Inverse Association of Serum Folate Level with Metabolic Syndrome and Its Components in Korean Premenopausal Women: Findings of the 2016–2018 Korean National Health Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Overview and Study Population
2.2. Measurement of Anthropometric and Laboratory Data
2.3. Definitions of Terms
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 2012, 35, 2402–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Francesco, S.; Tenaglia, R.L. Metabolic syndrome and aggressive prostate cancer at initial diagnosis. Horm. Metab. Res. 2017, 49, 507–509. [Google Scholar] [CrossRef]
- Song, J.L.; Li, L.R.; Yu, X.Z.; Zhan, L.; Xu, Z.L.; Li, J.J.; Sun, S.R.; Chen, C. Association between metabolic syndrome and clinicopathological features of papillary thyroid cancer. Endocrine 2021, 1–7. [Google Scholar] [CrossRef]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.J.; Vishnu, A.; Santen, R.J.; DeBoer, M.D. Progression of metabolic syndrome severity during the menopausal transition. J. Am. Heart Assoc. 2016, 5, e003609. [Google Scholar] [CrossRef] [Green Version]
- Pegington, M.; French, D.P.; Harvie, M.N. Why young women gain weight: A narrative review of influencing factors and possible solutions. Obes. Rev. 2020, 21, e13002. [Google Scholar] [CrossRef]
- Zafar, U.; Khaliq, S.; Ahmad, H.U.; Manzoor, S.; Lone, K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones 2018, 17, 299–313. [Google Scholar] [CrossRef]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- Kern, H.J.; Mitmesser, S.H. Role of nutrients in metabolic syndrome: A 2017 update. Nutr. Diet. Suppl. 2018, 10, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Division, N. Human Vitamin and Mineral Requirements Report of a Joint Fao/Who Expert Consultation, Bangkok, Thailand. Available online: http://www.fao.org/publications/card/en/c/ceec621b-1396-57bb-8b35-48a60d7faaed/ (accessed on 3 August 2021).
- Greenberg, J.A.; Bell, S.J.; Guan, Y.; Yu, Y.H. Folic acid supplementation and pregnancy: More than just neural tube defect prevention. Rev. Obstet. Gynecol. 2011, 4, 52–59. [Google Scholar] [PubMed]
- Ferraro, S.; Panzeri, A.; Panteghini, M. Tackling serum folate test in european countries within the health technology assessment paradigm: Request appropriateness, assays and health outcomes. Clin. Chem. Lab. Med. 2017, 55, 1262–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Gool, J.D.; Hirche, H.; Lax, H.; De Schaepdrijver, L. Folic acid and primary prevention of neural tube defects: A review. Reprod. Toxicol. 2018, 80, 73–84. [Google Scholar] [CrossRef]
- van Gool, J.D.; Hirche, H.; Lax, H.; Schaepdrijver, L. Fallacies of clinical studies on folic acid hazards in subjects with a low vitamin b(12) status. Crit. Rev. Toxicol. 2020, 50, 177–187. [Google Scholar] [CrossRef]
- WHO. Vitamin and Mineral Requirements in Human Nutrition. Available online: https://apps.who.int/iris/bitstream/handle/10665/42716/9241546123.pdf (accessed on 10 February 2022).
- WHO. Serum and Red Blood Cell Folate Concentrations for Assessing Folate Status in Populations. Available online: http://apps.who.int/iris/bitstream/handle/10665/75584/WHO_NMH_NHD_EPG_12.1_eng.pdf (accessed on 10 February 2022).
- Park, J.Y.; Nicolas, G.; Freisling, H.; Biessy, C.; Scalbert, A.; Romieu, I.; Chajès, V.; Chuang, S.C.; Ericson, U.; Wallström, P.; et al. Comparison of standardised dietary folate intake across ten countries participating in the european prospective investigation into cancer and nutrition. Br. J. Nutr. 2012, 108, 552–569. [Google Scholar] [CrossRef] [Green Version]
- Dhonukshe-Rutten, R.A.; de Vries, J.H.; de Bree, A.; van der Put, N.; van Staveren, W.A.; de Groot, L.C. Dietary intake and status of folate and vitamin b12 and their association with homocysteine and cardiovascular disease in european populations. Eur. J. Clin. Nutr. 2009, 63, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, M.A.; Lacher, D.A.; Pfeiffer, C.M.; Mulinare, J.; Picciano, M.F.; Rader, J.I.; Yetley, E.A.; Kennedy-Stephenson, J.; Johnson, C.L. Blood folate levels: The latest nhanes results. NCHS Data Brief 2008, 6, 1–8. [Google Scholar]
- WHO. World Health Report. 2002. Available online: https://www.who.int/publications/i/item/9241562072 (accessed on 10 February 2022).
- El Ansari, W.; Stock, C.; Mikolajczyk, R.T. Relationships between food consumption and living arrangements among university students in four european countries—A cross-sectional study. Nutr. J. 2012, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.J.; Pan, W.H.; Lin, Y.C.; Lin, B.F. Trends in folate status in the taiwanese population aged 19 years and older from the nutrition and health survey in taiwan 1993–1996 to 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 275–282. [Google Scholar]
- Pieroth, R.; Paver, S.; Day, S.; Lammersfeld, C. Folate and its impact on cancer risk. Curr. Nutr. Rep. 2018, 7, 70–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Dong, B.; Wang, Z. Serum folate concentrations and all-cause, cardiovascular disease and cancer mortality: A cohort study based on 1999-2010 national health and nutrition examination survey (nhanes). Int. J. Cardiol. 2016, 219, 136–142. [Google Scholar] [CrossRef]
- Sonawane, K.; Zhu, Y.; Chan, W.; Aguilar, D.; Deshmukh, A.A.; Suarez-Almazor, M.E. Association of serum folate levels with cardiovascular mortality among adults with rheumatoid arthritis. JAMA Netw. Open 2020, 3, e200100. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Goldberg, J.; Bremner, J.D.; Vaccarino, V. Global DNA methylation is associated with insulin resistance: A monozygotic twin study. Diabetes 2012, 61, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Relton, C.L.; Davey Smith, G. Epigenetic epidemiology of common complex disease: Prospects for prediction, prevention, and treatment. PLoS Med. 2010, 7, e1000356. [Google Scholar] [CrossRef] [Green Version]
- Gluckman, P.D.; Hanson, M.A.; Buklijas, T.; Low, F.M.; Beedle, A.S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 2009, 5, 401–408. [Google Scholar] [CrossRef]
- Li, J.; Goh, C.E.; Demmer, R.T.; Whitcomb, B.W.; Du, P.; Liu, Z. Association between serum folate and insulin resistance among U.S. Nondiabetic adults. Sci. Rep. 2017, 7, 9187. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Muñoz, E.M.; Vioque, J.; Toledo, E.; Oncina-Canovas, A.; Martínez-González, M.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Romaguera, D.; Alonso-Gómez, Á.M.; et al. Dietary folate intake and metabolic syndrome in participants of predimed-plus study: A cross-sectional study. Eur. J. Nutr. 2021, 60, 1125–1136. [Google Scholar] [CrossRef]
- Mahabir, S.; Ettinger, S.; Johnson, L.; Baer, D.J.; Clevidence, B.A.; Hartman, T.J.; Taylor, P.R. Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur. J. Clin. Nutr. 2008, 62, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, K.; Kim, Y.; Kweon, S.; Kim, S.; Yun, S.; Park, S.; Lee, Y.K.; Kim, Y.; Park, O.; Jeong, E.K. Korea national health and nutrition examination survey, 20th anniversary: Accomplishments and future directions. Epidemiol. Health 2021, 43, e2021025. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii). JAMA 2001, 285, 2486–2497. [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Tabrizi, R.; Lankarani, K.B.; Heydari, S.T.; Karamali, M.; Keneshlou, F.; Niknam, K.; Kolahdooz, F.; Asemi, Z. The effects of folate supplementation on diabetes biomarkers among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Horm. Metab. Res. 2018, 50, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Kardaş, F.; Yücel, A.D.; Kendirci, M.; Kurtoğlu, S.; Hatipoğlu, N.; Akın, L.; Gül, Ü.; Gökay, S.; Üstkoyuncu, P.S. Evaluation of micronutrient levels in children and adolescents with obesity and their correlation with the components of metabolic syndrome. Turk. J. Pediatr. 2021, 63, 48–58. [Google Scholar] [CrossRef]
- Cagnacci, A.; Cannoletta, M.; Xholli, A.; Piacenti, I.; Palma, F.; Palmieri, B. Folate administration decreases oxidative status and blood pressure in postmenopausal women. Eur. J. Nutr. 2015, 54, 429–435. [Google Scholar] [CrossRef]
- Cagnacci, A.; Cannoletta, M.; Volpe, A. High-dose short-term folate administration modifies ambulatory blood pressure in postmenopausal women. A placebo-controlled study. Eur. J. Clin. Nutr. 2009, 63, 1266–1268. [Google Scholar] [CrossRef]
- Cena, H.; Fonte, M.L.; Turconi, G. Relationship between smoking and metabolic syndrome. Nutr. Rev. 2011, 69, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Ren, M.; Liu, D.; Wang, C.; Yang, C.; Yan, L. Alcohol consumption and risk of metabolic syndrome: A meta-analysis of prospective studies. Clin. Nutr. 2014, 33, 596–602. [Google Scholar] [CrossRef]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Yu, J.; Chen, R.; Gao, J.; Ding, R.; Fu, Y.; Zhang, L.; Hu, D. Socioeconomic status and metabolic syndrome in the general population of china: A cross-sectional study. BMC Public Health 2012, 12, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquet, M.; Legrand, A.; Pélissier, A.; Mourgues, C. Socio-economics status and metabolic syndrome: A meta-analysis. Diabetes Metab. Syndr. 2019, 13, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Pushpakumar, S.; Kundu, S.; Sen, U. Endothelial dysfunction: The link between homocysteine and hydrogen sulfide. Curr. Med. Chem. 2014, 21, 3662–3672. [Google Scholar] [CrossRef]
- Bhargava, S.; Tyagi, S.C. Nutriepigenetic regulation by folate-homocysteine-methionine axis: A review. Mol. Cell Biochem. 2014, 387, 55–61. [Google Scholar] [CrossRef]
- Vezzoli, A.; Dellanoce, C.; Caimi, T.M.; Vietti, D.; Montorsi, M.; Mrakic-Sposta, S.; Accinni, R. Influence of dietary supplementation for hyperhomocysteinemia treatments. Nutrients 2020, 12, 1957. [Google Scholar] [CrossRef]
- Zaric, B.L.; Obradovic, M.; Bajic, V.; Haidara, M.A.; Jovanovic, M.; Isenovic, E.R. Homocysteine and hyperhomocysteinaemia. Curr. Med. Chem. 2019, 26, 2948–2961. [Google Scholar] [CrossRef]
- Stanhewicz, A.E.; Kenney, W.L. Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr. Rev. 2017, 75, 61–70. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Samblas, M.; Milagro, F.I.; Zulet, M.A.; Mansego, M.L.; Riezu-Boj, J.I.; Martinez, J.A. Association of low dietary folate intake with lower camkk2 gene methylation, adiposity, and insulin resistance in obese subjects. Nutr. Res. 2018, 50, 53–62. [Google Scholar] [CrossRef]
- Yara, S.; Lavoie, J.C.; Levy, E. Oxidative stress and DNA methylation regulation in the metabolic syndrome. Epigenomics 2015, 7, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, A.A.; Connaughton, R.M.; Lyons, C.L.; McMorrow, A.M.; Roche, H.M. Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome. Eur. J. Pharmacol. 2016, 785, 207–214. [Google Scholar] [CrossRef]
- Guest, J.; Bilgin, A.; Hokin, B.; Mori, T.A.; Croft, K.D.; Grant, R. Novel relationships between b12, folate and markers of inflammation, oxidative stress and nad(h) levels, systemically and in the cns of a healthy human cohort. Nutr. Neurosci. 2015, 18, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Pravenec, M.; Kozich, V.; Krijt, J.; Sokolová, J.; Zídek, V.; Landa, V.; Simáková, M.; Mlejnek, P.; Silhavy, J.; Oliyarnyk, O.; et al. Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. Am. J. Hypertens. 2013, 26, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Lucock, M.; Scarlett, C.J.; Veysey, M.; Beckett, E.L. Folate and inflammation–links between folate and features of inflammatory conditions. J. Nutr. Intermed. Metab. 2019, 18, 100104. [Google Scholar] [CrossRef]
All | T1 (≤5.6 ng/mL) | T2 (5.7–8.6 ng/mL) | T3 (≥8.7 ng/mL) | p-Value | |
---|---|---|---|---|---|
Unweighted N | 1730 | 571 | 586 | 573 | |
Age (years) | 35.9 (0.3) | 33.6 (0.5) | 36.6 (0.5) | 37.6 (0.4) | <0.001 |
BMI (kg/m2) | 22.7 (0.1) | 23.0 (0.2) | 22.7 (0.2) | 22.2 (0.1) | 0.001 |
Waist circumference (cm) | 75.4 (0.3) | 75.9 (0.5) | 75.7 (0.4) | 74.4 (0.4) | 0.023 |
SBP (mmHg) | 108.3 (0.4) | 108.7 (0.7) | 108.5 (0.6) | 107.8 (0.6) | 0.444 |
DBP (mmHg) | 72.4 (0.3) | 72.4 (0.4) | 72.5 (0.4) | 72.2 (0.4) | 0.773 |
FBG (mg/dL) | 92.4 (0.4) | 91.6 (0.6) | 93.1 (0.7) | 92.5 (0.9) | 0.311 |
Total cholesterol (mg/dL) | 189.2 (0.9) | 186.9 (1.6) | 189.9 (1.7) | 190.8 (1.5) | 0.169 |
TG (mg/dL) | 96.2 (1.6) | 105.4 (2.9) | 93.1 (2.7) | 89.8 (2.3) | <0.001 |
HDL-C (mg/dL) | 57.1 (0.4) | 55.6 (0.6) | 57.5 (0.6) | 58.3 (0.5) | 0.001 |
Leukocyte count (cells/μL) | 6060 (48) | 6390 (86) | 5930 (76) | 5840 (77) | <0.001 |
Current smoker (%) | 7.2 (0.7) | 10.3 (1.4) | 6.6 (1.3) | 4.4. (1.0) | 0.004 |
Alcohol drinker (%) | 16.6 (0.9) | 15.6 (1.6) | 17.8 (1.9) | 16.6 (1.9) | 0.698 |
Regular exerciser (%) | 13.6 (1.0) | 10.6 (1.6) | 14.3 (1.9) | 16.1 (1.8) | 0.084 |
Residence in rural area (%) | 11.6 (1.7) | 11.8 (2.0) | 11.5 (2.2) | 11.5 (2.1) | 0.981 |
Household income (US $/month) | 4947 (109) | 4257 (142) | 4684 (169) | 4557 (126) | 0.100 |
Education level | 0.001 | ||||
≤Middle school | 4.6 (0.6) | 6.8 (1.2) | 3.4 (0.8) | 3.4 (0.9) | |
High school | 37.3 (1.4) | 40.9 (2.3) | 38.8 (2.1) | 31.9 (2.2) | |
≥University | 58.1 (1.4) | 52.3 (2.5) | 57.9 (2.2) | 64.7 (2.2) | |
Hypertension (%) | 3.1 (0.5) | 2.8 (0.9) | 3.2 (0.8) | 3.2 (0.7) | 0.931 |
Diabetes mellitus (%) | 1.1 (0.2) | 0.6 (0.3) | 1.2 (0.4) | 1.5 (0.6) | 0.313 |
All | T1 (≤5.6 ng/mL) | T2 (5.7–8.6 ng/mL) | T3 (≥8.7 ng/mL) | p-Value | |
---|---|---|---|---|---|
Metabolic syndrome (%) | 11.6 (0.8) | 14.9 (1.7) | 11.0 (1.3) | 8.6 (1.2) | 0.007 |
Abdominal obesity (%) | 15.1 (1.1) | 17.8 (1.8) | 16.0 (1.8) | 11.4 (1.4) | 0.021 |
Elevated BP (%) | 12.7 (0.9) | 14.3 (1.6) | 12.0 (1.4) | 11.7 (1.4) | 0.391 |
High FPG (%) | 13.5 (0.9) | 11.9 (1.5) | 15.8 (1.6) | 13.0 (1.6) | 0.202 |
High TG (%) | 14.2 (0.9) | 17.5 (1.6) | 14.0 (1.5) | 11.1 (1.2) | 0.007 |
Low HDL-C (%) | 45.9 (1.4) | 50.3 (2.3) | 44.6 (2.3) | 42.5 (2.1) | 0.033 |
T1 (≤5.6 ng/mL) | T2 (5.7–8.6 ng/mL) | T3 (≥8.7 ng/mL) | |
---|---|---|---|
Metabolic syndrome (%) | 2.17 (1.46–3.22) | 1.35 (0.89–2.05) | 1 |
Abdominal obesity (%) | 1.80 (1.25–2.60) | 1.51 (1.04–2.21) | 1 |
Elevated BP (%) | 1.77 (1.16–2.70) | 1.04 (0.69–1.58) | 1 |
High FPG (%) | 0.91 (0.62–1.33) | 1.25 (0.87–1.81) | 1 |
High TG (%) | 1.90 (1.35–2.67) | 1.34 (0.95–1.90) | 1 |
Low HDL-C (%) | 1.49 (1.14–1.94) | 1.15 (0.88–1.49) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, Y.-S.; Lee, Y.-J.; Park, J.-M. Inverse Association of Serum Folate Level with Metabolic Syndrome and Its Components in Korean Premenopausal Women: Findings of the 2016–2018 Korean National Health Nutrition Examination Survey. Nutrients 2022, 14, 880. https://doi.org/10.3390/nu14040880
Koo Y-S, Lee Y-J, Park J-M. Inverse Association of Serum Folate Level with Metabolic Syndrome and Its Components in Korean Premenopausal Women: Findings of the 2016–2018 Korean National Health Nutrition Examination Survey. Nutrients. 2022; 14(4):880. https://doi.org/10.3390/nu14040880
Chicago/Turabian StyleKoo, Ye-Seul, Yong-Jae Lee, and Jae-Min Park. 2022. "Inverse Association of Serum Folate Level with Metabolic Syndrome and Its Components in Korean Premenopausal Women: Findings of the 2016–2018 Korean National Health Nutrition Examination Survey" Nutrients 14, no. 4: 880. https://doi.org/10.3390/nu14040880
APA StyleKoo, Y. -S., Lee, Y. -J., & Park, J. -M. (2022). Inverse Association of Serum Folate Level with Metabolic Syndrome and Its Components in Korean Premenopausal Women: Findings of the 2016–2018 Korean National Health Nutrition Examination Survey. Nutrients, 14(4), 880. https://doi.org/10.3390/nu14040880