigorous intensity—equivalent to group 2, but with vigorous-intensity exercise (75% peak VO2reserve) (3) Low amount—(42 kJ kg body weight−1 week−1 (KKW)//moderate intensity: equivalent of expending 42 KKW (e.g., walking ~16 km (8.6 miles) per week) with moderate-intensity (50% peak VO2reserve) exercise (4) diet + 42 KKW moderate intensity same as group 1 but with diet and weight loss (7%) to mimic the first 6 months of the DPP. | BW (kg) −1.94 in (1) −1.67 in (2) NS in (3) −6.44 in (4) Fat mass (kg) −2.2 in (1) −2.3 in (2) NS in (3) −6.0 in (4) AUCGlu (mmol/L × 120 min) −73 in (1) −22 in (2) NS in (3) −96 in (4) AUCIns (pmol/L × 2 h) −264 in (1) −246 in (2) −166 in (3) −348 in (4) |
Mensink, et al., 2003 [154] | IGT 55.6 ± 0.9 29.8 ± 0.5 | 2 years Randomized trial | 114 | lifestyle intervention group (INT) Control group (CON) | INT <35% FAT, <10% saturated FAT, >3 g/MJ fibers, physical activity for at least 1 h/wk CON usual care according to a diabetes management program | INT: BW (kg) −2.4 ± 0.7 Body fat (%) −1.0 ± 0.3 Waist (cm) −1.9 ± 0.7 Fast Glu (Mm) +0.2 ± 0.1 2 h Glu (Mm) −0.6 ± 0.3 Fast Ins (Mm/L) −1.8 ± 1.7 HOMA −0.5 ± 0.5 |
Roumen, et al., 2008 [155] | IGT 54.2 ± 5.8 29.6 ± 3.8 | 3 years Randomized controlled lifestyle intervention | 106 | Intervention group (INT) Control group (CON) | INT: Dietary recommendations as per Dutch guidelines for a healthy diet, and physical activity of at least 30 min a day for at least 5 days a week CON: usual care according to a diabetes management program | After 3 years in INT: BW (kg) −1.08 ± 4.30 vs +0.16 ± 4.91 CON BMI (kg/m2) −0.36 ± 1.47 BFM (Kg) −1.16 ± 3.80 Fasting Glu (Mm) +0.2 ± 0.1 2 h Glu (Mm) −0.05 ± 2.02 Fasting Ins (Mu/L) −1.17 HOMA −0.19 |
2.3. Effects of Nutrient and Meal Sequence on Postprandial Glycemia and IR
3. Effects of Intensive Lifestyle (Diet + Exercise + Behavior Modification) Interventions on Postprandial Hyperglycemia and IR: A Focus on Exercise
3.1. Metabolic Effects of Different Types of Physical Activity
3.1.1. Aerobic Exercise
3.1.2. Anaerobic Exercise
4. Chrononutrition
4.1. Feeding and Circadian Solidarity
4.2. Effects of Meal Timing on Postprandial Glycemia and IR
4.2.1. Effects of Meal Macronutrient Composition on Postprandial Glucose and IR
Study | Health Status Age (Years) BMI (kg/m2) | Duration & Design of Dietary Intervention | Sample Size | Description of Groups | Dietary Intervention | Selected Clinical Outcomes |
---|---|---|---|---|---|---|
Effect of first meal of the day on glycemia. | ||||||
| ||||||
Morris, et al., 2015 [263] | Healthy 28 ± 9 25.4 ± 2.6 | 2 weeks Within-participant cross-over | 14 | Circadian alignment Circadian misalignment (12 h shift) | Alignment protocol had B at 8:00 AM Misalignment protocol had “B” at 8:00 PM Isocaloric diets of 15–20% PRO, 45–50% CHO, 30–35% FAT | +8% and +14% ppd AUCGlu and ppd AUCIns at Dinner time +3% ISR at Dinner time +12% and −27% ppd AUCGlu and ppd AUCIns in biological evening +8% ISR in biological evening −21% Fasting Ins in biological evening +14% and +9% late phase Ins/ISR and 24 h Ins at circadian misalignment |
Betts, et al., 2014 [280] | Healthy lean 36 ± 11 22.4 ± 2.2 | 6 weeks Randomized controlled trial | 33 | B group Fasting group | B: ≥700 kcal before 11:00, Fasting group: extend o/n fast until 12:00, ad libitum intake for the rest of the day | Glu (mg/dL) +1.3 (fast) vs +1.1 (B) Ins (μIU/mL) +0.32 (fast) vs +0.35 (B) HOMA-IR +0.10 (fast) vs +0.10 (B) C-ISI Matsuda index +0.38 (fast) vs −0.97 (B) Index of adipose insulin sensitivity (%) +3.3 (fast) vs +9.9 (B) Peak Glu until 12:00 + 1.1 mmol/L in B vs fasting Mean morning Glu +0.3 mmol/L in B vs fasting Greater Glu variability in fasting group |
Chowdhury, et al., 2016 [283] | Obese 44 ± 10 33.7 ± 4.9 | 6 weeks Randomized controlled trial | 23 | B group Fasting group | B: ≥700 kcal before 11:00, Fasting group: extend o/n fast until 12:00, ad libitum intake for the rest of day | Fasting Glu (mg/dL) +1.7 (fast) vs +1.4 (B) Fasting Ins (μIU/mL) −0.62 (fast) vs +0.39 (B) HOMA-IR −0.13 (fast) vs +0.18 (B) C-ISI Matsuda index −0.05 (fast) vs +0.05 (B) Ins AUC Glu, mg·120 min/dL +171 (fast) vs −231 (B) |
Jakubowicz, et al., 2017 [285] | Healthy: 44.3 ± 2.9 23.1 ± 0.4 T2D: 66.8 ± 1.9 30.7 ± 1.1 | 2 test days Randomized open-label crossover-within-subject clinical trial | 32 | YesB NoB | Each test meal: 572 ± 8 kcal 32% PRO 49% CHO 19.4% FAT | +15–18% AUCGlu after lunch w/o B −25% AUCIns after L for T2DM grp w/o B −35% AUCiGLP-1 after L on NoB |
Nas, et al., 2017 [286] | Healthy adults 24.6 ± 3.3 23.7 ± 4.6 | 3 test days Randomized crossover nutritional intervention | 17 | Control (C) (3 meals) BSD (B skipping) DSD (D skipping) | Isocaloric diets 55% CHO, 30% FAT, 15% PRO BSD-washout-C-DSD or DSD-washout-C-BSD | HOMA-IR 1.96 ± 0.82 (C), 2.07 ± 0.91 (BSD), 1.96 ± 1.05 (DSD) GlycemiatAUC (mg/dLx24 h): 2360 ± 111 (C), 2425 ± 131 (BSD), 2374 ± 165 (DSD) MAGE 3.90 ± 1.32 (C), 3.65 ± 1.52 (BSD), 3.28 ± 1.75 (DSD) C-peptide (μg/day) 74 ± 38 (C), 86 ± 40 (BSD), 75 ± 42 (DSD) iAUCIns (μU/mLx 2 h) after L: 211 ± 74 (BSD) 144 ± 74 (DSD) iAUCGlu (mg/dLx 2 h) after L: 114 ± 41 (BSD), 62 ± 40 (DSD) HOMA-IR pp after L: 59 ± 44 (BSD), 27 ± 23 (DSD) |
Kobayashi, et al., 2014 [287] | Healthy 25.3 ± 1.2 BW 74.5 ± 4.3 kg (noB), 73.9 ± 4.2 kg (B) | 2 test days Randomized crossover | 8 | B (3 meals) noB (2 meals) | PRO 364 ± 16 kcal CHO 1310 ± 77 kcal FAT 462 ± 33 kcal Individually adjusted meals of 2190 ± 124 kcal/day B at 8:00 h, L at 12:00 h, D at 19:00 | +9 mg/dL Blood Glu after L in noB vs B group (p < 0.05) +10 mg/dL sleep Blood Glu in noB vs B group (p < 0.05) AUCGlu after L 409 ± 99 mg/dL min in B group vs 811 ± 101 mg/dL min in noB group AUCGlu after D 1049 ± 144 mg/dL min in B group vs 1196 ± 204 mg/dL min in noB group |
Jakubowicz, et al., 2015 [301] | T2DM 56.9 ± 1.0 28.2 ± 0.6 | 2 test days Randomized, open-label, crossover- within-subject clinical trial | 22 | YesB (B, L, D) NoB (L, D) | Each test meal: 701 ± 8 kcal; 26% PRO, 54% CHO, 20% FAT, 7% fiber B at 8:00 h, L at 13:30 h, D at 19:00 h | NoB vs YesB after B: Glu (mg/dL·min) −43%, Ins (μIU/mL·min) −72.1%, Glucagon (pg/mL·min) −20.6% C-peptide (ng/mL·min) −63.3%, iGLP−1 (pmol/L·min) −60.5% NoB vs YesB after L: Glu (mg/dL·min) +39.8%, Ins (μIU/mL·min) −24.7%, Glucagon (pg/mL·min) +9.7% C-peptide (ng/mL·min) −13.6%, iGLP−1 (pmol/L·min) −21.5% NoB vs YesB after D: Glu (mg/dL·min) +24.9%, Ins (μIU/mL·min) −10.8%, Glucagon (pg/mL·min) +8.5% C-peptide (ng/mL·min) −14.5%, iGLP-1 (pmol/L·min) −14.5% |
| ||||||
Kang, at al., 2013 [84] | Subjects with prediabetes and normal (NGR) Glu regulation 46.4 ± 13.8 18.5–24.9 | 3 days Cross-sectional study | 133 | LC (low CHO) MC (medium CHO) HC (high CHO) | Diet of 30 kcal/kg/day calorie intake from three daily meals According to CHO in B: Low carbohydrate (LC) meal with <45%CHO Medium-carbohydrate (MC) meal with CHO between 45% and 65% High-carbohydrate (HC) meal with >65% CHO | In subjects with impaired Glu regulation: Significantly ↑ ppd Glu, Glu peak, Glu excursion, and iAUCGLU in subjects with impaired Glu regulation after B with >50% CHO |
Rosi, et al., 2018 [282] | Healthy 24 ± 2 23.4 ± 1.6 | 7 weeks Randomized, crossover, and controlled trial | 15 | F-CTRL BR-BREAD BR-MUESLI BR-RICE | Energy-free meal with a cup of decaf coffee (~fasting) 3 isoenergetic meals with similar PRO: with a cup of semi-skimmed milk, an apple, and cereal foods as indicated below: White bread with chocolate hazelnut spread, GI <55, GL~22 Muesli with dark chocolate chips and nuts,↑fiber, GI <55, GL~23 Chocolate-flavored puffed rice, ↓FAT, ↑CHO, GI >55, GL~38 | The RICE group had significantly higher: -AUCIns 120 min after B -AUCGlu 120 min after B -Plasma Glu after B |
Jakubowicz, et al., 2017 [296] | T2DM 59.0 ± 0.7 32.11 ± 0.1 | 12 weeks Randomized, open-label, parallel-arm clinical trial | 48 | 42 g total PRO: WBdiet (whey, 28 g) PBdiet (42 g various PRO sources) CBdiet (high CHO B, 17 g PRO from various sources) | At B: WBdiet: 25% PRO (mainly whey), 50% CHO, 25% FAT PBdiet: 25% PRO (mainly from eggs, tuna, soy), 50% CHO, 25% FAT CBdiet: 11% PRO (soy), 64% CHO, 29% FAT Hypocaloric diets: B 660 ± 25 kcal L 560 ± 20 kcal (23% PRO, 48% CHO, 29% FAT) D 280 ± 15 kcal (31% PRO, 31% CHO, 38% FAT) B at 6:00–8:30 h, L at 12:30–14:30 h, D at 18:30–20:30 h | HbA1C (%) WB −0.89 ± 0.05 PB −0.6 ± 0.04 CB −0.36 ± 0.04 Fasting Glu (mmol/L) WB −0.73 ± 0.06 PB −0.43 ± 0.06 CB −0.12 ± 0.04 Overall glycemia was −12% in PB and −19% in WB Glu peak was −18% in PB and −31% in WB Rapid Glu levels decrease after B in PB and WB Overall AUCIns was +37% in PB and 62% in WB (same for after L and D) AUCC-pept was +53% in PB and 96% in WB (same for after L and D) AUCiGLP_1 was +70% in WB and +33% in PB after B, L, and D HbA1C reduced in all grps |
Jakubowicz, et al., 2012 [297] | 20–65 32.3 ± 1.8 | 32 weeks Randomized, treatment controlled, openclinical trial | 144 | LCb HCPb | Low kcal and low CHO diet (LCb) with low kcal and low HCO B High CHO and high PRO diet (HCPb) with daily dessert for B Similar L & D composition, differences for B | BW (kg) 70.6 ± 8.7 (HCPb) vs 86.9 ± 9.7 (LCb) Fasting Glu (mg/dL) 84.2 ± 4.6 (HCPb) vs 95.5 ± 4.9 (LCb) Fasting Ins (μU/mL) 8.9 ± 3.9 (HCPb) vs 23.69 ± 3.8 (LCb) HOMA-IR 1.6 ± 0.4 (HCPb) vs 5.9 ± 0.9 (LCb) Total Chol (mg/dL) 179.2 ± 11.1 (HCPb) vs 190.8 ± 18.2 (LCb) TG (mg/dL) 122.6 ± 9.7 (HCPb) vs 174.5 ± 20.9 (LCb) ↑ hunger in LCb |
Neumann, et al., 2016 [298] | Healthy 24.1 ± 2 n/a | 8 days Randomized, controlled study | 24 | SKP (Skipping breakfast) CHO PRO | SKP group CHO group: 351 kcal; 59 g CHO, 10 g PRO, 8 g fat PRO group: 350 kcal; 39 g CHO, 30 g PRO, 8 g Fat B consumed as first meal of the day, before 10:00 am | No difference in fasting blood Glu CHO and PRO groups lead to greater ppd Glu vs SKP ↓10% Glu in PRO vs CHO at 30 min ppd Ffter B |
Pedersen, et al., 2016 [299] | Obese/T2DM 63.9 ± 2.15 33 ± 1.25 | 4 exp. days Randomized crossover study | 28 | CHO-B noCHO-B | Fast ≥8 h before the test diets The diets were consumed on 2 sequential days on separate weeks 3 identical meals with CHO 3 meals, no CHO breakfast, lunch and dinner with CHO –similar to other group | Peak blood Glu (mmol/L) 11.3 ± 0.5 after CHO-B 9.4 ± 0.4 after noCHO-B Mean blood Glu (mmol/L)—5 h after B 8.4 ± 0.5 after CHO-B 7.5 ± 0.4 after noCHO-B no sig. differences in Glu measurements after lunch and dinner no sig. differences in gastric emptying |
Rabinovitz, et al., 2014 [300] | Overweight/obese with T2DM 60.7 ± 6.35 32.37 ± 3.7 | 3 months Randomized, treatment-controlled, open clinical trial | 46 | SB (small breakfast) BB (big breakfast) | At B: 12–18% PRO, 14–22% FAT, 60–70% CHO, 13% of total E was recommended in the SM, Lunch and Dinner had 33% of total daily E, 2–3 snacks same as in BB At B: 23–30% PRO, 29–37% FAT, 37–48% CHO 33% of total E was recommended in the BB, Lunch and Dinner had 25% of total daily E, 2–3 snacks same as in SM | BW no sign. difference HbA1c (%) −0.58 ± 0.18 in BB −0.13 ± 0.08 in SB Estimated average glucose (mg/dL) −16.6 ± 5.2 in BB −3.43 ± 2.4 in SB no sign. changes in Glu, Ins, C-peptide, total Chol, TG, CRP, IL-6, TNF-α |
4.2.2. The Effects of Consuming Most Food and Calories Earlier in the Day on Glycemia
Study | Health Status Age (Years) BMI (kg/m2) | Duration and Design of Dietary Intervention | Sample Size | Description of Groups | Dietary Intervention | Selected Clinical Outcomes |
---|---|---|---|---|---|---|
Effect of Lunch on Glycemia | ||||||
| ||||||
Bandin, et al., 2015 [309] | Healthy 26 ± 4 22.54 ± 2.05 | 2 weeks Randomized and crossover (Protocol 1: metabolic study) | 10 (subjects on protocol 1) | EE group (Early Eating) LE group (Late Eating) | L at 13:00 h L at 16:30 h Same B (at 8:00 h), D (at 20:00 h), and L as indicated 1868 ± 234 Kcal/day 15% PRO, 50% CHO, 35% FAT | +46% AUCGlu after L in LE vs EE +1 mmol/L Glu 90 min after L in LE vs EE +0.6 mmol/L Glu 120 min after L in LE vs EE |
Garaulet, et al., 2013 [312] | Overweight/obese 42 ± 11 31.4 ± 5.4 | 20 weeks | 420 | Early Lunch Eaters (EL) Late Lunch Eaters (LL) | Early eaters: Lunch before 15:00 h Late eaters: Lunch after 15:00 h Weight loss diet of similar composition Total E ~ 1400 Kcal/day 19% PRO 48% CHO 33% FAT | Fasting Glu (mg/dL) 81.28 ± 15.97 (EL) vs 83.65 ± 16.27 (LL)—non-sign Fasting Ins (mU/L) 5.72 ± 4.71 (EL) vs 6.98 ± 11.66 (LL)—non-sign HOMA 1.17 ± 0.14 (EL) vs 1.57 ± 0.13 (LL)—significant |
Effect of Dinner on Glycaemia | ||||||
| ||||||
Nas, et al., 2017 [286] | Healthy 24.6 ± 3.3 23.7 ± 4.6 | 3 test days Randomized crossover nutritional intervention | 17 | Control (C) (3 meals) BSD (B skipping) DSD (D skipping) | Isocaloric diets 55% CHO, 30% FAT, 15% PRO BSD-washout-C-DSD or DSD-washout-C-BSD | HOMA_IR 1.96 ± 0.82 (C), 2.07 ± 0.91 (BSD), 1.96 ± 1.05 (DSD) GlycemiatAUC (mg/dLx24 h) 2360 ± 111 (C), 2425 ± 131 (BSD), 2374 ± 165 (DSD) MAGE 3.90 ± 1.32 (C), 3.65 ± 1.52 (BSD), 3.28 ± 1.75 (DSD) C-peptide (μg/day) 74 ± 38 (C), 86 ± 40 (BSD), 75 ± 42 (DSD) iAUCIns (μU/mLx 2 h) after L 211 ± 74 (BSD), 144 ± 74 (DSD) iAUCGlu (mg/dLx 2 h) after L 114 ± 41 (BSD), 62 ± 40 (DSD) HOMApp after L 59 ± 44 (BSD), 27 ± 23 (DSD) |
Jakubowicz, et al., 2015 [296] | T2DM 57.8 ± 4.7 28.1 ± 2.9 | 5 mo, 14 exp. days Randomized open-label crossover-within-subject clinical trial | 18 | Bdiet (HE Breakfast) Ddiet (HE Dinner) | Bdiet: B—2946 kJ, 31% PRO, 47% CHO, 22% FAT L—2523 kJ, 27% PRO, 50% CHO, 23% FAT D—858 kJ, 43% PRO, 50% CHO, 23% FAT Ddiet: B—858 kJ, 43% PRO, 50% CHO, 23% FAT L—2523 kJ, 27% PRO, 50% CHO, 23% FAT D—2946 kJ, 31% PRO, 47% CHO, 22% FAT Composition of diets: 6276 ± 105 kJ 31% PRO 46% CHO 23% FAT B at ~08:00 h L at ~13:30 h D at ~19:30 h | −20% total day AUCGlu for Bdiet vs Ddiet +20% total day AUCIns for Bdiet vs Ddiet +10% total day integrated AUCIns for Bdiet vs Ddiet −24% peak Glu (mmol/L × min) at 180 min after HE B vs HE D +10–19% peak Ins (pmol/L × min) at 30–180 min after HE B vs HE D Faster Ins peak (60 min) after B in Bdiet +17% C-peptide (nmol/L × min) after HE B vs HE D +35% tGLP-1 (pmol/L × min) at 30 min after HE B vs HE D 27% iGLP-1 (pmol/L × min) at 30 min after HE B vs HE D −13–25% Glu (mmol/L × min) after L in Bdiet vs Ddiet 50% higher, and more rapid early prandial Ins in Bdiet after L |
Grant, et al., 2017 [308] | Healthy 25 ± 5.4 22.2 ± 1.6 | 4 days Controlled, parallel study | 11 | Eating at night group/condition (EN) Not eating at night group/condition (NoEN) | Meals at 19:00 h and 01:30 h Meals at 09:30 h, 14:10 h, and 19:00 h B was the tolerance test: ↑CHO (↑GI) at 06:30–07:00 h Tolerance test and measurement were done on 4 different days: PRE—day before the start of the protocol, SW4—days of stimulated nigh work (sleep between 10:00–16:00 h for all subjects), RTDS—return to daytime schedule | EN group: +27% AUCGlu on SW4 +69% AUCGlu on RTDS +11% AUCIns on SW4 +35% AUCIns on RTDS NoEN group: +12% AUCGlu on SW4 +2% AUCGlu on RTDS +18% AUCIns on SW4 +16% AUCIns on RTDS Fasting Glu: No significant effects of condition (p = 0.522), day (p = 0.539) or condition × day (p = 0.228) Fasting Ins: No significant effects of condition (p = 0.380), day (p = 0.056) or condition × day (p = 0.958) for fasting glucose and insulin, respectively |
Lopez-Minguez, et al., 2018 [310] | Overweight/obese 42 ± 10 28.42 ± 4.04 | 2 exp. days, 1 week Randomized, cross-over trial | 40 | LE group (Delayed dinner or Late Eating) EE group (Advanced dinner or Early Eating) Also divided groups in MTNR1B risk carriers (GG) and non-risk carriers (CC) | LE: D at 23:00 h, L at 15:00 h, B at 8:00 h EE: D at 20:00 h, L at 12:00 h, B at 8:00 h Fixed menu for all meals on exp. days L was 8 h before D, with energy content of 650 Kcal D was 30–35% of total energy intake, composed of: 15–17% PRO 58–60% CHO/ 25–27% FAT | In total population: AUCGlu (mmol/L x h) = 284.74 ± 32.67 (LE) vs 269.61 ± 34.8 (EE) Among GG group: AUCGlu (mmol/L x h) = 292.2 ± 33.8 (LE) vs 270.9 ± 30.4 (EE) Among CC group: No significant effect AUCGlu (mmol/L x h) = 277.3 ± 30.5 (LE) vs 268.2 ± 38.2 (EE) Significant interaction between meal timing (EE vs LE) and genotype (GG vs CC) for AUCGlu |
Jakubowicz, et al., 2013 [317] | Overweight/obese 45.8 ± 7.1 32.4 ± 1.8 | 12 weeks Randomized open-label parallel-arm trial | 74 | B group D group | B group (700 kcal B, 500 kcal L, 200 kcal D) D group (200 kcal B, 500 kcal L, 700 kcal D) ~1400 kcal weight loss diets, same macronutrient content and composition B at 6:00–9:00 h, L at 12:00–15:00 h, D at 18:00–21:00 h | Fasting Glu −11.5% (B) vs −4.2% (D) Fasting Ins −51% (B) vs −29% (D) HOMA-IR −57% (B) vs −32.5% (D) HOMA-B −25% (B) vs −17% (D) ISI +163% (B) vs +56% (D) AUCGlu −22% (B) vs −15% (D) AUCIns −58% (B) vs −30% (D) |
4.2.3. Effects of Meal Frequency on Postprandial Glycemia and IR
Study | Age (Years) BMI (kg/m2) Health Status | Duration and Design of Dietary Intervention | Sample Size | Description of Groups | Dietary Intervention | Selected Clinical Outcomes |
---|---|---|---|---|---|---|
| ||||||
Kahleova, et al., 2014 [320] | T2DM 59.4 ± 7.0 32.6 ± 4.9 | 24 weeks each regiment Randomized, open, crossover study | 54 | A6 regiment (6 meals/day) B2 regiment (2 meals/day) | B, L, D, and 3 smaller snacks in between B and L 12 weeks per regiment and then crossover to other regiment for 12 weeks Caloric restriction of 500 kcal/day 50–55% CHO, 20–25% PRO, <30% FAT (≤7% SFAs, <200 mg/day of Chol), and 30–40 g/day of fibers | BW (signif.) −2.3 kg in A6 −3.7 kg in B2 HbA1c −0.23% in A6 −0.25% in B2 Fasting plasma Glu (mmol/L) −0.47 in A4 −0.78 in B2 Fasting immunoreactive Ins (pmol/L) −0.69 in A6 −0.75 in B2 Ins secretion at reference level (pmol min−1 m−2) +22.9 in A6 +20 in B2 Glu sensitivity (pmol min−1 m−2 mmol−1 L−1) +5.8 in A6 +5.9 in B2 TG (mmol/L) −0.28 in A6 −0.17 in B2 (all above changes per group were significant) |
Papakonstantinou, et al., 2018 [324] | 2 IGT groups (early and advanced stage) and T2DM 49.3 ± 1.8 32.4 ± 0.8 | 24 weeks Randomized, crossover study | 47 | IGT-A (PG 140–199 mg/dL at 120 min post OGTT) IGT-B (PG levels 140–199 mg/dL at 120 min and >200 mg/dL at 30, 60 or 90 min post-OGTT) T2DM (newly diagnosed treatment-naive T2DM) | Weight maintenance diet: 1900 kcal/day, 45% CHO, 20% PRO, 35% FAT 6 meals/day (B, L, D, and 3 snacks; with CHO: 20% at B, 10% morning snack, 30% at L, 10% at afternoon snack, 20% at D and 10% at bedtime snack) Or 3 meals/day (B, L, and D; with CHO: 20% at B, 50% at L and 30% at D) 12 weeks per regiment and then crossover to other regiment for 12 weeks | T2D group: ↓↓ post-OGTT Glu and ↓↓ HbA1c with 6 meals IGT-A group: ↓ 30-min and ↓↓ 60-min post-OGTT plasma Ins with 6 meals IGT-B group: ↓ peak Glu with 3 meals ↓↓ peak Glu with 6 meals In all groups: ↓ subjective hunger with 6 meals no differences in satiety or lipids no differences in FPG, Glu or Ins iAUC, fasting Ins, HOMA-IR with 3 vs 6 meals |
Jakubowicz et al., 2019 [326] | T2DM ≥25 years 32.4 ± 5.2 HbA1c: 8.1 ± 1.1% T2DM for ≥5 yrs, treated with insulin ≥1 yr with >25 units for at least 3 months | 3 months Randomized, parallel, treated with insulin, continuous glucose monitoring | 28 | 6 meals 3 meals | Isoenergetic diets consisting of 3 or 6 meals/day: 3M 700 kcal breakfast, 600 kcal lunch, 200 kcal dinner; 6M same as 3M and addition of 150 kcal snacks | 12 weeks with 3 meals/day vs 6 meals/day −5.4 kg weight loss, −1.2% total insulin dose—26 units, higher clock gene expression |
Arnold, et al., 1997 [331] | T2DM or IGT 46–70 29.9±4.2 | 8 weeks Randomized, crossover study | 13 | 3 meal regimes 9 meal regimes | Isoenergetic diets consisting of 3 or 9 meals/day 4 weeks with 3 meals/day; Daily E needs: 25% at B, 25% at L, ~50% at D, and ~150 kcal at a snack 4 weeks with 9 meals/day; Daily E needs: 8.3% at early morning, 8.3% at B, 8.3% at mid-morning, 8.3% at L, 8.3% at mid-afternoon, 8.3% at late-afternoon, 8.3% at D, 16.6% at mid-evening, and 16.6% at late evening; Meals were 1–2 h apart | Glu (mmol/L) +2% with 3 meals +4% with 9 meals Ins (μU/mL) +1% with 3 meals −2%with 9 meals Total Chol (mmol/L) +3.5% with 3 and with 9 meals TG (mmol/L) −13.5% with 3 and with 9 meals ApoB (mg/dL) +12% with 3 meals 17% with 9 meals |
Salehi, et al., 2014 [333] | T2DM 35–65 n/a | 3 months RCT | 66 | 6-meal group (6 M) Control group (5 meals—usual pattern) | Weight loss diets (−300 kcal/day) 6 isocaloric meals 3 large meals and 2 small snacks (Ctrl) 56% CHO, 16% PRO and 28% FAT | ↓↓ BMI in 6 M ↓ BMI in usual pattern ↓↓ HbA1c in 6 M ↓↓ Ins and 2 h-ppd Glu in 6 M ↓↓ Ins in usual pattern no sign. differences in fasting Glu, fasting Ins, and 2 h-ppd serum Glu in both groups |
| ||||||
Pearce, et al., 2008 [82] | T2DM 61.3 ± 10 34.7 ± 9 | 3 days Randomized crossover study | 23 | CARB-E CARB-B CARB-L CARB-D | Even CHO distribution is all meals/day ~70 g CHO CHO mainly in B (~125 g) CHO mainly in L (~125 g) CHO mainly in D (~125 g) 40% CHO, 34% PRO, 26% FAT | Glucose max (mmol/L): 14.2 ± 1.0 CARB-L 14.5 ± 0.9 CARB-E 14.6 ± 0.8 CARB-D 16.5 ± 0.8 CARB-B Glu AUC20 (mmol/L·20 h): 10,049 ± 718 CARB-L 10,493 ± 706 CARB-E 10,717 ± 638 CARB-D 10,603 ± 642 CARB-B small but no sig. difference in fasting blood Glu |
Jakubowicz, et al., 2015 [301] | T2DM 57.8 ± 4.7 28.1 ± 2.9 | 5 mo, 14 exp. days Randomized open-label crossover-within-subject clinical trial | 18 | Bdiet (HE breakfast) Ddiet (HE diner) | Bdiet: B—2946 kJ, 31% PRO, 47% CHO, 22% FAT L—2523 kJ, 27% PRO, 50% CHO, 23% FAT D—858 kJ, 43% PRO, 50% CHO, 23% FAT Ddiet: B—858 kJ, 43% PRO, 50% CHO, 23% FAT L—2523 kJ, 27% PRO, 50% CHO, 23% FAT D—2946 kJ, 31% PRO, 47% CHO, 22% FAT 6276 ± 105 kJ 31% PRO 46% CHO 23% FAT B at 08:00 h L at 13:00 h D at 19:00 h | −20% daily AUCGlu for Bdiet −24% AUCGlu in Bdiet after B Faster plasma Glu level decrease after B +11% AUCIns in Bdiet after B +12% Ins peak after B in Bdiet Faster Ins peak (60 min) after B in Bdiet −21–25% AUCGlu in Bdiet after L +23% AUCIns in Bdiet after L 50% higher, and more rapid early prandial Ins in Bdiet after L |
Imai, et al., 2018 [313] | T2DM 67.4 ± 9.4 23.5 ± 3.1 | 4 days Randomized, crossover clinical trial | 17 | Group 1: Day 2 snack at 12:30 h and day 3 snack at 15:30 h Group 2: Day 2 snack at 15:30 h and day 3 snack at 12:30 | Diet: Same meals in the 2 groups with B at 07:00 h, L at 12:00 h, D at 19:00 h and snack at either 12:30 h (just after lunch—early) or at 15:30 h (mid-afternoon-late) | MAGE (mmol/L) 6.90 ± 0.69 with early snack 5.19 ± 0.48 with late snack iAUC (mmol/L per min−1) 1030 ± 180 with early snack 701 ± 97 with late snack Time of snack did not affect the mean Glu level |
Kessler, et al., 2017 [314] | NGT and IGT 45.9 ± 2.5 27.1 ± 0.8 | 8 weeks Crossover trial | 29 | HC/HF HF/HC | Isocaloric diets, with energy intake equally distributed in the day HC/HF for 4 weeks: CHO-rich meals until 13:30 h, and FAT-rich meals 16:30 h–22:00 h HF/HC for 4 weeks: FAT-rich meals until 13:30 h, and CHO-rich meals 16:30 h–22:00 h | In subjects with impaired Glu tolerance and fasting Glu: Fasting Glucose −11.4% in HC/HF −9.6% in HF/HC Fasting Insulin −21.9% in HC/HF −27.1% in HF/HC Fasting C-peptide −42.6% in HC/HF −50.6% in HF/HC HOMA-IR −33.8% in HC/HF −34.7% in HF/HC Fasting GLP-1 −45% in HC/HF −13.3% in HF/HC Whole day Glu +7.9% in HF/HC vs HC/HF |
Gibbs, et al., 2014 [315] | Healthy 25.5 ± 8.8 21.9 ± 1.7 | 4 exp. days Randomized, crossover study | 10 | Low GI meals (LG) High GI meals (HG) | LG: GI~37 HG: GI~73 LG and HG were consumed at (am) 8:00 h and (pm) 20:00 h | Glu peak (mmol/L) 7.8 ± 0.4 with LG & HG am 8.3 ± 0.2 with LG pm 9.54 ± 0.4 with HG pm Glu 2 h-ppd (mmol/L) Glu peak (mmol/L) 4.85 ± 0.2 with LG & HG am 6.42 ± 0.4 with LG & HG am no sig. differences in iAUCGlu but a trend for ↓ iAUCGlu with am meals no sig. differences in iAUCIns |
4.3. Effects of Intermittent Fasting on Postprandial Glycemia
Study | Health Status Age (Years) BMI (kg/m2) | Duration and Design of Dietary Intervention | Sample Size | Description of Groups | Dietary Intervention | Selected Clinical Outcomes |
---|---|---|---|---|---|---|
Effect of Time of Feeding on Glycemia | ||||||
| ||||||
Carter, et al., 2018 [346] | T2DM, overweight/obese 60.5 ± 9.2 36.0 ± 5.8 | 12 months Parallel randomized clinical trial | 97 | Intermittent energy restriction group (IER) Continuous energy restriction group (CER) | IER: 500–600 kcal/day for 2 non-consecutive days of the week, usual diet for the other 5 days CER: 1200–1500 kcal/day Similar weekly energy restrictions | BW −5 kg in CER −6.8 kg in IER HbA1c −0.5% in CER −0.2% in IER Ins −0.3% in CER −1.2% in IER |
Carter, et al., 2019 [347] | T2DM, overweight/obese 62 ± 9 35 ± 4.8 | 12 months—24-month follow-upParallel randomized clinical trial | 84 | Intermittent energy restriction group (IER) Continuous energy restriction group (CER) | IER: 500–600kcal/day for 2 non-consecutive days of the week, usual diet for the other 5 days CER: 1200–1500kcal/day 24 months Follow-up | At 24 mo.: BW −3.9 kg in CER −3.9 kg in IER HbA1c +0.4% in CER +0.1% in IER TG −0.2 ± 0.3 mmol/L in CER −0.02 ± 0.2 mmol/L in IER |
Varady, et al., 2013 [348] | Normal BW/overweight) 47.5 ± 2.5 2 ± 1 | 12 weeks Randomized, controlled, parallel-arm feeding trial | 30 | ADF Control (ctrl) | ADF: 25% of E needs on fast day (~400–600 kcal at 12:00 h–14:00 h), and ad libitum eating on each alternating feed day ad libitum eating every day | ↓ BW in ADF −13% total Chol in ADF −20% TG in ADF −5% BP (systolic) in ADF −50% CRP in ADF |
Catenacci, et al., 2016 [349] | Obese 41.15 ± 8.7 37.65 ± 4.85 | 8-week intervention & 24 weeks unsupervised follow-up Randomized trial | 26 | CR (caloric restriction) ADF (alternate day fasting) | CR: −400 kcal/day less than E needs ADF: ad libitum food in fed days, only water, calorie-free beverages and bouillon/stock cube soup on fast (0 kcal) days E distribution in both groups: 20% B, 30% L, 40% D and 10% snack | BW −7.1 kg in CR at week 8 −8.2 kg in ADF at week 8 −5 kg in CR at week 12 −5.7 kg in ADF at week 12 Glu (mg/dL) +3.3 in CR at week 8 +6 in ADF at week 8 +1.7 in CR at week 12 +2.6 in ADF at week 12 Ins (μU/mL) −0.2 in CR at week 8 +3 in ADF at week 8 −2 in CR at week 12 +0.4 in ADF at week 12 TG (mg/dL) −2.8 in CR at week 8 −25 in ADF at week 8 +12 in CR at week 12 +5.1 in ADF at week 12 |
Trepanowski, et al., 2017 [350] | Obese 44 ± 11 34 ± 4 | 12 months (6 mo. weight loss & 6 mo. maintenance) RCT | 69 | Alternate day fasting group (ADF) Daily calorie restriction group (DCR) Control—No intervention group (ctrl) | ADF: 25% of energy needs on fast days; 125% of energy needs on alternating “feast days” DCR: calorie restriction to 75% of energy needs every day Ctrl: no-intervention control | ADF vs ctrl: At 6 months −6.8% BW −6.3 mg/dL Glu −7.5 μIU/mL Ins −2.49 HOMA-IR At 12 months −6% BW −3.9 mg/dL Glu −5.9 μIU/mL Ins −1.86 HOMA-IR DCR vs ctrl: At 6 months −6.8% BW −4.9 mg/dL Glu −7.0 μIU/mL Ins −2.56 HOMA-IR At 12 months −5.3% BW −9.6 mg/dL Glu −4.6 μIU/mL Ins −1.88 HOMA-IR |
Gabel, et al., 2019 [351] | Insulin resistant subjects 42 ± 3 y.o. 35 ± 1 | 12 months (6 mo. weight loss & 6 mo. maintenance) RCT | 100 (43 completed) | Alternate-day fasting group (ADF) Daily calorie Restriction group (CR) Control group (ctrl) | 6-months reduced net E intake by 25% Fasting days: 25% of E needs at lunch (12:00 h–14:00 h) Alternating feast days: 125% of E needs over 3 meals/day 6-mo. reduced net E intake by 25% per day over 3 meals every day 6-mo. weight maintenance phase: Both for ADF & CR groups → ADF consumed 50% of E needs on fast days and 150% on feast days → CR consumed 100% of E needs/day Instructed to maintain body weight | ↓ weight (~18% for ADF, and ~14% for CR) Glu (mg/dL): no significant changes Ins (μIU/mL): −44% ADF 6 mo, −52% ADF 12 mo, −23% CR 6 mo, −14% CR 12 mo HOMA-IR: −48% ADF 6 mo, −54% ADF 12 mo, −19% CR 6 mo, −17% CR 12 mo |
Hoddy, et al., 2014 [352] | Obese 45.5 ± 2.5 34.5 ± 1 | 8 weeks Randomized, parallel-arm feeding trial | 59 | ADF-L Alternate day fasting—intake at lunch ADF-D Alternate day fasting—intake at dinner ADF-SM Alternate day fasting—intake in small meals | 25% of E needs on fast day and ad libitum eating on feed day ADF-L: One meal (L) at 12.00 h–14.00 h on each fast day ADF-D: One meal (D) at 18.00 h–20.00 h on each fast day ADF-SM: divided their fast day meal in 3 mini meals → 100 kcal at 6:00 h–8:00, 300 kcal at 12:00 h–14:00 h and 100 kcal at 18:00 h–20:00 on each fast day | BW −3.5 kg in ADF-L −4.1 kg in ADF-D −4.0 kg in ADF-SM Glu −2% in ADF-L −1% in ADF-D −1% in ADF-SM Ins no change in ADF-L −18% in ADF-D −12% in ADF-SM HOMA-IR −10% in ADF-L −27% in ADF-D −19% in ADF-SM TG −6% in ADF-L −8% in ADF-D −1% in ADF-SM |
Harvie, et al., 2011 [353] | Overweight or obese 40 ± 4 30.6 ± 5.1 | 6 months Randomized trial | 89 | Continuous energy restriction group (CER) Intermittent energy restriction group (IER) | CER: 25% restriction below estimated requirements for 7 days per week IER: 75% restriction for 2 days per week, with no restriction on the other 5 days per week 25% PRO, 45% low GL CHO, 30% FAT (15% MUFAs, 7% SFAs, 7% PUFAs) | BW −5% in CER −7% in IER Ins −15% in CER −29% in IER HOMA −19% in CER −27% in IER Glu −2% in CER −2% in IER Adiponectin no change in CER +10% in IER Ghrelin +11% in CER +13% in IER TG −23% in CER −17% in IER BP (systolic) −6% in CER −3% in IER |
Harvie, et al., 2013 [354] | Overweight 47.4 ± 7.7 30.9 ± 5.1 | 4 months (3 months weight loss and 1 month maintenance) Parallel randomized clinical trial | 115 | IECR: energy and CHO restriction IECR + PF: allowed ad libitum PRO and FAT DER: daily energy restriction | IECR: 25% overall E restriction, And for 2 d/week restricted CHO (<40 g/day), On restricted days: 20% CHO, 45% PRO and 35% FAT IECR + PF: 25% overall E restriction, And for 2 d/week restricted CHO (<40 g/day) and ad libitum PRO and FAT (MUFA and PUFA), On restricted days: 15% CHO, 35% PRO and 50% FAT DER: 25% overall E restriction, 45–50% CHO, 20–25% PRO and 30% FAT | BW −5.5 kg in IECR −5.1 kg in IECR + PF −3.8 kg in DER Ins −21% in IECR −11% in IECR + PF −10% in DER HOMA-IR −25% in IECR −16% in IECR + PF −11% in DER HbA1c no change in HbA1c in all groups Glu no change in Glu in all groups TG −9% in IECR −14% in IECR + PF −7% in DER BP (systolic) −3% in IECR −13% in IECR + PF −9% in DER |
| ||||||
Hutchison, et al., 2019 [342] | Overweight/Obese 55 ± 3 33.9 ± 0.8 | 14 exp. days Randomized crossover trial | 15 | TRFe TRFd | 2 × 7 days separated by a 2-week washout Eating window: 8:00 h–17:00 h Eating window: 12:00 h–21:00 h Ad libidum water and very low-calorie (<4 kcal/serving) drinks and foods | ↓ BW on day 7 iAUCGlu −36% in TRFe −21% in TRFd No effect on fasting Glu, Ins, (but a ↓ trend) ↓ mean fasting Glu for TRFe vs baseline ↓ 3 h ppd Glu for TRFe vs baseline |
Wehrens, et al., 2017 [343] | Normal BW/Overweight 18–30 20–30 | 13 exp. Days Human laboratory trial | 10 | One group | Sleeping schedule: ~ 23:00–6:30 h Day 1–3: Wake up at 6:30 h, B at 7:00 h, L at 12:00 h, D at 17:00 h Day 4–5: No treatment, measurements Day 6–11: Wake up at 6:30 h, B at 12:00 h, L at 17:00 h, D at 22:00 h Day 12–13: No treatment, measurements Isocaloric meals: 55% CHO, 15% PRO, 30% FAT | Late meals resulted in: ↑ 5.69 h Glu acrophase (into sleeping time) ↑ 1.5 h Ins acrophase ↑ 1 h TG acrophase |
Jamshed, et al., 2019 [344] | Overweight 32 ± 7 30.1 ± 2.7 | 8 days Randomized controlled crossover study | 11 | eTRF Control (ctrl) | 6 h feeding/18 h fasting Feeding: 8:00 h to 14:00 h B at 8:00 h, L at 11:00 h, and D at 14:00 h 12 h feeding/12 h fasting Feeding: 8:00 h to 20:00 h B at 8:00 h, L at 14:00 h, and D at 20:00 h 3 daily meals were matched: 15% PRO, 50% CHO, 35% FAT 4 days in each condition—3.5–5 weeks washout—4 days in other condition | No significant changes in day Glu −7 ± 2 mg/dL night/sleep Glu in eTRF −4 ± 1 mg/dL 24-h blood Glu in eTRF −12 ± 3 mg/dL MAGE in eTRF −2 ± 1 mg/dL morning fasting Glu in eTRF −2.9 ± 0.4 mU/L morning fasting Ins in eTRF −0.73 ± 0.11 HOMA-IR in eTRF +25 ± 9% IRS2 gene expression in eTRF +4.5 ± 1.6 mU/L evening fasting Ins in eTRF +1.09 ± 0.43 evening HOMA-IR in eTRF No changes in GLUT1, GLUT4, or IRS1 gene expression at either time of day |
Wilkinson, et al., 2020 [345] | Metabolic syndrome patients 59 ± 11.14 33.06 ± 4.76 | 12 weeks Single-arm, paired-sample trial | 19 | TRF | 10 h feeding/14 h nightly fasting Eating at will, subjects reported foods consumed via smartphone app (food and time logs) | TRF vs baseline: −3% BW −5% Blood Glu (CGM) −5% Fasting blood Glu −2% HbA1c −21% Fasting Ins −30% HOMA-IR |
Sutton, et al., 2018 [355] | Overweight with IGT 56 ± 9 32.2 ± 4.4 | 5 weeks Randomized, crossover trial (controlled feeding) | 8 | eTRF Control (ctrl) | eTRF: 6 h eating window/day, 3 meals, dinner before 15:00 h, ~18 h fasting Ctrl: 12 h eating period/day, 3 meals, ~12 h fasting between 20:00 h–6:30 h Each plan for 5 weeks, with a 7-week washout period Isocaloric and eucaloric controlled feeding diets (BW maintenance) 15% PRO, 50% CHO, and 35% FAT | No weight loss Fasting Glu no significant changes Mean Glu no significant changes Fasting Ins −3.4 ± 1.6 mU/L Mean Ins −26 ± 9 mU/L Peak Ins −35 ± 13 mU/L Insulinogenic index +14 ± 7 mu/mg IR (iAUC) −36 ± 10 mU/mg |
Parr, et al., 2020 [356] | T2DM 50 ± 8.9 34 ± 4.8 | 6 weeks Pre-post non-randomized | 19 | Habitual diet (2 weeks) TRF (2 weeks) | Habitual diet: ~8400 kJ/day; 35% CHO, 20% PRO, 41% FAT, 1% alcohol 9 h feeding/15 h fasting TRE diet: ~8500 kJ/day; 35% CHO, 19% PRO, 42% FAT, 1% alcohol Eating at will | No weight loss −3% HbA1c −3.6% Glu +18% Ins |
Moro, et al., 2016 [357] | Healthy athletes 29.21 ± 3.8 BW 84.6 ± 6.2 Kg | 8 weeks Randomized, single blind trial | 34 | TRF Normal Diet group (ND) | 8 h feeding/16 h fasting Meals: 13:00 h (40% of total cal), 16:00 h (25% of total cal), 20:00 h (35% of total cal) Meals: 8:00 h (25% of total cal), 13:00 h (40% of total cal), 20:00 h (35% of total cal) | ↓ in fat mass −16.4% in TRF −2.8% in ND Glu −11% in TRF no change in ND Ins −36.3% in TRF −13% in ND |
5. Alternative Dietary Interventions and Postprandial Glycemia
5.1. Vitamins–Minerals
5.2. Herbs and Spices
5.3. Fermented Foods
5.4. Probiotic Dairy Foods
5.5. Other Alternative Dietary Interventions: i.e., Inulin, Polyphenols, Chia Seeds, Nuts and Whey Protein
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IR | Insulin resistance |
T2DM | Type 2 diabetes |
HDL | High density lipoprotein cholesterol |
IGT | Impaired glucose tolerance |
GI | Glycemic index |
GL | Glycemic load |
NEFA | Non-esterified free fatty acids |
CVD | Cardiovascular disease |
NAFLD | Non-alcoholic fatty liver disease |
CNS | Central nervous system |
HGP | Hepatic glucose production |
GLP-1 | Glucagon-like peptide 1 |
GIP | Glucose-dependent insulinotropic polypeptide |
HbA1c | Glycated hemoglobin A1c |
NGT | Normal glucose tolerance |
BP | Blood pressure |
RCT | Randomized Controlled Clinical Trial |
ADA | American Diabetes Association |
VLC | Very low carbohydrate |
IRS | Insulin receptor substrate |
GLUT | Glucose transporter |
HOMA-IR | Homeostatic model assessment for insulin resistance |
SCN | Suprachiasmatic nucleus |
VLCD | Very low calorie diet |
BMI | Body mass index |
Per | Period |
LDL | Low density lipoprotein cholesterol |
PCO | Polycystic Ovary Syndrome |
OGTT | Oral glucose tolerance test |
IF | Intermittent fasting |
ADF | Alternate day fasting |
TRF | Time restricted feeding |
IGF-1 | Insulin-like growth factor-1 |
ROS | Reactive Oxygen Species |
References
- Shapira, N. The Metabolic Concept of Meal Sequence vs. Satiety: Glycemic and Oxidative Responses with Reference to Inflammation Risk, Protective Principles and Mediterranean Diet. Nutrients 2019, 11, 2373. [Google Scholar] [CrossRef] [Green Version]
- Nolan, C.J.; Ruderman, N.B.; Kahn, S.E.; Pedersen, O.; Prentki, M. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes 2015, 64, 673–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melmer, A.; Laimer, M. Treatment Goals in Diabetes. Endocr. Dev. 2016, 31, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, R.; Moss, S.E.; Cruickshanks, K.J. Parental history of diabetes in a population-based study. Diabetes Care 1996, 19, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Sigal, R.J.; El-Hashimy, M.; Martin, B.C.; Soeldner, J.S.; Krolewski, A.S.; Warram, J.H. Acute postchallenge hyperinsulinemia predicts weight gain: A prospective study. Diabetes 1997, 46, 1025–1029. [Google Scholar] [CrossRef]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B.; American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, S. Contribution of visceral obesity to the insulin resistance syndrome. Can. J. Appl. Physiol. 2001, 26, 273–290. [Google Scholar] [CrossRef]
- Page, M.M.; Johnson, J.D. Mild Suppression of Hyperinsulinemia to Treat Obesity and Insulin Resistance. Trends Endocrinol. Metab. 2018, 29, 389–399. [Google Scholar] [CrossRef]
- Despres, J.P. Health consequences of visceral obesity. Ann. Med. 2001, 33, 534–541. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T. Insulin resistance, dyslipidemia, and cardiovascular disease. Diabetes Care 2007, 30, 2164–2170. [Google Scholar] [CrossRef] [Green Version]
- Philippou, A.; Chryssanthopoulos, C.; Maridaki, M.; Dimitriadis, G.; Koutsilieris, M. Exercise metabolism in health and disease. In Cardiorespiratory Fitness in Cardiometabolic Diseases; Kokkinos, P., Narayan, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 2019, pp. 57–96. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and Cardiovascular Disease: Do We Really Need to be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, A.L.; Torres-Gonzalez, M.; Kraft, J. Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients 2019, 11, 2200. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Rubin, R. Whole-Fat or Nonfat Dairy? The Debate Continues. JAMA 2018, 320, 2514–2516. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.; Jacques, P.F. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Skyler, J.S.; Bakris, G.L.; Bonifacio, E.; Darsow, T.; Eckel, R.H.; Groop, L.; Groop, P.H.; Handelsman, Y.; Insel, R.A.; Mathieu, C.; et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017, 66, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Defronzo, R.A. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef] [Green Version]
- Trico, D.; Natali, A.; Arslanian, S.; Mari, A.; Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 2018, 3, e124912. [Google Scholar] [CrossRef] [Green Version]
- Newsholme, P.; Cruzat, V.; Arfuso, F.; Keane, K. Nutrient regulation of insulin secretion and action. J. Endocrinol. 2014, 221, R105–R120. [Google Scholar] [CrossRef]
- Natali, A.; Baldi, S.; Bonnet, F.; Petrie, J.; Trifiro, S.; Trico, D.; Mari, A.; Investigators, R. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects. Metabolism 2017, 69, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Dankner, R.; Chetrit, A.; Shanik, M.H.; Raz, I.; Roth, J. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up: A preliminary report. Diabetes Care 2009, 32, 1464–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; You, W.; Almeida, F.; Estabrooks, P.; Davy, B. The Effectiveness and Cost of Lifestyle Interventions Including Nutrition Education for Diabetes Prevention: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet 2017, 117, 404–421.e436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pr. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Gregg, E.W.; Zhuo, X.; Cheng, Y.J.; Albright, A.L.; Narayan, K.M.; Thompson, T.J. Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: A modelling study. Lancet Diabetes Endocrinol. 2014, 2, 867–874. [Google Scholar] [CrossRef]
- Sheng, Z.; Cao, J.Y.; Pang, Y.C.; Xu, H.C.; Chen, J.W.; Yuan, J.H.; Wang, R.; Zhang, C.S.; Wang, L.X.; Dong, J. Effects of Lifestyle Modification and Anti-diabetic Medicine on Prediabetes Progress: A Systematic Review and Meta-Analysis. Front Endocrinol. 2019, 10, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvado, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Molina, L.; Lewis-Mikhael, A.M.; Riquelme-Gallego, B.; Cano-Ibanez, N.; Oliveras-Lopez, M.J.; Bueno-Cavanillas, A. Improving type 2 diabetes mellitus glycaemic control through lifestyle modification implementing diet intervention: A systematic review and meta-analysis. Eur. J. Nutr. 2020, 59, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; Benson, T.; McCloat, A.; Mooney, E.; Elliott, C.; Dean, M.; Lavelle, F. Changes in Consumers’ Food Practices during the COVID-19 Lockdown, Implications for Diet Quality and the Food System: A Cross-Continental Comparison. Nutrients 2020, 13, 20. [Google Scholar] [CrossRef]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Mitrou, P.; Lambadiari, V.; Maratou, E.; Raptis, S.A. Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pr. 2011, 93 (Suppl. 1), S52–S59. [Google Scholar] [CrossRef]
- Gerich, J.E. Physiology of glucose homeostasis. Diabetes Obes. Metab. 2000, 2, 345–350. [Google Scholar] [CrossRef]
- Woerle, H.J.; Meyer, C.; Dostou, J.M.; Gosmanov, N.R.; Islam, N.; Popa, E.; Wittlin, S.D.; Welle, S.L.; Gerich, J.E. Pathways for glucose disposal after meal ingestion in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E716–E725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfamariam, B.; Cohen, R.A. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am. J. Physiol. 1992, 263, H321–H326. [Google Scholar] [CrossRef]
- Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arter. Thromb. Vasc. Biol. 2004, 24, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Stegenga, M.E.; van der Crabben, S.N.; Levi, M.; de Vos, A.F.; Tanck, M.W.; Sauerwein, H.P.; van der Poll, T. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes 2006, 55, 1807–1812. [Google Scholar] [CrossRef] [Green Version]
- Lemkes, B.A.; Hermanides, J.; Devries, J.H.; Holleman, F.; Meijers, J.C.; Hoekstra, J.B. Hyperglycemia: A prothrombotic factor? J. Thromb. Haemost. 2010, 8, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- King, G.L.; Goodman, A.D.; Buzney, S.; Moses, A.; Kahn, C.R. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta. J. Clin. Investig. 1985, 75, 1028–1036. [Google Scholar] [CrossRef]
- Monnier, L.; Colette, C. Glycemic variability: Should we and can we prevent it? Diabetes Care 2008, 31 (Suppl. 2), S150–S154. [Google Scholar] [CrossRef] [Green Version]
- Stout, R.W. Insulin-stimulated lipogenesis in arterial tissue in relation to diabetes and atheroma. Lancet 1968, 2, 702–703. [Google Scholar] [CrossRef]
- Gamble, J.M.; Chibrikov, E.; Twells, L.K.; Midodzi, W.K.; Young, S.W.; MacDonald, D.; Majumdar, S.R. Association of insulin dosage with mortality or major adverse cardiovascular events: A retrospective cohort study. Lancet Diabetes Endocrinol. 2017, 5, 43–52. [Google Scholar] [CrossRef]
- Ferrannini, E.; DeFronzo, R. Insulin actions in vivo. In International Textbook of Diabetes Mellitus, 4th ed.; DeFronzo, R., Ferrannini, E., Zimmet, P., Alberti, G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; Chapter 14; pp. 211–233. [Google Scholar]
- Jenkins, D.J.; Wolever, T.M.; Collier, G.R.; Ocana, A.; Rao, A.V.; Buckley, G.; Lam, Y.; Mayer, A.; Thompson, L.U. Metabolic effects of a low-glycemic-index diet. Am. J. Clin. Nutr. 1987, 46, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Brynes, A.E.; Adamson, J.; Dornhorst, A.; Frost, G.S. The beneficial effect of a diet with low glycaemic index on 24 h glucose profiles in healthy young people as assessed by continuous glucose monitoring. Br. J. Nutr. 2005, 93, 179–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agius, L. High-carbohydrate diets induce hepatic insulin resistance to protect the liver from substrate overload. Biochem. Pharm. 2013, 85, 306–312. [Google Scholar] [CrossRef]
- Meyer, C.; Dostou, J.M.; Welle, S.L.; Gerich, J.E. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E419–E427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.; Price, T.B.; Katz, L.D.; Shulman, R.G.; Shulman, G.I. Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects. Am. J. Physiol. 1993, 265, E224–E229. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Wahren, J.; Felig, P.; DeFronzo, R.A. The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism 1980, 29, 28–35. [Google Scholar] [CrossRef]
- Kowalski, G.M.; Moore, S.M.; Hamley, S.; Selathurai, A.; Bruce, C.R. The Effect of Ingested Glucose Dose on the Suppression of Endogenous Glucose Production in Humans. Diabetes 2017, 66, 2400–2406. [Google Scholar] [CrossRef] [Green Version]
- Baron, A.D.; Steinberg, H.; Brechtel, G.; Johnson, A. Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am. J. Physiol. 1994, 266, E248–E253. [Google Scholar] [CrossRef]
- Karpe, F.; Fielding, B.A.; Ilic, V.; Macdonald, I.A.; Summers, L.K.; Frayn, K.N. Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 2002, 51, 2467–2473. [Google Scholar] [CrossRef] [Green Version]
- Lambadiari, V.; Mitrou, P.; Maratou, E.; Raptis, A.; Raptis, S.A.; Dimitriadis, G. Increases in muscle blood flow after a mixed meal are impaired at all stages of type 2 diabetes. Clin. Endocrinol. 2012, 76, 825–830. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Lambadiari, V.; Mitrou, P.; Maratou, E.; Boutati, E.; Panagiotakos, D.B.; Economopoulos, T.; Raptis, S.A. Impaired postprandial blood flow in adipose tissue may be an early marker of insulin resistance in type 2 diabetes. Diabetes Care 2007, 30, 3128–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitrou, P.; Boutati, E.; Lambadiari, V.; Maratou, E.; Papakonstantinou, A.; Komesidou, V.; Sidossis, L.; Tountas, N.; Katsilambros, N.; Economopoulos, T.; et al. Rates of glucose uptake in adipose tissue and muscle in vivo after a mixed meal in women with morbid obesity. J. Clin. Endocrinol. Metab. 2009, 94, 2958–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriadis, G.; Newsholme, E.A. Integration of Biochemical and Physiologic Effects of Insulin on the Control of Blood Glucose Concentrations. In Diabetes Mellitus a Fundamental and Clinical Text, 3rd ed.; LeRoith, D., Taylor, S., Olefsky, J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003; Chapter 12; pp. 183–197. ISBN 978-0-78-174097-5. [Google Scholar]
- Kahn, S.E.; Prigeon, R.L.; McCulloch, D.K.; Boyko, E.J.; Bergman, R.N.; Schwartz, M.W.; Neifing, J.L.; Ward, W.K.; Beard, J.C.; Palmer, J.P.; et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 1993, 42, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Rizza, R.A. Glucose effectiveness: Measurement in diabetic and nondiabetic humans. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. 2), S157–S165. [Google Scholar] [CrossRef]
- Petersen, K.F.; Laurent, D.; Rothman, D.L.; Cline, G.W.; Shulman, G.I. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Investig. 1998, 101, 1203–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandarino, L.J.; Consoli, A.; Jain, A.; Kelley, D.E. Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am. J. Physiol. 1993, 265, E898–E905. [Google Scholar] [CrossRef] [PubMed]
- Marathe, C.S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care 2013, 36, 1396–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donovan, D.G.; Doran, S.; Feinle-Bisset, C.; Jones, K.L.; Meyer, J.H.; Wishart, J.M.; Morris, H.A.; Horowitz, M. Effect of variations in small intestinal glucose delivery on plasma glucose, insulin, and incretin hormones in healthy subjects and type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 3431–3435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Wolever, T.M.; Ocana, A.M.; Vuksan, V.; Cunnane, S.C.; Jenkins, M.; Wong, G.S.; Singer, W.; Bloom, S.R.; Blendis, L.M.; et al. Metabolic effects of reducing rate of glucose ingestion by single bolus versus continuous sipping. Diabetes 1990, 39, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. Incretin hormones and the satiation signal. Int. J. Obes. 2013, 37, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018, 20 (Suppl. 1), 5–21. [Google Scholar] [CrossRef]
- Gutniak, M.; Orskov, C.; Holst, J.J.; Ahren, B.; Efendic, S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N. Engl. J. Med. 1992, 326, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol. 2018, 9, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state. Metabolism 1989, 38, 583–585. [Google Scholar] [CrossRef]
- Shulman, G.I.; Cline, G.; Schumann, W.C.; Chandramouli, V.; Kumaran, K.; Landau, B.R. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am. J. Physiol. 1990, 259, E335–E341. [Google Scholar] [CrossRef] [PubMed]
- Bonuccelli, S.; Muscelli, E.; Gastaldelli, A.; Barsotti, E.; Astiarraga, B.D.; Holst, J.J.; Mari, A.; Ferrannini, E. Improved tolerance to sequential glucose loading (Staub-Traugott effect): Size and mechanisms. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E532–E537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubowicz, D.; Wainstein, J.; Ahren, B.; Landau, Z.; Bar-Dayan, Y.; Froy, O. Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: A randomized clinical trial. Diabetes Care 2015, 38, 1820–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.C.; Smith, M.S.; Farmer, B.; Coate, K.C.; Kraft, G.; Shiota, M.; Williams, P.E.; Cherrington, A.D. Morning Hyperinsulinemia Primes the Liver for Glucose Uptake and Glycogen Storage Later in the Day. Diabetes 2018, 67, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Nesti, L.; Mengozzi, A.; Trico, D. Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications. Front Endocrinol. 2019, 10, 144. [Google Scholar] [CrossRef]
- Vlachos, D.; Malisova, S.; Lindberg, F.A.; Karaniki, G. Glycemic Index (GI) or Glycemic Load (GL) and Dietary Interventions for Optimizing Postprandial Hyperglycemia in Patients with T2 Diabetes: A Review. Nutrients 2020, 12, 1561. [Google Scholar] [CrossRef] [PubMed]
- Korakas, E.; Dimitriadis, G.; Raptis, A.; Lambadiari, V. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? Nutrients 2018, 10, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019, 4, e128308. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 105, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Trico, D.; Natali, A. Modulation of postprandial glycemic responses by noncarbohydrate nutrients provides novel approaches to the prevention and treatment of type 2 diabetes. Am. J. Clin. Nutr. 2017, 106, 701–702. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L.; Colette, C.; Owens, D.R. Integrating glycaemic variability in the glycaemic disorders of type 2 diabetes: A move towards a unified glucose tetrad concept. Diabetes Metab. Res. Rev. 2009, 25, 393–402. [Google Scholar] [CrossRef]
- Saito, Y.; Kajiyama, S.; Nitta, A.; Miyawaki, T.; Matsumoto, S.; Ozasa, N.; Kajiyama, S.; Hashimoto, Y.; Fukui, M.; Imai, S. Eating Fast Has a Significant Impact on Glycemic Excursion in Healthy Women: Randomized Controlled Cross-Over Trial. Nutrients 2020, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.L.; Noakes, M.; Keogh, J.; Clifton, P.M. Effect of carbohydrate distribution on postprandial glucose peaks with the use of continuous glucose monitoring in type 2 diabetes. Am. J. Clin. Nutr. 2008, 87, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Wang, C.; Lifang, L.; Chen, D.; Yang, Y.; Liu, G.; Wen, H.; Chen, L.; He, L.; Li, X.; et al. Effects of different proportion of carbohydrate in breakfast on postprandial glucose excursion in normal glucose tolerance and impaired glucose regulation subjects. Diabetes Technol. 2013, 15, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Hafiz, M.S.; Campbell, M.D.; O’Mahoney, L.L.; Holmes, M.; Orfila, C.; Boesch, C. Pulse consumption improves indices of glycemic control in adults with and without type 2 diabetes: A systematic review and meta-analysis of acute and long-term randomized controlled trials. Eur. J. Nutr. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.; Vasconcelos, M.; Gil, A.M.; Pinto, E. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Bielefeld, D.; Grafenauer, S.; Rangan, A. The Effects of Legume Consumption on Markers of Glycaemic Control in Individuals with and without Diabetes Mellitus: A Systematic Literature Review of Randomised Controlled Trials. Nutrients 2020, 12, 2123. [Google Scholar] [CrossRef] [PubMed]
- Musa-Veloso, K.; Poon, T.; Harkness, L.S.; O’Shea, M.; Chu, Y. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2018, 108, 759–774. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef]
- Xu, D.; Fu, L.; Pan, D.; Lu, Y.; Yang, C.; Wang, Y.; Wang, S.; Sun, G. Role of Whole Grain Consumption in Glycaemic Control of Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.M.; Zhu, Y.; Wilcox, M.L.; Koecher, K.; Maki, K.C. Whole grain intake, compared to refined grain, improves postprandial glycemia and insulinemia: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 1–19. [Google Scholar] [CrossRef]
- Huang, M.; Li, J.; Ha, M.A.; Riccardi, G.; Liu, S. A systematic review on the relations between pasta consumption and cardio-metabolic risk factors. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 939–948. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 4. Lifestyle Management. Diabetes Care 2017, 40, S33–S43. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Chiodini, P.; Maiorino, M.I.; Bellastella, G.; Panagiotakos, D.; Giugliano, D. Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine 2014, 47, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Brunetti, A. The Rise and Fall of the Mediterranean Diet and Related Nutrients in Preventing Diabetes. Nutrients 2022, 14, 379. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2022, 12, 1066. [Google Scholar] [CrossRef] [Green Version]
- Chiu, T.H.T.; Pan, W.H.; Lin, M.N.; Lin, C.L. Vegetarian diet, change in dietary patterns, and diabetes risk: A prospective study. Nutr. Diabetes 2018, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Tomas, N.; Diaz-Lopez, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fito, M.; Serra-Majem, L.; Aros, F.; et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef]
- Lee, Y.; Park, K. Adherence to a Vegetarian Diet and Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2017, 9, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef]
- Lacoppidan, S.A.; Kyro, C.; Loft, S.; Helnaes, A.; Christensen, J.; Hansen, C.P.; Dahm, C.C.; Overvad, K.; Tjonneland, A.; Olsen, A. Adherence to a Healthy Nordic Food Index Is Associated with a Lower Risk of Type-2 Diabetes--The Danish Diet, Cancer and Health Cohort Study. Nutrients 2015, 7, 8633–8644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100.e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Salvado, J.; Bullo, M.; Estruch, R.; Ros, E.; Covas, M.I.; Ibarrola-Jurado, N.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; et al. Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Ann. Intern. Med. 2014, 160, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvado, J.; Bullo, M.; Babio, N.; Martinez-Gonzalez, M.A.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Aros, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Maiorino, M.I.; Petrizzo, M.; Bellastella, G.; Giugliano, D. The effects of a Mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: Follow-up of a randomized trial. Diabetes Care 2014, 37, 1824–1830. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Chaimani, A.; Hoffmann, G.; Schwedhelm, C.; Boeing, H. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur. J. Epidemiol. 2018, 33, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Mingrone, G. Impact of different bariatric surgical procedures on insulin action and beta-cell function in type 2 diabetes. Diabetes Care 2009, 32, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Kushner, R.F. Weight loss strategies for treatment of obesity. Prog. Cardiovasc. Dis. 2014, 56, 465–472. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Theriault, R.; Watkins, S.C.; Kelley, D.E. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 2000, 49, 467–472. [Google Scholar] [CrossRef]
- Corpeleijn, E.; Saris, W.H.; Blaak, E.E. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obes. Rev. 2009, 10, 178–193. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Katsiaras, A.; Kelley, D.E. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 2003, 52, 2191–2197. [Google Scholar] [CrossRef] [Green Version]
- Corpeleijn, E.; Mensink, M.; Kooi, M.E.; Roekaerts, P.M.; Saris, W.H.; Blaak, E.E. Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss. Obesity 2008, 16, 1025–1032. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Diabetes Prevention Program Research, G. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Boule, N.G.; Haddad, E.; Kenny, G.P.; Wells, G.A.; Sigal, R.J. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: A meta-analysis of controlled clinical trials. JAMA 2001, 286, 1218–1227. [Google Scholar] [CrossRef]
- Franz, M.J.; Boucher, J.L.; Rutten-Ramos, S.; VanWormer, J.J. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. J. Acad. Nutr. Diet. 2015, 115, 1447–1463. [Google Scholar] [CrossRef]
- Wadden, T.A.; Neiberg, R.H.; Wing, R.R.; Clark, J.M.; Delahanty, L.M.; Hill, J.O.; Krakoff, J.; Otto, A.; Ryan, D.H.; Vitolins, M.Z.; et al. Four-year weight losses in the Look AHEAD study: Factors associated with long-term success. Obesity 2011, 19, 1987–1998. [Google Scholar] [CrossRef] [Green Version]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, O.; Mottalib, A.; Morsi, A.; El-Sayed, N.; Goebel-Fabbri, A.; Arathuzik, G.; Shahar, J.; Kirpitch, A.; Zrebiec, J. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: A 5-year longitudinal study. BMJ Open Diabetes Res. Care 2017, 5, e000259. [Google Scholar] [CrossRef]
- Look AHEAD Research Group; Wing, R.R. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: Four-year results of the Look AHEAD trial. Arch. Intern. Med. 2010, 170, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, S.L.; Zhang, X.; Avenell, A.; Gregg, E.; Brown, T.J.; Schmid, C.H.; Lau, J. Long-term non-pharmacologic weight loss interventions for adults with type 2 diabetes. Cochrane Database Syst. Rev. 2005, 2, CD004095. [Google Scholar] [CrossRef] [Green Version]
- Gregg, E.W.; Chen, H.; Wagenknecht, L.E.; Clark, J.M.; Delahanty, L.M.; Bantle, J.; Pownall, H.J.; Johnson, K.C.; Safford, M.M.; Kitabchi, A.E.; et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 2012, 308, 2489–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buse, J.B.; Caprio, S.; Cefalu, W.T.; Ceriello, A.; Del Prato, S.; Inzucchi, S.E.; McLaughlin, S.; Phillips, G.L., 2nd; Robertson, R.P.; Rubino, F.; et al. How do we define cure of diabetes? Diabetes Care 2009, 32, 2133–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaghloul, H.; Chagoury, O.; Elhadad, S.; Hayder Ahmed, S.; Suleiman, N.; Al Naama, A.; El Nahas, K.; Al Hamaq, A.; Charlson, M.; Wells, M.T.; et al. Clinical and metabolic characteristics of the Diabetes Intervention Accentuating Diet and Enhancing Metabolism (DIADEM-I) randomised clinical trial cohort. BMJ Open 2020, 10, e041386. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Zaghloul, H.; Chagoury, O.; Elhadad, S.; Ahmed, S.H.; El Khatib, N.; Amona, R.A.; El Nahas, K.; Suleiman, N.; Alnaama, A.; et al. Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): An open-label, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 477–489. [Google Scholar] [CrossRef]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. North Am. 2018, 102, 183–197. [Google Scholar] [CrossRef]
- Van Baak, M.A.; Mariman, E.C.M. Mechanisms of weight regain after weight loss—The role of adipose tissue. Nat. Rev. Endocrinol. 2019, 15, 274–287. [Google Scholar] [CrossRef]
- Astrup, A.; Grunwald, G.K.; Melanson, E.L.; Saris, W.H.; Hill, J.O. The role of low-fat diets in body weight control: A meta-analysis of ad libitum dietary intervention studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Diabetes Prevention Program Research, G.; Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.; Hoffman, H.J.; Brenneman, A.T.; Brown-Friday, J.O.; Goldberg, R.; Venditti, E.; et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009, 374, 1677–1686. [Google Scholar] [CrossRef] [Green Version]
- Lindstrom, J.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Uusitupa, M.; Tuomilehto, J.; Finnish Diabetes Prevention Study, G. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003, 26, 3230–3236. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, P.; Wang, J.; Gregg, E.W.; Yang, W.; Gong, Q.; Li, H.; Li, H.; Jiang, Y.; An, Y.; et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008, 371, 1783–1789. [Google Scholar] [CrossRef]
- Lindstrom, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemio, K.; Hamalainen, H.; Harkonen, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research, G. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015, 3, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, P.; Wang, J.; An, Y.; Gong, Q.; Gregg, E.W.; Yang, W.; Zhang, B.; Shuai, Y.; Hong, J.; et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014, 2, 474–480. [Google Scholar] [CrossRef]
- Hall, K.D.; Guo, J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology 2017, 152, 1718–1727.e1713. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.L.; Dunbar, S.A.; Jaacks, L.M.; Karmally, W.; Mayer-Davis, E.J.; Wylie-Rosett, J.; Yancy, W.S., Jr. Macronutrients, food groups, and eating patterns in the management of diabetes: A systematic review of the literature, 2010. Diabetes Care 2012, 35, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Brehm, B.J.; Lattin, B.L.; Summer, S.S.; Boback, J.A.; Gilchrist, G.M.; Jandacek, R.J.; D’Alessio, D.A. One-year comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 2009, 32, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.J.; Tomuta, N.; Schechter, C.; Isasi, C.R.; Segal-Isaacson, C.J.; Stein, D.; Zonszein, J.; Wylie-Rosett, J. Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. Diabetes Care 2009, 32, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Guldbrand, H.; Dizdar, B.; Bunjaku, B.; Lindstrom, T.; Bachrach-Lindstrom, M.; Fredrikson, M.; Ostgren, C.J.; Nystrom, F.H. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 2012, 55, 2118–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakonstantinou, E.; Triantafillidou, D.; Panagiotakos, D.B.; Koutsovasilis, A.; Saliaris, M.; Manolis, A.; Melidonis, A.; Zampelas, A. A high-protein low-fat diet is more effective in improving blood pressure and triglycerides in calorie-restricted obese individuals with newly diagnosed type 2 diabetes. Eur. J. Clin. Nutr. 2010, 64, 595–602. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Sato, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: A meta-analysis. Diabetes Care 2009, 32, 959–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Look AHEAD Research Group; Wing, R.R.; Bolin, P.; Brancati, F.L.; Bray, G.A.; Clark, J.M.; Coday, M.; Crow, R.S.; Curtis, J.M.; Egan, C.M.; et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 2013, 369, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Look AHEAD Research Group; Pi-Sunyer, X.; Blackburn, G.; Brancati, F.L.; Bray, G.A.; Bright, R.; Clark, J.M.; Curtis, J.M.; Espeland, M.A.; Foreyt, J.P.; et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: One-year results of the look AHEAD trial. Diabetes Care 2007, 30, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Grandl, G.; Straub, L.; Rudigier, C.; Arnold, M.; Wueest, S.; Konrad, D.; Wolfrum, C. Short-term feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic high-fat diet. J. Physiol. 2018, 596, 4597–4609. [Google Scholar] [CrossRef]
- Johansen, M.Y.; MacDonald, C.S.; Hansen, K.B.; Karstoft, K.; Christensen, R.; Pedersen, M.; Hansen, L.S.; Zacho, M.; Wedell-Neergaard, A.S.; Nielsen, S.T.; et al. Effect of an Intensive Lifestyle Intervention on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. Jama 2017, 318, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Linmans, J.J.; Spigt, M.G.; Deneer, L.; Lucas, A.E.; de Bakker, M.; Gidding, L.G.; Linssen, R.; Knottnerus, J.A. Effect of lifestyle intervention for people with diabetes or prediabetes in real-world primary care: Propensity score analysis. BMC Fam. Pract. 2011, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Chee, W.S.S.; Gilcharan Singh, H.K.; Hamdy, O.; Mechanick, J.I.; Lee, V.K.M.; Barua, A.; Mohd Ali, S.Z.; Hussein, Z. Structured lifestyle intervention based on a trans-cultural diabetes-specific nutrition algorithm (tDNA) in individuals with type 2 diabetes: A randomized controlled trial. BMJ Open Diabetes Res. Care 2017, 5, e000384. [Google Scholar] [CrossRef] [Green Version]
- Ujvari, D.; Hulchiy, M.; Calaby, A.; Nybacka, A.; Bystrom, B.; Hirschberg, A.L. Lifestyle intervention up-regulates gene and protein levels of molecules involved in insulin signaling in the endometrium of overweight/obese women with polycystic ovary syndrome. Hum. Reprod. 2014, 29, 1526–1535. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.J.; Perez, A.; Scanlan, A.B.; Alos, V.A.; Whitaker, R.C.; Foster, G.D.; Ackermann, R.T.; Ciolino, J.D.; Homko, C. PREVENT-DM Comparative Effectiveness Trial of Lifestyle Intervention and Metformin. Am. J. Prev. Med. 2017, 52, 788–797. [Google Scholar] [CrossRef]
- Slentz, C.A.; Bateman, L.A.; Willis, L.H.; Granville, E.O.; Piner, L.W.; Samsa, G.P.; Setji, T.L.; Muehlbauer, M.J.; Huffman, K.M.; Bales, C.W.; et al. Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: A randomised controlled trial. Diabetologia 2016, 59, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.; Blaak, E.E.; Corpeleijn, E.; Saris, W.H.; de Bruin, T.W.; Feskens, E.J. Lifestyle intervention according to general recommendations improves glucose tolerance. Obes. Res. 2003, 11, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Roumen, C.; Corpeleijn, E.; Feskens, E.J.; Mensink, M.; Saris, W.H.; Blaak, E.E. Impact of 3-year lifestyle intervention on postprandial glucose metabolism: The SLIM study. Diabetes Med. 2008, 25, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Unwin, D.; Khalid, A.A.; Unwin, J.; Crocombe, D.; Delon, C.; Martyn, K.; Golubic, R.; Ray, S. Insights from a general practice service evaluation supporting a lower carbohydrate diet in patients with type 2 diabetes mellitus and prediabetes: A secondary analysis of routine clinic data including HbA1c, weight and prescribing over 6 years. BMJ. Nutr. Prev. Health 2020, 3, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Tessarolo Silva, F.; Amaral Medeiros, S.; Mekary, R.A.; Radenkovic, D. The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3774. [Google Scholar] [CrossRef] [PubMed]
- Van Zuuren, E.J.; Fedorowicz, Z.; Kuijpers, T.; Pijl, H. Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: A systematic review including GRADE assessments. Am. J. Clin. Nutr. 2018, 108, 300–331. [Google Scholar] [CrossRef] [Green Version]
- Sainsbury, E.; Kizirian, N.V.; Partridge, S.R.; Gill, T.; Colagiuri, S.; Gibson, A.A. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pr. 2018, 139, 239–252. [Google Scholar] [CrossRef]
- Jonsson, T.; Granfeldt, Y.; Ahren, B.; Branell, U.C.; Palsson, G.; Hansson, A.; Soderstrom, M.; Lindeberg, S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: A randomized cross-over pilot study. Cardiovasc. Diabetol. 2009, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masharani, U.; Sherchan, P.; Schloetter, M.; Stratford, S.; Xiao, A.; Sebastian, A.; Nolte Kennedy, M.; Frassetto, L. Metabolic and physiologic effects from consuming a hunter-gatherer (Paleolithic)-type diet in type 2 diabetes. Eur. J. Clin. Nutr. 2015, 69, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Lindeberg, S.; Jonsson, T.; Granfeldt, Y.; Borgstrand, E.; Soffman, J.; Sjostrom, K.; Ahren, B. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 2007, 50, 1795–1807. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.Z.; Day, A.; Brinkworth, G.D.; Sato, J.; Yamada, S.; Jonsson, T.; Beardsley, J.; Johnson, J.A.; Thabane, L.; Johnston, B.C. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: Systematic review and meta-analysis of published and unpublished randomized trial data. BMJ 2021, 372, m4743. [Google Scholar] [CrossRef] [PubMed]
- Snorgaard, O.; Poulsen, G.M.; Andersen, H.K.; Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000354. [Google Scholar] [CrossRef] [PubMed]
- Dansinger, M.L.; Gleason, J.A.; Griffith, J.L.; Selker, H.P.; Schaefer, E.J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: A randomized trial. JAMA 2005, 293, 43–53. [Google Scholar] [CrossRef] [PubMed]
- McClain, A.D.; Otten, J.J.; Hekler, E.B.; Gardner, C.D. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status. Diabetes Obes. Metab. 2013, 15, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, G.; Lean, M. Is There an Optimal Diet for Weight Management and Metabolic Health? Gastroenterology 2017, 152, 1739–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, B.C.; Kanters, S.; Bandayrel, K.; Wu, P.; Naji, F.; Siemieniuk, R.A.; Ball, G.D.; Busse, J.W.; Thorlund, K.; Guyatt, G.; et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 2014, 312, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Clifton, P.M.; Keogh, J.B. Effects of Different Weight Loss Approaches on CVD Risk. Curr. Atheroscler. Rep. 2018, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D.; Windt, J. Evidence that supports the prescription of low-carbohydrate high-fat diets: A narrative review. Br. J. Sports Med. 2017, 51, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Mauger, D.T.; Pelkman, C.L.; Zhao, G.; Townsend, S.M.; Kris-Etherton, P.M. Effects of moderate (MF) versus lower fat (LF) diets on lipids and lipoproteins: A meta-analysis of clinical trials in subjects with and without diabetes. J. Clin. Lipidol. 2009, 3, 19–32. [Google Scholar] [CrossRef]
- Garg, A. High-monounsaturated-fat diets for patients with diabetes mellitus: A meta-analysis. Am. J. Clin. Nutr. 1998, 67, 577S–582S. [Google Scholar] [CrossRef]
- Horikawa, C.; Yoshimura, Y.; Kamada, C.; Tanaka, S.; Tanaka, S.; Matsunaga, S.; Hanyu, O.; Araki, A.; Ito, H.; Tanaka, A.; et al. Is the Proportion of Carbohydrate Intake Associated with the Incidence of Diabetes Complications?-An Analysis of the Japan Diabetes Complications Study. Nutrients 2017, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Vitale, M.; Masulli, M.; Rivellese, A.A.; Babini, A.C.; Boemi, M.; Bonora, E.; Buzzetti, R.; Ciano, O.; Cignarelli, M.; Cigolini, M.; et al. Influence of dietary fat and carbohydrates proportions on plasma lipids, glucose control and low-grade inflammation in patients with type 2 diabetes-The TOSCA.IT Study. Eur. J. Nutr. 2016, 55, 1645–1651. [Google Scholar] [CrossRef] [Green Version]
- Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: A secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014, 2, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Churuangsuk, C.; Hall, J.; Reynolds, A.; Griffin, S.J.; Combet, E.; Lean, M.E.J. Diets for weight management in adults with type 2 diabetes: An umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022, 65, 14–36. [Google Scholar] [CrossRef]
- Nield, L.; Moore, H.J.; Hooper, L.; Cruickshank, J.K.; Vyas, A.; Whittaker, V.; Summerbell, C.D. Dietary advice for treatment of type 2 diabetes mellitus in adults. Cochrane Database Syst. Rev. 2007, 3, CD004097. [Google Scholar] [CrossRef] [Green Version]
- Franz, M.J. Diabetes Nutrition Therapy: Effectiveness, Macronutrients, Eating Patterns and Weight Management. Am. J. Med. Sci. 2016, 351, 374–379. [Google Scholar] [CrossRef]
- Trico, D.; Baldi, S.; Tulipani, A.; Frascerra, S.; Macedo, M.P.; Mari, A.; Ferrannini, E.; Natali, A. Mechanisms through which a small protein and lipid preload improves glucose tolerance. Diabetologia 2015, 58, 2503–2512. [Google Scholar] [CrossRef] [PubMed]
- Gentilcore, D.; Chaikomin, R.; Jones, K.L.; Russo, A.; Feinle-Bisset, C.; Wishart, J.M.; Rayner, C.K.; Horowitz, M. Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2062–2067. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.P.; Iliescu, R.G.; Thomas, C.E.; Aronne, L.J. Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels. Diabetes Care 2015, 38, e98–e99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Goh, H.J.; Govindharajulu, P.; Leow, M.K.; Henry, C.J. Postprandial glucose, insulin and incretin responses differ by test meal macronutrient ingestion sequence (PATTERN study). Clin. Nutr. 2020, 39, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Krezowski, P.A.; Nuttall, F.Q.; Gannon, M.C.; Bartosh, N.H. The effect of protein ingestion on the metabolic response to oral glucose in normal individuals. Am. J. Clin. Nutr. 1986, 44, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuttall, F.Q.; Mooradian, A.D.; Gannon, M.C.; Billington, C.; Krezowski, P. Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 1984, 7, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Clifton, P.M.; Galbraith, C.; Coles, L. Effect of a low dose whey/guar preload on glycemic control in people with type 2 diabetes--a randomised controlled trial. Nutr. J. 2014, 13, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, L.E.; Phillips, L.K.; Wu, T.; Bound, M.J.; Checklin, H.L.; Grivell, J.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. A whey/guar “preload” improves postprandial glycaemia and glycated haemoglobin levels in type 2 diabetes: A 12-week, single-blind, randomized, placebo-controlled trial. Diabetes Obes. Metab. 2019, 21, 930–938. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Leoncini, R.; Casnici, C.; Marelli, O.; Col, A.; Tamini, S.; Lucchetti, E.; Cicolini, S.; Abbruzzese, L.; Cella, S.G.; et al. Whey Proteins Reduce Appetite, Stimulate Anorexigenic Gastrointestinal Peptides and Improve Glucometabolic Homeostasis in Young Obese Women. Nutrients 2019, 11, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, S.; Liu, Y.; Iizuka, K.; Kuwata, H.; Seino, Y.; Yabe, D. A Review of Recent Findings on Meal Sequence: An Attractive Dietary Approach to Prevention and Management of Type 2 Diabetes. Nutrients 2020, 12, 2502. [Google Scholar] [CrossRef]
- Wadden, T.A.; Tronieri, J.S.; Butryn, M.L. Lifestyle modification approaches for the treatment of obesity in adults. Am. Psychol. 2020, 75, 235–251. [Google Scholar] [CrossRef]
- American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S46–S60. [Google Scholar] [CrossRef] [Green Version]
- Saslow, L.R.; Mason, A.E.; Kim, S.; Goldman, V.; Ploutz-Snyder, R.; Bayandorian, H.; Daubenmier, J.; Hecht, F.M.; Moskowitz, J.T. An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial. J. Med. Internet Res. 2017, 19, e36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pot, G.K.; Battjes-Fries, M.C.; Patijn, O.N.; Pijl, H.; Witkamp, R.F.; de Visser, M.; van der Zijl, N.; de Vries, M.; Voshol, P.J. Nutrition and lifestyle intervention in type 2 diabetes: Pilot study in the Netherlands showing improved glucose control and reduction in glucose lowering medication. BMJ. Nutr. Prev. Health 2019, 2, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.E.; Styn, M.A.; Sereika, S.M.; Conroy, M.B.; Ye, L.; Glanz, K.; Sevick, M.A.; Ewing, L.J. Using mHealth technology to enhance self-monitoring for weight loss: A randomized trial. Am. J. Prev. Med. 2012, 43, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Theodoropoulou, K.T.; Dimitriadis, G.D.; Tentolouris, N.; Darviri, C.; Chrousos, G.P. Diabetes distress is associated with individualized glycemic control in adults with type 2 diabetes mellitus. Hormones 2020, 19, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Gummesson, A.; Nyman, E.; Knutsson, M.; Karpefors, M. Effect of weight reduction on glycated haemoglobin in weight loss trials in patients with type 2 diabetes. Diabetes Obes. Metab. 2017, 19, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.; Blaak, E.E.; Vidal, H.; De Bruin, T.W.; Glatz, J.F.; Saris, W.H. Lifestyle changes and lipid metabolism gene expression and protein content in skeletal muscle of subjects with impaired glucose tolerance. Diabetologia 2003, 46, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Savikj, M.; Gabriel, B.M.; Alm, P.S.; Smith, J.; Caidahl, K.; Bjornholm, M.; Fritz, T.; Krook, A.; Zierath, J.R.; Wallberg-Henriksson, H. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: A randomised crossover trial. Diabetologia 2019, 62, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Aqeel, M.; Forster, A.; Richards, E.A.; Hennessy, E.; McGowan, B.; Bhadra, A.; Guo, J.; Gelfand, S.; Delp, E.; Eicher-Miller, H.A. The Effect of Timing of Exercise and Eating on Postprandial Response in Adults: A Systematic Review. Nutrients 2020, 12, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, F.G.; Menshikova, E.V.; Azuma, K.; Radikova, Z.; Kelley, C.A.; Ritov, V.B.; Kelley, D.E. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 2008, 57, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Dunkley, A.J.; Charles, K.; Gray, L.J.; Camosso-Stefinovic, J.; Davies, M.J.; Khunti, K. Effectiveness of interventions for reducing diabetes and cardiovascular disease risk in people with metabolic syndrome: Systematic review and mixed treatment comparison meta-analysis. Diabetes Obes. Metab. 2012, 14, 616–625. [Google Scholar] [CrossRef]
- Schellenberg, E.S.; Dryden, D.M.; Vandermeer, B.; Ha, C.; Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Terranova, C.O.; Brakenridge, C.L.; Lawler, S.P.; Eakin, E.G.; Reeves, M.M. Effectiveness of lifestyle-based weight loss interventions for adults with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2015, 17, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Brinks, J.; Fowler, A.; Franklin, B.A.; Dulai, J. Lifestyle Modification in Secondary Prevention: Beyond Pharmacotherapy. Am. J. Lifestyle Med. 2017, 11, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Dias, S.; Hoffmann, G. Impact of long-term lifestyle programmes on weight loss and cardiovascular risk factors in overweight/obese participants: A systematic review and network meta-analysis. Syst. Rev. 2014, 3, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Pei, J.H.; Kuang, J.; Chen, H.M.; Chen, Z.; Li, Z.W.; Yang, H.Z. Effect of lifestyle intervention in patients with type 2 diabetes: A meta-analysis. Metabolism 2015, 64, 338–347. [Google Scholar] [CrossRef]
- Tuso, P. Prediabetes and lifestyle modification: Time to prevent a preventable disease. Perm. J. 2014, 18, 88–93. [Google Scholar] [CrossRef]
- Looney, S.M.; Raynor, H.A. Behavioral lifestyle intervention in the treatment of obesity. Health Serv. Insights 2013, 6, 15–31. [Google Scholar] [CrossRef]
- Solomon, T.P.; Haus, J.M.; Kelly, K.R.; Rocco, M.; Kashyap, S.R.; Kirwan, J.P. Improved pancreatic beta-cell function in type 2 diabetic patients after lifestyle-induced weight loss is related to glucose-dependent insulinotropic polypeptide. Diabetes Care 2010, 33, 1561–1566. [Google Scholar] [CrossRef] [Green Version]
- Baak, M.A.; Pramono, A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraca, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of different types of regular exercise on physical fittness in adults with overweight or obesity: Systematic review and meta-analyses. Obes. Rev. 2021, 22, e13239. [Google Scholar] [CrossRef]
- Batacan, R.B., Jr.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.M.; Wooldridge, D.; Grellner, W.J.; Windsor, S.; Isley, W.L.; Klein, S.; Harris, W.S. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: Effects of insulin sensitization therapy. Diabetes 2003, 52, 675–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, D.E.; Kraegen, E.W.; Chisholm, D.J. Effects of exercise training on in vivo insulin action in individual tissues of the rat. J. Clin. Investig. 1985, 76, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Gastaldelli, A.; Horowitz, J.F.; Endert, E.; Wolfe, R.R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 1993, 265, E380–E391. [Google Scholar] [CrossRef] [Green Version]
- Wahren, J.; Felig, P.; Ahlborg, G.; Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Investig. 1971, 50, 2715–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clutter, W.E.; Bier, D.M.; Shah, S.D.; Cryer, P.E. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J. Clin. Investig. 1980, 66, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Moghetti, P.; Bacchi, E.; Brangani, C.; Dona, S.; Negri, C. Metabolic Effects of Exercise. Front Horm. Res. 2016, 47, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Coderre, L.; Kandror, K.V.; Vallega, G.; Pilch, P.F. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J. Biol. Chem. 1995, 270, 27584–27588. [Google Scholar] [CrossRef] [Green Version]
- Leighton, B.; Blomstrand, E.; Challiss, R.A.; Lozeman, F.J.; Parry-Billings, M.; Dimitriadis, G.D.; Newsholme, E.A. Acute and chronic effects of strenuous exercise on glucose metabolism in isolated, incubated soleus muscle of exercise-trained rats. Acta Physiol. Scand. 1989, 136, 177–184. [Google Scholar] [CrossRef]
- Ploug, T.; Galbo, H.; Richter, E.A. Increased muscle glucose uptake during contractions: No need for insulin. Am. J. Physiol. 1984, 247, E726–E731. [Google Scholar] [CrossRef]
- Jensen, T.E.; Richter, E.A. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 2012, 590, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Gejl, K.D.; Ortenblad, N.; Andersson, E.; Plomgaard, P.; Holmberg, H.C.; Nielsen, J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J. Physiol. 2017, 595, 2809–2821. [Google Scholar] [CrossRef] [PubMed]
- Mulya, A.; Haus, J.M.; Solomon, T.P.; Kelly, K.R.; Malin, S.K.; Rocco, M.; Barkoukis, H.; Kirwan, J.P. Exercise training-induced improvement in skeletal muscle PGC-1alpha-mediated fat metabolism is independent of dietary glycemic index. Obesity 2017, 25, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newsholme, E.A. Sounding Board. A possible metabolic basis for the control of body weight. N. Engl. J. Med. 1980, 302, 400–405. [Google Scholar] [CrossRef]
- Codella, R.; Ialacqua, M.; Terruzzi, I.; Luzi, L. May the force be with you: Why resistance training is essential for subjects with type 2 diabetes mellitus without complications. Endocrine 2018, 62, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Kido, K.; Ato, S.; Yokokawa, T.; Makanae, Y.; Sato, K.; Fujita, S. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation. Physiol. Rep. 2016, 4, e12907. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Hoffman, J.R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A.; Wang, R.; et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol. Rep. 2015, 3, e12472. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, G.; Parry-Billings, M.; Bevan, S.; Dunger, D.; Piva, T.; Krause, U.; Wegener, G.; Newsholme, E.A. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro. Biochem. J. 1992, 285 Pt 1, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, G.; Parry-Billings, M.; Dunger, D.; Bevan, S.; Colquhoun, A.; Taylor, A.; Calder, P.; Krause, U.; Wegener, G.; Newsholme, E.A. Effects of in-vivo administration of insulin-like growth factor-I on the rate of glucose utilization in the soleus muscle of the rat. J. Endocrinol. 1992, 133, 37–43. [Google Scholar] [CrossRef]
- Poehlman, E.T.; Dvorak, R.V.; DeNino, W.F.; Brochu, M.; Ades, P.A. Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: A controlled randomized trial. J. Clin. Endocrinol. Metab. 2000, 85, 2463–2468. [Google Scholar] [CrossRef]
- Paquin, J.; Lagace, J.C.; Brochu, M.; Dionne, I.J. Exercising for Insulin Sensitivity—Is There a Mechanistic Relationship With Quantitative Changes in Skeletal Muscle Mass? Front Physiol. 2021, 12, 656909. [Google Scholar] [CrossRef]
- Tjonna, A.E.; Lee, S.J.; Rognmo, O.; Stolen, T.O.; Bye, A.; Haram, P.M.; Loennechen, J.P.; Al-Share, Q.Y.; Skogvoll, E.; Slordahl, S.A.; et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation 2008, 118, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; American College of Sports, M. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Cleve. Clin. J. Med. 2017, 84, S15–S21. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef] [Green Version]
- De Matos, M.A.; Vieira, D.V.; Pinhal, K.C.; Lopes, J.F.; Dias-Peixoto, M.F.; Pauli, J.R.; de Castro Magalhaes, F.; Little, J.P.; Rocha-Vieira, E.; Amorim, F.T. High-Intensity Interval Training Improves Markers of Oxidative Metabolism in Skeletal Muscle of Individuals With Obesity and Insulin Resistance. Front Physiol. 2018, 9, 1451. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Manzano, P.; Rodriguez-Ayllon, M.; Acosta, F.M.; Niederseer, D.; Niebauer, J. Beyond general resistance training. Hypertrophy versus muscular endurance training as therapeutic interventions in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13007. [Google Scholar] [CrossRef]
- Iaccarino, G.; Franco, D.; Sorriento, D.; Strisciuglio, T.; Barbato, E.; Morisco, C. Modulation of Insulin Sensitivity by Exercise Training: Implications for Cardiovascular Prevention. J. Cardiovasc. Transl. Res. 2021, 14, 256–270. [Google Scholar] [CrossRef]
- Palermi, S.; Iacono, O.; Sirico, F.; Modestino, M.; Ruosi, C.; Spera, R.; De Luca, M. The complex relationship between physical activity and diabetes: An overview. J. Basic Clin. Physiol. Pharm. 2021. (Online ahead of print). [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 17. Diabetes Advocacy: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S254–S255. [Google Scholar] [CrossRef]
- Sulli, G.; Manoogian, E.N.C.; Taub, P.R.; Panda, S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharm. Sci. 2018, 39, 812–827. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Circadian rhythms: A regulator of gastrointestinal health and dysfunction. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Bozek, K.; Relogio, A.; Kielbasa, S.M.; Heine, M.; Dame, C.; Kramer, A.; Herzel, H. Regulation of clock-controlled genes in mammals. PLoS ONE 2009, 4, e4882. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, J.; Sassone-Corsi, P. Structural and functional features of transcription factors controlling the circadian clock. Curr. Opin. Genet. Dev. 2005, 15, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Menet, J.S.; Pescatore, S.; Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 2014, 28, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalsbeek, A.; la Fleur, S.; Fliers, E. Circadian control of glucose metabolism. Mol. Metab. 2014, 3, 372–383. [Google Scholar] [CrossRef]
- Manoogian, E.N.C.; Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 2017, 39, 59–67. [Google Scholar] [CrossRef]
- Goel, N.; Stunkard, A.J.; Rogers, N.L.; Van Dongen, H.P.; Allison, K.C.; O’Reardon, J.P.; Ahima, R.S.; Cummings, D.E.; Heo, M.; Dinges, D.F. Circadian rhythm profiles in women with night eating syndrome. J. Biol. Rhythm. 2009, 24, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadacca, L.A.; Lamia, K.A.; deLemos, A.S.; Blum, B.; Weitz, C.J. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 2011, 54, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Kalsbeek, A.; Foppen, E.; Schalij, I.; Van Heijningen, C.; van der Vliet, J.; Fliers, E.; Buijs, R.M. Circadian control of the daily plasma glucose rhythm: An interplay of GABA and glutamate. PLoS ONE 2008, 3, e3194. [Google Scholar] [CrossRef] [PubMed]
- Vieira, E.; Merino, B.; Quesada, I. Role of the clock gene Rev-erbalpha in metabolism and in the endocrine pancreas. Diabetes Obes. Metab. 2015, 17 (Suppl. 1), 106–114. [Google Scholar] [CrossRef]
- Muhlbauer, E.; Wolgast, S.; Finckh, U.; Peschke, D.; Peschke, E. Indication of circadian oscillations in the rat pancreas. FEBS Lett 2004, 564, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 2009, 200, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.; Sassone-Corsi, P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.; Arendt, J.; Hampton, S.M.; English, J.; Morgan, L.M. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J. Endocrinol. 2001, 171, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Zimberg, I.Z.; Fernandes Junior, S.A.; Crispim, C.A.; Tufik, S.; de Mello, M.T. Metabolic impact of shift work. Work 2012, 41 (Suppl. 1), 4376–4383. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.J.; Kaur, B.; Quek, R.Y.C. Chrononutrition in the management of diabetes. Nutr. Diabetes 2020, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, R.; Wan, K.; Wakamatsu, H.; Aida, R.; Moriya, T.; Akiyama, M.; Shibata, S. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001, 6, 269–278. [Google Scholar] [CrossRef]
- Damiola, F.; Le Minh, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14, 2950–2961. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Yang, J.N.; Garcia, J.I.; Myers, S.; Bozzi, I.; Wang, W.; Buxton, O.M.; Shea, S.A.; Scheer, F.A. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl. Acad. Sci. USA 2015, 112, E2225–E2234. [Google Scholar] [CrossRef] [Green Version]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int. J. Environ. Res. Public Health 2019, 17, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel-Mahan, K.L.; Patel, V.R.; de Mateo, S.; Orozco-Solis, R.; Ceglia, N.J.; Sahar, S.; Dilag-Penilla, S.A.; Dyar, K.A.; Baldi, P.; Sassone-Corsi, P. Reprogramming of the circadian clock by nutritional challenge. Cell 2013, 155, 1464–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, T.P.; Chambers, E.S.; Jeukendrup, A.E.; Toogood, A.A.; Blannin, A.K. The effect of feeding frequency on insulin and ghrelin responses in human subjects. Br. J. Nutr. 2008, 100, 810–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirao, A.; Tahara, Y.; Kimura, I.; Shibata, S. A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS ONE 2009, 4, e6909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, H.; Tahara, Y.; Saito, K.; Ohnishi, N.; Kubo, Y.; Seo, Y.; Otsuka, M.; Fuse, Y.; Ohura, Y.; Hirao, A.; et al. Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci. Rep. 2012, 2, 711. [Google Scholar] [CrossRef] [Green Version]
- Hirao, A.; Nagahama, H.; Tsuboi, T.; Hirao, M.; Tahara, Y.; Shibata, S. Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2::Luc knock-in mice under two meals per day feeding. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G1045–G1053. [Google Scholar] [CrossRef] [Green Version]
- Oike, H.; Oishi, K.; Kobori, M. Nutrients, Clock Genes, and Chrononutrition. Curr. Nutr. Rep. 2014, 3, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, S.; Broglio, F.; Settanni, F.; Parasiliti Caprino, M.; Ianniello, A.; Mengozzi, G.; De Francesco, A.; Fadda, M.; Fedele, D.; Guggino, A.; et al. Effects of meal timing on changes in circulating epinephrine, norepinephrine, and acylated ghrelin concentrations: A pilot study. Nutr. Diabetes 2017, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Ozaki, M.; Kang, M.I.; Sasaki, H.; Fukazawa, M.; Iwakami, T.; Lim, P.J.; Kim, H.K.; Aoyama, S.; Shibata, S. Effects of Meal Timing on Postprandial Glucose Metabolism and Blood Metabolites in Healthy Adults. Nutrients 2018, 10, 1763. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.J.; Chuang, S.Y.; Chang, H.Y.; Pan, W.H. Energy intake at different times of the day: Its association with elevated total and LDL cholesterol levels. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 390–397. [Google Scholar] [CrossRef]
- Xue, P.; Tan, X.; Tang, X.; Benedict, C. Chronotype preference and glycemic control in type 2 diabetes. Sleep 2021, 44, zsab195. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Phillips-Eakley, A.K.; Smith, K.N. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism. Adv. Nutr. 2016, 7, 613S–621S. [Google Scholar] [CrossRef]
- Dhurandhar, E.J. True, true, unrelated? A review of recent evidence for a causal influence of breakfast on obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Ballon, A.; Neuenschwander, M.; Schlesinger, S. Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Nutr. 2019, 149, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Odegaard, A.O.; Jacobs, D.R., Jr.; Steffen, L.M.; Van Horn, L.; Ludwig, D.S.; Pereira, M.A. Breakfast frequency and development of metabolic risk. Diabetes Care 2013, 36, 3100–3106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betts, J.A.; Richardson, J.D.; Chowdhury, E.A.; Holman, G.D.; Tsintzas, K.; Thompson, D. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am. J. Clin. Nutr. 2014, 100, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, J.P.; Cardel, M.I.; Cellini, J.; Hu, F.B.; Guasch-Ferre, M. Breakfast Skipping, Body Composition, and Cardiometabolic Risk: A Systematic Review and Meta-Analysis of Randomized Trials. Obesity 2020, 28, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Rosi, A.; Martini, D.; Scazzina, F.; Dall’Aglio, E.; Leonardi, R.; Monti, L.; Fasano, F.; Di Dio, C.; Riggio, L.; Brighenti, F. Nature and Cognitive Perception of 4 Different Breakfast Meals Influence Satiety-Related Sensations and Postprandial Metabolic Responses but Have Little Effect on Food Choices and Intake Later in the Day in a Randomized Crossover Trial in Healthy Men. J. Nutr. 2018, 148, 1536–1546. [Google Scholar] [CrossRef]
- Chowdhury, E.A.; Richardson, J.D.; Holman, G.D.; Tsintzas, K.; Thompson, D.; Betts, J.A. The causal role of breakfast in energy balance and health: A randomized controlled trial in obese adults. Am. J. Clin. Nutr. 2016, 103, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol. Int. 2014, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Wainstein, J.; Landau, Z.; Raz, I.; Ahren, B.; Chapnik, N.; Ganz, T.; Menaged, M.; Barnea, M.; Bar-Dayan, Y.; et al. Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals With Diabetes: A Randomized Clinical Trial. Diabetes Care 2017, 40, 1573–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nas, A.; Mirza, N.; Hagele, F.; Kahlhofer, J.; Keller, J.; Rising, R.; Kufer, T.A.; Bosy-Westphal, A. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am. J. Clin. Nutr. 2017, 105, 1351–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, F.; Ogata, H.; Omi, N.; Nagasaka, S.; Yamaguchi, S.; Hibi, M.; Tokuyama, K. Effect of breakfast skipping on diurnal variation of energy metabolism and blood glucose. Obes. Res. Clin Pr. 2014, 8, e201–e298. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Suwa, K. Association of hyperglycemia in a general Japanese population with late-night-dinner eating alone, but not breakfast skipping alone. J. Diabetes Metab. Disord. 2015, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, L.M.; Aspostolakou, F.; Wright, J.; Gama, R. Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: A possible link? Ann. Clin. Biochem. 1999, 36 Pt 4, 447–450. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations. Nutrients 2019, 11, 1436. [Google Scholar] [CrossRef] [Green Version]
- Toh, D.W.K.; Koh, E.S.; Kim, J.E. Lowering breakfast glycemic index and glycemic load attenuates postprandial glycemic response: A systematically searched meta-analysis of randomized controlled trials. Nutrition 2020, 71, 110634. [Google Scholar] [CrossRef]
- Kim, H.; Stote, K.S.; Behall, K.M.; Spears, K.; Vinyard, B.; Conway, J.M. Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, beta-glucan: A dose response study in obese women with increased risk for insulin resistance. Eur. J. Nutr. 2009, 48, 170–175. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Chaloulos, P.; Papalexi, A.; Mandala, I. Effects of bran size and carob seed flour of optimized bread formulas on glycemic responses in humans: A randomized clinical trial. J. Funct. Foods 2018, 46, 345–355. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Orfanakos, N.; Farajian, P.; Kapetanakou, A.E.; Makariti, I.P.; Grivokostopoulos, N.; Ha, M.A.; Skandamis, P.N. Short-term effects of a low glycemic index carob-containing snack on energy intake, satiety, and glycemic response in normal-weight, healthy adults: Results from two randomized trials. Nutrition 2017, 42, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Gourdomichali, T.; Papakonstantinou, E. Short-term effects of six Greek honey varieties on glycemic response: A randomized clinical trial in healthy subjects. Eur. J. Clin. Nutr. 2018, 72, 1709–1716. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Wainstein, J.; Landau, Z.; Ahren, B.; Barnea, M.; Bar-Dayan, Y.; Froy, O. High-energy breakfast based on whey protein reduces body weight, postprandial glycemia and HbA1C in Type 2 diabetes. J. Nutr. Biochem. 2017, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Froy, O.; Wainstein, J.; Boaz, M. Meal timing and composition influence ghrelin levels, appetite scores and weight loss maintenance in overweight and obese adults. Steroids 2012, 77, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.L.; Dunn, A.; Johnson, D.; Adams, J.D.; Baum, J.I. Breakfast Macronutrient Composition Influences Thermic Effect of Feeding and Fat Oxidation in Young Women Who Habitually Skip Breakfast. Nutrients 2016, 8, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, E.; Lange, K.; Clifton, P. Effect of carbohydrate restriction in the first meal after an overnight fast on glycemic control in people with type 2 diabetes: A randomized trial. Am. J. Clin. Nutr. 2016, 104, 1285–1291. [Google Scholar] [CrossRef] [Green Version]
- Rabinovitz, H.R.; Boaz, M.; Ganz, T.; Jakubowicz, D.; Matas, Z.; Madar, Z.; Wainstein, J. Big breakfast rich in protein and fat improves glycemic control in type 2 diabetics. Obesity 2014, 22, E46–E54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubowicz, D.; Wainstein, J.; Ahren, B.; Bar-Dayan, Y.; Landau, Z.; Rabinovitz, H.R.; Froy, O. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: A randomised clinical trial. Diabetologia 2015, 58, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Triantafillidou, D.; Panagiotakos, D.B.; Iraklianou, S.; Berdanier, C.D.; Zampelas, A. A high protein low fat meal does not influence glucose and insulin responses in obese individuals with or without type 2 diabetes. J. Hum. Nutr. Diet. 2010, 23, 183–189. [Google Scholar] [CrossRef]
- Dong, J.Y.; Zhang, Z.L.; Wang, P.Y.; Qin, L.Q. Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: Meta-analysis of randomised controlled trials. Br. J. Nutr. 2013, 110, 781–789. [Google Scholar] [CrossRef]
- Ericson, U.; Hellstrand, S.; Brunkwall, L.; Schulz, C.A.; Sonestedt, E.; Wallstrom, P.; Gullberg, B.; Wirfalt, E.; Orho-Melander, M. Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1065–1080. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Becerra-Tomas, N.; Ruiz-Canela, M.; Corella, D.; Schroder, H.; Estruch, R.; Ros, E.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; et al. Total and subtypes of dietary fat intake and risk of type 2 diabetes mellitus in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 2017, 105, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Fu, O.; Yao, L.; Sun, L.; Zhuge, F.; Fu, Z. Differential responses of peripheral circadian clocks to a short-term feeding stimulus. Mol. Biol. Rep. 2012, 39, 9783–9789. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Hata, S.; Sone, Y. Effects of a late supper on digestion and the absorption of dietary carbohydrates in the following morning. J. Physiol. Anthr. 2013, 32, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.L.; Coates, A.M.; Dorrian, J.; Kennaway, D.J.; Wittert, G.A.; Heilbronn, L.K.; Pajcin, M.; Della Vedova, C.; Gupta, C.C.; Banks, S. Timing of food intake during simulated night shift impacts glucose metabolism: A controlled study. Chronobiol. Int. 2017, 34, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Bandin, C.; Scheer, F.A.; Luque, A.J.; Avila-Gandia, V.; Zamora, S.; Madrid, J.A.; Gomez-Abellan, P.; Garaulet, M. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int. J. Obes. 2015, 39, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Minguez, J.; Saxena, R.; Bandin, C.; Scheer, F.A.; Garaulet, M. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: A randomized, cross-over study. Clin. Nutr. 2018, 37, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Chowdhury, T.A.; Hussain, S.; Syed, A.; Karamat, A.; Helmy, A.; Waqar, S.; Ali, S.; Dabhad, A.; Seal, S.T.; et al. Ramadan and Diabetes: A Narrative Review and Practice Update. Diabetes 2020, 11, 2477–2520. [Google Scholar] [CrossRef]
- Garaulet, M.; Gomez-Abellan, P.; Alburquerque-Bejar, J.J.; Lee, Y.C.; Ordovas, J.M.; Scheer, F.A. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, S.; Kajiyama, S.; Hashimoto, Y.; Nitta, A.; Miyawaki, T.; Matsumoto, S.; Ozasa, N.; Tanaka, M.; Kajiyama, S.; Fukui, M. Consuming snacks mid-afternoon compared with just after lunch improves mean amplitude of glycaemic excursions in patients with type 2 diabetes: A randomized crossover clinical trial. Diabetes Metab. 2018, 44, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Kessler, K.; Hornemann, S.; Petzke, K.J.; Kemper, M.; Kramer, A.; Pfeiffer, A.F.; Pivovarova, O.; Rudovich, N. The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: A randomized controlled trial. Sci. Rep. 2017, 7, 44170. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, M.; Harrington, D.; Starkey, S.; Williams, P.; Hampton, S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin. Nutr. 2014, 33, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Scheer, F.A.; Morris, C.J.; Shea, S.A. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity 2013, 21, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 2013, 21, 2504–2512. [Google Scholar] [CrossRef]
- Chen, H.J.; Wang, Y.; Cheskin, L.J. Relationship between frequency of eating and cardiovascular disease mortality in U.S. adults: The NHANES III follow-up study. Ann. Epidemiol. 2016, 26, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.P. The need for controlled studies of the effects of meal frequency on health. Lancet 2005, 365, 1978–1980. [Google Scholar] [CrossRef]
- Kahleova, H.; Belinova, L.; Malinska, H.; Oliyarnyk, O.; Trnovska, J.; Skop, V.; Kazdova, L.; Dezortova, M.; Hajek, M.; Tura, A.; et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: A randomised crossover study. Diabetologia 2014, 57, 1552–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Wolever, T.M.; Vuksan, V.; Brighenti, F.; Cunnane, S.C.; Rao, A.V.; Jenkins, A.L.; Buckley, G.; Patten, R.; Singer, W.; et al. Nibbling versus gorging: Metabolic advantages of increased meal frequency. N. Engl. J. Med. 1989, 321, 929–934. [Google Scholar] [CrossRef]
- Seagle, H.M.; Strain, G.W.; Makris, A.; Reeves, R.S.; American Dietetic Association. Position of the American Dietetic Association: Weight management. J. Am. Diet. Assoc. 2009, 109, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Kechribari, I.; Mitrou, P.; Trakakis, E.; Vassiliadi, D.; Georgousopoulou, E.; Zampelas, A.; Kontogianni, M.D.; Dimitriadis, G. Effect of meal frequency on glucose and insulin levels in women with polycystic ovary syndrome: A randomised trial. Eur. J. Clin. Nutr. 2016, 70, 646. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, E.; Kontogianni, M.D.; Mitrou, P.; Magriplis, E.; Vassiliadi, D.; Nomikos, T.; Lambadiari, V.; Georgousopoulou, E.; Dimitriadis, G. Effects of 6 vs 3 eucaloric meal patterns on glycaemic control and satiety in people with impaired glucose tolerance or overt type 2 diabetes: A randomized trial. Diabetes Metab. 2018, 44, 226–234. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Ocana, A.; Jenkins, A.L.; Wolever, T.M.; Vuksan, V.; Katzman, L.; Hollands, M.; Greenberg, G.; Corey, P.; Patten, R.; et al. Metabolic advantages of spreading the nutrient load: Effects of increased meal frequency in non-insulin-dependent diabetes. Am. J. Clin. Nutr. 1992, 55, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Jakubowicz, D.; Landau, Z.; Tsameret, S.; Wainstein, J.; Raz, I.; Ahren, B.; Chapnik, N.; Barnea, M.; Ganz, T.; Menaged, M.; et al. Reduction in Glycated Hemoglobin and Daily Insulin Dose Alongside Circadian Clock Upregulation in Patients With Type 2 Diabetes Consuming a Three-Meal Diet: A Randomized Clinical Trial. Diabetes Care 2019, 42, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Lloren, J.I.; Mashchak, A.; Hill, M.; Fraser, G.E. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J. Nutr. 2017, 147, 1722–1728. [Google Scholar] [CrossRef] [Green Version]
- Farshchi, H.R.; Taylor, M.A.; Macdonald, I.A. Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur. J. Clin. Nutr. 2004, 58, 1071–1077. [Google Scholar] [CrossRef]
- Farshchi, H.R.; Taylor, M.A.; Macdonald, I.A. Beneficial metabolic effects of regular meal frequency on dietary thermogenesis, insulin sensitivity, and fasting lipid profiles in healthy obese women. Am. J. Clin. Nutr. 2005, 81, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, J.; Christiansen, C.; Thomsen, C.; Poulsen, P.L.; Vestergaard, S.; Steinov, A.; Rasmussen, L.H.; Rasmussen, O.; Hermansen, K. Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diabetes Care 1993, 16, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.; Mann, J.I.; Ball, M.J. Metabolic effects of alterations in meal frequency in type 2 diabetes. Diabetes Care 1997, 20, 1651–1654. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Ball, M.J.; Duncan, A.W.; Mann, J. Effect of isoenergetic intake of three or nine meals on plasma lipoproteins and glucose metabolism. Am. J. Clin. Nutr. 1993, 57, 446–451. [Google Scholar] [CrossRef]
- Salehi, M.; Kazemi, A.; Hasan Zadeh, J. The effects of 6 isocaloric meals pattern on blood lipid profile, glucose, hemoglobin a1c, insulin and malondialdehyde in type 2 diabetic patients: A randomized clinical trial. Iran J. Med. Sci. 2014, 39, 433–439. [Google Scholar] [PubMed]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014, 20, 991–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamovich, Y.; Rousso-Noori, L.; Zwighaft, Z.; Neufeld-Cohen, A.; Golik, M.; Kraut-Cohen, J.; Wang, M.; Han, X.; Asher, G. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 2014, 19, 319–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veech, R.L.; Bradshaw, P.C.; Clarke, K.; Curtis, W.; Pawlosky, R.; King, M.T. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017, 69, 305–314. [Google Scholar] [CrossRef]
- Di Francesco, A.; Di Germanio, C.; Bernier, M.; de Cabo, R. A time to fast. Science 2018, 362, 770–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawley, J.A.; Sassone-Corsi, P.; Zierath, J.R. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: From mice to men. Diabetologia 2020, 63, 2253–2259. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e105. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of Intermittent Compared With Continuous Energy Restricted Diet on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Noninferiority Trial. JAMA Netw Open 2018, 1, e180756. [Google Scholar] [CrossRef]
- Carter, S.; Clifton, P.M.; Keogh, J.B. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res. Clin. Pr. 2019, 151, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varady, K.A.; Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Haus, J.M.; Hoddy, K.K.; Calvo, Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J. 2013, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catenacci, V.A.; Pan, Z.; Ostendorf, D.; Brannon, S.; Gozansky, W.S.; Mattson, M.P.; Martin, B.; MacLean, P.S.; Melanson, E.L.; Troy Donahoo, W. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity 2016, 24, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 930–938. [Google Scholar] [CrossRef]
- Gabel, K.; Kroeger, C.M.; Trepanowski, J.F.; Hoddy, K.K.; Cienfuegos, S.; Kalam, F.; Varady, K.A. Differential Effects of Alternate-Day Fasting Versus Daily Calorie Restriction on Insulin Resistance. Obesity 2019, 27, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Hoddy, K.K.; Kroeger, C.M.; Trepanowski, J.F.; Barnosky, A.; Bhutani, S.; Varady, K.A. Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults. Obesity 2014, 22, 2524–2531. [Google Scholar] [CrossRef]
- Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2011, 35, 714–727. [Google Scholar] [CrossRef] [Green Version]
- Harvie, M.; Wright, C.; Pegington, M.; McMullan, D.; Mitchell, E.; Martin, B.; Cutler, R.G.; Evans, G.; Whiteside, S.; Maudsley, S.; et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013, 110, 1534–1547. [Google Scholar] [CrossRef] [Green Version]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef] [Green Version]
- Parr, E.B.; Devlin, B.L.; Lim, K.H.C.; Moresi, L.N.Z.; Geils, C.; Brennan, L.; Hawley, J.A. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020, 12, 3228. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Raynor, H.A.; Li, F.; Cardoso, C. Daily pattern of energy distribution and weight loss. Physiol. Behav. 2018, 192, 167172. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, J.; Hoddy, K.K.; Jambazian, P.; Varady, K.A. Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutr. Rev. 2014, 72, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; La Bounty, P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015, 73, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Carlson, O.; Martin, B.; Stote, K.S.; Golden, E.; Maudsley, S.; Najjar, S.S.; Ferrucci, L.; Ingram, D.K.; Longo, D.L.; Rumpler, W.V.; et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 2007, 56, 1729–1734. [Google Scholar] [CrossRef] [Green Version]
- Stote, K.S.; Baer, D.J.; Spears, K.; Paul, D.R.; Harris, G.K.; Rumpler, W.V.; Strycula, P.; Najjar, S.S.; Ferrucci, L.; Ingram, D.K.; et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am. J. Clin. Nutr. 2007, 85, 981–988. [Google Scholar] [CrossRef]
- Williams, K.V.; Mullen, M.L.; Kelley, D.E.; Wing, R.R. The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care 1998, 21, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clifton, P.M.; Keogh, J.B. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res. Clin. Pr. 2016, 122, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Nagasaki, M.; Ren, M.; Bajotto, G.; Oshida, Y.; Sato, Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res. Clin. Pr. 2003, 62, 139–148. [Google Scholar] [CrossRef]
- Jarvill-Taylor, K.J.; Anderson, R.A.; Graves, D.J. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J. Am. Coll. Nutr. 2001, 20, 327–336. [Google Scholar] [CrossRef]
- Broadhurst, C.L.; Polansky, M.M.; Anderson, R.A. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J. Agric. Food Chem. 2000, 48, 849–852. [Google Scholar] [CrossRef]
- Liu, Y.; Cotillard, A.; Vatier, C.; Bastard, J.P.; Fellahi, S.; Stevant, M.; Allatif, O.; Langlois, C.; Bieuvelet, S.; Brochot, A.; et al. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial. PLoS ONE 2015, 10, e0138646. [Google Scholar] [CrossRef] [PubMed]
- Zare, R.; Nadjarzadeh, A.; Zarshenas, M.M.; Shams, M.; Heydari, M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin. Nutr. 2019, 38, 549–556. [Google Scholar] [CrossRef]
- Gupta Jain, S.; Puri, S.; Misra, A.; Gulati, S.; Mani, K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: A randomized double -blind control trial. Lipids Health Dis. 2017, 16, 113. [Google Scholar] [CrossRef]
- Beejmohun, V.; Peytavy-Izard, M.; Mignon, C.; Muscente-Paque, D.; Deplanque, X.; Ripoll, C.; Chapal, N. Acute effect of Ceylon cinnamon extract on postprandial glycemia: Alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC Complement. Altern. Med. 2014, 14, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.; Sheng, H.; Wu, J.; Cheng, Y.; Zhu, J.; Chen, Y. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutr. Res. 2012, 32, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Akilen, R.; Tsiami, A.; Devendra, D.; Robinson, N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: A randomized, placebo-controlled, double-blind clinical trial. Diabet. Med. A J. Br. Diabet. Assoc. 2010, 27, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Mang, B.; Wolters, M.; Schmitt, B.; Kelb, K.; Lichtinghagen, R.; Stichtenoth, D.O.; Hahn, A. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Investig. 2006, 36, 340–344. [Google Scholar] [CrossRef]
- Khan, A.; Safdar, M.; Ali Khan, M.M.; Khattak, K.N.; Anderson, R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003, 26, 3215–3218. [Google Scholar] [CrossRef] [Green Version]
- Solomon, T.P.; Blannin, A.K. Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. Eur. J. Appl. Physiol. 2009, 105, 969–976. [Google Scholar] [CrossRef]
- Talaei, B.; Amouzegar, A.; Sahranavard, S.; Hedayati, M.; Mirmiran, P.; Azizi, F. Effects of Cinnamon Consumption on Glycemic Indicators, Advanced Glycation End Products, and Antioxidant Status in Type 2 Diabetic Patients. Nutrients 2017, 9, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, P.; Parry-Strong, A.; Walsh, E.; Weatherall, M.; Krebs, J.D. The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: An open-label cross-over randomised controlled trial. Eur. J. Nutr. 2016, 55, 1123–1131. [Google Scholar] [CrossRef]
- Markey, O.; McClean, C.M.; Medlow, P.; Davison, G.W.; Trinick, T.R.; Duly, E.; Shafat, A. Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast. Cardiovasc. Diabetol. 2011, 10, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainstein, J.; Stern, N.; Heller, S.; Boaz, M. Dietary cinnamon supplementation and changes in systolic blood pressure in subjects with type 2 diabetes. J. Med. Food 2011, 14, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Blevins, S.M.; Leyva, M.J.; Brown, J.; Wright, J.; Scofield, R.H.; Aston, C.E. Effect of cinnamon on glucose and lipid levels in non insulin-dependent type 2 diabetes. Diabetes Care 2007, 30, 2236–2237. [Google Scholar] [CrossRef] [Green Version]
- Vanschoonbeek, K.; Thomassen, B.J.; Senden, J.M.; Wodzig, W.K.; van Loon, L.J. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J. Nutr. 2006, 136, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Liljeberg, H.G.; Bjorck, I.M. Delayed gastric emptying rate as a potential mechanism for lowered glycemia after eating sourdough bread: Studies in humans and rats using test products with added organic acids or an organic salt. Am. J. Clin. Nutr. 1996, 64, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Marco, M.L.; Sanders, M.E.; Ganzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Capurso, A.; Capurso, C. The Mediterranean way: Why elderly people should eat wholewheat sourdough bread-a little known component of the Mediterranean diet and healthy food for elderly adults. Aging Clin. Exp. Res. 2020, 32, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liljeberg, H.; Bjorck, I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur. J. Clin. Nutr. 1998, 52, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liljeberg, H.G.; Lonner, C.H.; Bjorck, I.M. Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J. Nutr. 1995, 125, 1503–1511. [Google Scholar] [CrossRef]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef]
- Battilana, P.; Ornstein, K.; Minehira, K.; Schwarz, J.M.; Acheson, K.; Schneiter, P.; Burri, J.; Jequier, E.; Tappy, L. Mechanisms of action of beta-glucan in postprandial glucose metabolism in healthy men. Eur. J. Clin. Nutr. 2001, 55, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Scazzina, F.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Sourdough bread: Starch digestibility and postprandial glycemic response. J. Cereal Sci. 2009, 49, 419–421. [Google Scholar] [CrossRef]
- Ostman, E.M.; Liljeberg Elmstahl, H.G.; Bjorck, I.M. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am. J. Clin. Nutr. 2001, 74, 96–100. [Google Scholar] [CrossRef]
- Brighenti, F.; Benini, L.; Del Rio, D.; Casiraghi, C.; Pellegrini, N.; Scazzina, F.; Jenkins, D.J.; Vantini, I. Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am. J. Clin. Nutr. 2006, 83, 817–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal uses and antiglycemic effect. MedGenMed 2006, 8, 61. [Google Scholar] [PubMed]
- Salbe, A.D.; Johnston, C.S.; Buyukbese, M.A.; Tsitouras, P.D.; Harman, S.M. Vinegar lacks antiglycemic action on enteral carbohydrate absorption in human subjects. Nutr. Res. 2009, 29, 846–849. [Google Scholar] [CrossRef]
- Ostman, E.; Granfeldt, Y.; Persson, L.; Bjorck, I. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur. J. Clin. Nutr. 2005, 59, 983–988. [Google Scholar] [CrossRef]
- Brighenti, F.; Castellani, G.; Benini, L.; Casiraghi, M.C.; Leopardi, E.; Crovetti, R.; Testolin, G. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. Eur. J. Clin. Nutr. 1995, 49, 242–247. [Google Scholar]
- Johnston, C.S.; Buller, A.J. Vinegar and peanut products as complementary foods to reduce postprandial glycemia. J. Am. Diet. Assoc. 2005, 105, 1939–1942. [Google Scholar] [CrossRef]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes. J. Diabetes Res. 2015, 2015, 175204. [Google Scholar] [CrossRef] [PubMed]
- Liatis, S.; Grammatikou, S.; Poulia, K.A.; Perrea, D.; Makrilakis, K.; Diakoumopoulou, E.; Katsilambros, N. Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. Eur. J. Clin. Nutr. 2010, 64, 727–732. [Google Scholar] [CrossRef]
- Mitrou, P.; Raptis, A.E.; Lambadiari, V.; Boutati, E.; Petsiou, E.; Spanoudi, F.; Papakonstantinou, E.; Maratou, E.; Economopoulos, T.; Dimitriadis, G.; et al. Vinegar decreases postprandial hyperglycemia in patients with type 1 diabetes. Diabetes Care 2010, 33, e27. [Google Scholar] [CrossRef] [Green Version]
- White, A.M.; Johnston, C.S. Vinegar ingestion at bedtime moderates waking glucose concentrations in adults with well-controlled type 2 diabetes. Diabetes Care 2007, 30, 2814–2815. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.S.; Kim, C.M.; Buller, A.J. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care 2004, 27, 281–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. The role of acetic acid on glucose uptake and blood flow rates in the skeletal muscle in humans with impaired glucose tolerance. Eur. J. Clin. Nutr. 2015, 69, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.W.; Tummers, K.; Hamer, H.M.; van Loon, L.J. Vinegar co-ingestion does not improve oral glucose tolerance in patients with type 2 diabetes. J. Diabetes Complicat. 2012, 26, 460–461. [Google Scholar] [CrossRef] [PubMed]
- Hlebowicz, J.; Darwiche, G.; Bjorgell, O.; Almer, L.O. Effect of apple cider vinegar on delayed gastric emptying in patients with type 1 diabetes mellitus: A pilot study. BMC Gastroenterol. 2007, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, N.; Satsu, H.; Watanabe, H.; Fukaya, M.; Tsukamoto, Y.; Miyamoto, Y.; Shimizu, M. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J. Nutr. 2000, 130, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, F.J.; Assam, P.N.; de Souza, N.N.; Sultana, R.; Dalan, R.; Chan, E.S. Diabetes Control: Is Vinegar a Promising Candidate to Help Achieve Targets? J. Evid. Based Integr. Med. 2018, 23, 2156587217753004. [Google Scholar] [CrossRef] [PubMed]
- Savaiano, D.A.; Hutkins, R.W. Yogurt, cultured fermented milk, and health: A systematic review. Nutr. Rev. 2021, 79, 599–614. [Google Scholar] [CrossRef]
- Grom, L.C.; Coutinho, N.M.; Guimaraes, J.T.; Balthazar, C.F.; Silva, R.; Rocha, R.S.; Freitas, M.Q.; Duarte, M.C.K.H.; Pimentel, T.C.; Esmerino, E.A.; et al. Probiotic dairy foods and postprandial glycemia: A mini-review. Trends Food Sci. Technol. 2020, 101, 165–171. [Google Scholar] [CrossRef]
- Salles, B.I.M.; Cioffi, D.; Ferreira, S.R.G. Probiotics supplementation and insulin resistance: A systematic review. Diabetol. Metab. Syndr. 2020, 12, 98. [Google Scholar] [CrossRef]
- Li, L.; Li, P.; Xu, L. Assessing the effects of inulin-type fructan intake on body weight, blood glucose, and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Nutr. 2021, 9, 4598–4616. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Huang, H.; Zhang, C.; Zuo, H.X.; Xu, P.; Niu, Y.M.; Wu, S.S. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: Results from a GRADE-assessed systematic review and dose-response meta-analysis of 33 randomized controlled trials. J. Transl. Med. 2019, 17, 410. [Google Scholar] [CrossRef]
- Palma-Duran, S.A.; Vlassopoulos, A.; Lean, M.; Govan, L.; Combet, E. Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2017, 57, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Teoh, S.L.; Lai, N.M.; Vanichkulpitak, P.; Vuksan, V.; Ho, H.; Chaiyakunapruk, N. Clinical evidence on dietary supplementation with chia seed (Salvia hispanica L.): A systematic review and meta-analysis. Nutr. Rev. 2018, 76, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzi-Sohrabi, P.; Hassanipour, S.; Sisakht, M.; Daryabeygi-Khotbehsara, R.; Savardashtaki, A.; Fathalipour, M. The effectiveness of pistachio on glycemic control and insulin sensitivity in patients with type 2 diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Diabetes Metab. Syndr 2020, 14, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Bullo, M.; Juanola-Falgarona, M.; Hernandez-Alonso, P.; Salas-Salvado, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113 (Suppl. 2), S79–S93. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.W.; Josse, A.R.; Esfahani, A.; Jenkins, D.J. The impact of pistachio intake alone or in combination with high-carbohydrate foods on post-prandial glycemia. Eur. J. Clin. Nutr. 2011, 65, 696–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, C.W.; West, S.G.; Augustin, L.S.; Esfahani, A.; Vidgen, E.; Bashyam, B.; Sauder, K.A.; Campbell, J.; Chiavaroli, L.; Jenkins, A.L.; et al. Acute effects of pistachio consumption on glucose and insulin, satiety hormones and endothelial function in the metabolic syndrome. Eur. J. Clin. Nutr. 2014, 68, 370–375. [Google Scholar] [CrossRef]
- Moon, J.H.; Lee, J.Y.; Kang, S.B.; Park, J.S.; Lee, B.W.; Kang, E.S.; Ahn, C.W.; Lee, H.C.; Cha, B.S. Dietary monounsaturated fatty acids but not saturated fatty acids preserve the insulin signaling pathway via IRS-1/PI3K in rat skeletal muscle. Lipids 2010, 45, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of monounsaturated fatty acids on glycaemic control in patients with abnormal glucose metabolism: A systematic review and meta-analysis. Ann. Nutr. Metab. 2011, 58, 290–296. [Google Scholar] [CrossRef]
- Li, S.C.; Liu, Y.H.; Liu, J.F.; Chang, W.H.; Chen, C.M.; Chen, C.Y. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.; Wang, X.H.; Ojo, O.O.; Adegboye, A.R.A. The Effects of Almonds on Gut Microbiota, Glycometabolism, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2021, 13, 3377. [Google Scholar] [CrossRef]
- Tindall, A.M.; Johnston, E.A.; Kris-Etherton, P.M.; Petersen, K.S. The effect of nuts on markers of glycemic control: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Njike, V.Y.; Millet, J.; Dutta, S.; Doughty, K.; Treu, J.A.; Katz, D.L. Effects of walnut consumption on endothelial function in type 2 diabetic subjects: A randomized controlled crossover trial. Diabetes Care 2010, 33, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, E.P.; Guan, V.; Tapsell, L.C.; Probst, Y.C. Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Amirani, E.; Milajerdi, A.; Reiner, Z.; Mirzaei, H.; Mansournia, M.A.; Asemi, Z. Effects of whey protein on glycemic control and serum lipoproteins in patients with metabolic syndrome and related conditions: A systematic review and meta-analysis of randomized controlled clinical trials. Lipids Health Dis. 2020, 19, 209. [Google Scholar] [CrossRef]
- Adams, R.L.; Broughton, K.S. Insulinotropic Effects of Whey: Mechanisms of Action, Recent Clinical Trials, and Clinical Applications. Ann. Nutr. Metab. 2016, 69, 56–63. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G.D. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022, 14, 823. https://doi.org/10.3390/nu14040823
Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients. 2022; 14(4):823. https://doi.org/10.3390/nu14040823
Chicago/Turabian StylePapakonstantinou, Emilia, Christina Oikonomou, George Nychas, and George D. Dimitriadis. 2022. "Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance" Nutrients 14, no. 4: 823. https://doi.org/10.3390/nu14040823
APA StylePapakonstantinou, E., Oikonomou, C., Nychas, G., & Dimitriadis, G. D. (2022). Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients, 14(4), 823. https://doi.org/10.3390/nu14040823