Malnutrition and Biomarkers: A Journey through Extracellular Vesicles
Abstract
:1. Introduction
2. Definition and Biogenesis of Extracellular Vesicles
2.1. Exosomes
2.2. Microvesicles
3. Extracellular Vesicles and Excess Weight
4. Extracellular Vesicles and Adipose Tissue
5. Extracellular Vesicles, Diet and Weight Loss
6. Extracellular Vesicles in Undernutrition
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Fanzo, J.; Hawkes, C.; Emorn Afshin, A.; Allemandi, L.; Assery, O.; Baker, P.; Battersby, J.; Bhutta, Z.; Chen, K.; Corvalan, C.; et al. Global Nutrition Report; Technical Report; Development Initiatives: Bristol, UK, December 2018. [Google Scholar]
- Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global Burden of Obesity in 2005 and Projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R. Principles of Nutritional Assessment, 2th ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Raiten, D.J.; Namasté, S.; Brabin, B.; Combs, G.; L’Abbe, M.R.; Wasantwisut, E.; Darnton-Hill, I. Executive Summary—Biomarkers of Nutrition for Development: Building a Consensus. Am. J. Clin. Nutr. 2011, 94, 633S–650S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poste, G. Bring on the Biomarkers. Nature 2011, 469, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. The Handbook of Biomarkers; Springer Nature: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Oliveira Rodríguez, M.; Serrano Pertierra, E.; García Costa, A.; Soraya López, M.; Yáñez Mo, M.; Cernuda Morollón, E.; Blanco López, M.C. Point of Care Detection of Extracellular Vesicles: Sensitivity Optimization and Multiple Target Detection. Biosens. Bioelectron. 2017, 87, 38–45. [Google Scholar] [CrossRef]
- Dimassi, S.; Karkeni, E.; Laurant, P.; Tabka, Z.; Landrier, J.F.; Riva, C. Microparticle MiRNAs as Biomarkers of Vascular Function and Inflammation Response to Aerobic Exercise in Obesity? Obesity 2018, 26, 1584–1593. [Google Scholar] [CrossRef] [Green Version]
- Holvoet, P.; Vanhaverbeke, M.; Bloch, K.; Baatsen, P.; Sinnaeve, P.; Janssens, S. Low MT-CO1 in Monocytes and Microvesicles Is Associated with Outcome in Patients with Coronary Artery Disease. J. Am. Heart Assoc. 2016, 5, e004207. [Google Scholar] [CrossRef]
- Hu, W.; Ru, Z.; Zhou, Y.; Xiao, W.; Sun, R.; Zhang, S.; Gao, Y.; Li, X.; Zhang, X.; Yang, H. Lung Cancer-Derived Extracellular Vesicles Induced Myotube Atrophy and Adipocyte Lipolysis via the Extracellular IL-6-Mediated STAT3 Pathway. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 1091–1102. [Google Scholar] [CrossRef]
- Eitan, E.; Tosti, V.; Suire, C.N.; Cava, E.; Berkowitz, S.; Bertozzi, B.; Raefsky, S.M.; Veronese, N.; Spangler, R.; Spelta, F.; et al. In a Randomized Trial in Prostate Cancer Patients, Dietary Protein Restriction Modifies Markers of Leptin and Insulin Signaling in Plasma Extracellular Vesicles. Aging Cell 2017, 16, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Turturici, G.; Tinnirello, R.; Sconzo, G.; Geraci, F. Extracellular Membrane Vesicles as a Mechanism of Cell-to-Cell Communication: Advantages and Disadvantages. Am. J. Physiol. Cell Physiol. 2014, 306, C621–C633. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deatheragea, B.L.; Cooksona, B.T. Membrane Vesicle Release in Bacteria, Eukaryotes, and Archaea: A Conserved yet Underappreciated Aspect of Microbial Life. Infect. Immun. 2012, 80, 1948–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, R.M.; Adam, M.; Hammonds, J.R.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef]
- Harding, C.; Heuser, J.; Stahl, P. Endocytosis and Intracellular Processing of Transferrin and Colloidalgold Transferrin in Rat Reticulocytes: Demonstration. Eur. J. Cell Biol. 1984, 35, 256–263. [Google Scholar] [PubMed]
- Théry, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecular Characterization of Dendritic Cell-Derived Exosomes. J. Cell Biol. 1999, 147, 599–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Eradication of Established Murine Tumors Using a Novel Cell-Free Vaccine: Dendritic Cell-Derived Exoomes. Nat. Med. 1998, 4, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.H. ESCRT s Are Everywhere. EMBO J. 2015, 34, 2398–2407. [Google Scholar] [CrossRef] [Green Version]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Tamai, K.; Tanaka, N.; Nakano, T.; Kakazu, E.; Kondo, Y.; Inoue, J.; Shiina, M.; Fukushima, K.; Hoshino, T.; Sano, K. Exosome Secretion of Dendritic Cells Is Regulated by Hrs, an ESCRT-0 Protein. Biochem. Biophys. Res. Commun. 2010, 399, 384–390. [Google Scholar] [CrossRef]
- Yuyama, K.; Sun, H.; Mitsutake, S. Sphingolipid-Modulated Exosome Secretion Promotes Clearance of Amyloid-B by Microglia. J. Biol. Chem. 2012, 287, 10977–10989. [Google Scholar] [CrossRef] [Green Version]
- Strauss, K.; Goebel, C.; Runz, H.; Mobius, W.; Weiss, S.; Feussner, I.; Simons, M.; Anja, S. Exosome Secretion Ameliorates Lysosomal Storage of Cholesterol in Niemann-Pick Type C Disease. J. Biol. Chem. 2010, 285, 26279–26288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghossoub, R.; Chéry, M.; Audebert, S.; Leblanc, R.; Egea-jimenez, A.L. Tetraspanin-6 Negatively Regulates Exosome Production. Proc. Natl. Acad. Sci. USA 2020, 117, 5913–5922. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Yue, S.; Stadel, D.; Zöller, M. Toward Tailored Exosomes : The Exosomal Tetraspanin Web Contributes to Target Cell Selection. Int. J. Biochem. Cell Biol. 2012, 44, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Charrin, S.; Jouannet, S.; Boucheix, C.; Rubinstein, E. Tetraspanins at a Glance. J. Cell Sci. 2014, 127, 3641–3648. [Google Scholar] [CrossRef] [Green Version]
- Escola, J.; Kleijmeer, M.J.; Stoorvogel, W.; Griffith, J.M.; Yoshie, O.; Geuze, H.J. Selective Enrichment of Tetraspan Proteins on the Internal Vesicles of Multivesicular Endosomes and on Exosomes Secreted by Human B-Lymphocytes. J. Biol. 1998, 273, 20121–20127. [Google Scholar] [CrossRef] [Green Version]
- Razi, M.; Futter, E. Distinct Roles for TSG101 and Hrs in Multivesicular Body Formation and Inward Vesiculation. Mol. Biol. Cell 2006, 17, 3469–3483. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Moita, C.; Van Niel, G.; Kowal, J.; Vigneron, J. Analysis of ESCRT Functions in Exosome Biogenesis, Composition and Secretion Highlights the Heterogeneity of Extracellular Vesicles. J. Cell Sci. 2011, 126, 5553–5565. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Boussac, M.; Véron, P.; Raposo, G.; Garin, J.; Amigorena, S. Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. J. Immunol. 2001, 166, 7309–7319. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P. The Nature and Significance of Platelet Products in Human Plasma. Br. J. Haematol. 1967, 13, 269–288. [Google Scholar] [CrossRef]
- Sedgwick, A.E.; D’Souza-Sschorey, C. The Biology of Extracellular Microvesicles. Traffic 2018, 19, 319–327. [Google Scholar] [CrossRef]
- Gotthelf, S.J. Prevalencia de Síndrome Metabólico Según Definición de La International Diabetes Federation (IDF) En Adolescentes Escolarizados de La Provincia de Salta, Argentina. Rev. Fed. Argent. Cardiol. 2013, 42, 119–126. [Google Scholar]
- Hernández Murúa, J.; Salazar Landeros, M.; Salazar, C.; Gómez Figueroa, J.; Ortiz Bojórquez, C.; De Souza Teixeira, F.; de Paz Fernández, J. Influencia Del Estilo de Vida y La Funcionalidad Sobre La Calidad de Vida Relacionada Con La Salud En Población Mexicana Con Salud Comprometida. Educ. Física Y Cienc. 2015, 17, 1–11. Available online: https://www.redalyc.org/articulo.oa?id=439942661005 (accessed on 10 January 2022).
- Achilike, I.; Hazuda, H.P.; Fowler, S.P.; Aung, K.; Lorenzo, C. Predicting the Development of the Metabolically Healthy Obese Phenotype. Int. J. Obes. 2015, 39, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcocer, L.A.; Lozada, O.; Fanghänel, G.; Sánchez Reyes, L.; Campos Franco, E. Estratificación Del Riesgo Cardiovascular Global. Comparación de Los Métodos Framingham y SCORE En Población Mexicana Del Estudio PRIT. Cirugía Y Cir. 2011, 79, 168–174. [Google Scholar]
- Xu, Y.; Li, H.; Wang, A.; Su, Z.; Yang, G.; Luo, Y.; Tao, L.; Chen, S.; Wu, S.; Wang, Y.; et al. Association between the Metabolically Healthy Obese Phenotype and the Risk of Myocardial Infarction: Results from the Kailuan Study. Eur. J. Endocrinol. 2018, 179, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Twig, G.; Gerstein, H.C.; Shor, D.B.A.; Derazne, E.; Tzur, D.; Afek, A.; Tirosh, A. Coronary Artery Disease Risk among Obese Metabolically Healthy Young Men. Eur. J. Endocrinol. 2015, 173, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Salinas, C.A.; García, E.; Robles, L.; Riaño, D.; Ruiz-Gomez, D.G.; García-Ulloa, A.C.; Melgarejo, M.A.; Zamora, M.; Guillen-Pineda, L.E.; Mehta, R.; et al. High Adiponectin Concentrations Are Associated with the Metabolically Healthy Obese Phenotype. J. Clin. Endocrinol. Metab. 2008, 93, 4075–4079. [Google Scholar] [CrossRef] [PubMed]
- Togliatto, G.; Dentelli, P.; Gili, M.; Gallo, S.; Deregibus, C.; Biglieri, E.; Iavello, A.; Santini, E.; Rossi, C.; Solini, A.; et al. Obesity Reduces the Pro-Angiogenic Potential of Adipose Tissue Stem Cell-Derived Extracellular Vesicles (EVs) by Impairing MiR-126 Content: Impact on Clinical Applications. Int. J. Obes. 2016, 40, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Goichot, B.; Grunebaum, L.; Desprez, D.; Vinzio, S.; Meyer, L.; Schlienger, J.L.; Lessard, M.; Simon, C. Circulating Procoagulant Microparticles in Obesity. Diabetes Metab. 2006, 32, 82–85. [Google Scholar] [CrossRef]
- Esposito, K.; Ciotola, M.; Schisano, B.; Gualdiero, R.; Sardelli, L.; Misso, L.; Giannetti, G.; Giugliano, D. Endothelial Microparticles Correlate with Endothelial Dysfunction in Obese Women. J. Clin. Endocrinol. Metab. 2006, 91, 3676–3679. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T.; Horigome, H.; Tanaka, K.; Nakata, Y.; Ohkawara, K.; Katayama, Y.; Matsui, A. Impact of Weight Reduction on Production of Platelet-Derived Microparticles and Fibrinolytic Parameters in Obesity. Thromb. Res. 2007, 119, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Stepanian, A.; Bourguignat, L.; Hennou, S.; Coupaye, M.; Hajage, D.; Salomon, L.; Alessi, M.-C.; Msika, S.; de Prost, D. Microparticle Increase in Severe Obesity: Not Related to Metabolic Syndrome and Unchanged after Massive Weight Loss. Obesity 2013, 21, 2236–2243. [Google Scholar] [CrossRef] [PubMed]
- Kranendonk, E.G.; Visseren, F.L.J.; Van Herwaarden, J.A.; Hoen, E.N.M.N.; De Jager, W. Effect of Extracellular Vesicles of Human Adipose Tissue on Insulin Signaling in Liver and Muscle Cells. Obesity 2014, 22, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Campello, E.; Zabeo, E.; Radu, C.M.; Spiezia, L.; Foletto, M.; Prevedello, L.; Gavasso, S.; Bulato, C.; Vettor, R.; Simioni, P. Dynamics of Circulating Microparticles in Obesity after Weight Loss. Intern. Emerg. Med. 2016, 11, 695–702. [Google Scholar] [CrossRef]
- Koeck, E.S.; Iordanskaia, T.; Sevilla, S.; Ferrante, S.C.; Hubal, M.J.; Freishtat, R.J.; Nadler, E.P. Adipocyte Exosomes Induce Transforming Growth Factor Beta Pathway Dysregulation in Hepatocytes : A Novel Paradigm for Obesity-Related Liver Disease. J. Surg. Res. 2014, 192, 268–275. [Google Scholar] [CrossRef]
- Eguchi, A.; Lazic, M.; Armando, A.M.; Phillips, S.A.; Katebian, R.; Maraka, S.; Quehenberger, O.; Sears, D.D.; Feldstein, A.E. Circulating Adipocyte-Derived Extracellular Vesicles Are Novel Markers of Metabolic Stress. J. Mol. Med. 2016, 94, 1241–1253. [Google Scholar] [CrossRef]
- Mleczko, J.; Ortega, F.J.; Falcon-Perez, J.M.; Wabitsch, M.; Fernandez-Real, J.M.; Mora, S. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin-Stimulated Glucose Uptake. Mol. Nutr. Food Res. 2018, 62, 1700917. [Google Scholar] [CrossRef] [Green Version]
- Mendivil Alvarado, H.; Chavez Munguia, B.; Carvajal Millan, E.; Hernandez Hernandez, M.; Lopez Teros, V.; Pacheco Moreno, B.; Rascon Duran, L.; Astiazaran Garcia, H. Morphometric Characterization of Extracellular Vesicles in Adults with Obesity. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Santamaria-Martos, F.; Benitez, I.D.; Latorre, J.; Llunch, A.; Moreno-Navarrete, J.M.; Sabater, M.; Ricart, W.; Sanchez de la Torre, M.; Mora, S.; Fernández-Real, J.M.; et al. Comparative and Functional Analysis of Plasma Membrane-Derived Extracellular Vesicles from Obese vs Nonobese Women. Clin. Nutr. 2020, 39, 1067–1076. [Google Scholar] [CrossRef]
- Afrisham, R.; Sadegh-Nejadi, S.; Meshkani, R.; Emamgholipour, S.; Paknejad, M. Effect of Circulating Exosomes Derived from Normal-Weight and Obese Women on Gluconeogenesis, Glycogenesis, Lipogenesis and Secretion of FGF21 and Fetuin A in HepG2 Cells. Diabetol. Metab. Syndr. 2020, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Durcin, M.; Fleury, A.; Taillebois, E.; Hilairet, G.; Krupova, Z.; Henry, C.; Truchet, S.; Trötzmüller, M.; Köfeler, H.; Mabilleau, G.; et al. Characterisation of Adipocyte-Derived Extracellular Vesicle Subtypes Identifies Distinct Protein and Lipid Signatures for Large and Small Extracellular Vesicles. J. Extracell. Vesicles 2017, 6, 1305677. [Google Scholar] [CrossRef] [PubMed]
- Rafiei, H.; Robinson, E.; Barry, J.; Jung, M.E.; Little, J.P. Short-Term Exercise Training Reduces Glycaemic Variability and Lowers Circulating Endothelial Microparticles in Overweight and Obese Women at Elevated Risk of Type 2 Diabetes. Eur. J. Sport Sci. 2019, 19, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, L.F.; Andersen, D.K.; Cleasby, M.E.; Lawson, C. Long-Term High Fat Feeding of Rats Results in Increased Numbers of Circulating Microvesicles with pro-Inflammatory Effects on Endothelial Cells. Br. J. Nutr. 2015, 113, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, A.; Mulya, A.; Lazic, M.; Radhakrishnan, D.; Berk, M.P. Microparticles Release by Adipocytes Act as “Find-Me” Signals to Promote Macrophage Migration. PLoS ONE 2015, 10, e0123110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.C.; Tual-Chalot, S.; Leonetti, D.; Andriantsitohaina, R. Microparticles: Targets and Tools in Cardiovascular Disease. Trends Pharmacol. Sci. 2011, 32, 659–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccin, A.; Murphy, W.G.; Smith, O.P. Circulating Microparticles: Pathophysiology and Clinical Implications. Blood Rev. 2007, 21, 157–171. [Google Scholar] [CrossRef]
- Hanzu, F.A.; Palomo, M.; Kalko, S.G.; Parrizas, M.; Garaulet, M.; Escolar, G.; Gomis, R.; Diaz-Ricart, M. Translational Evidence of Endothelial Damage in Obese Individuals: Inflammatory and Prothrombotic Responses. J. Thromb. Haemost. 2011, 9, 1236–1245. [Google Scholar] [CrossRef]
- Osada-oka, M.; Shiota, M.; Izumi, Y.; Nishiyama, M.; Tanaka, M.; Yamaguchi, T.; Sakurai, E.; Miura, K.; Iwao, H. Macrophage-Derived Exosomes Induce Inflammatory Factors in Endothelial Cells under Hypertensive Conditions. Hypertens. Res. 2017, 40, 353–360. [Google Scholar] [CrossRef]
- Gündüz, Z.; Dursun, İ.; Tülpar, S.; Baştuğ, F.; Baykan, A.; Yikilmaz, A.; Patıroğlu, T.; Poyrazoglu, H.M.; Akin, L.; Yel, S.; et al. Increased Endothelial Microparticles in Obese and Overweight Children. J. Pediatr. Endocrinol. Metab. 2012, 25, 1111–1117. [Google Scholar] [CrossRef]
- López Andrés, N.; Tesse, A.; Regnault, V.; Louis, H.; Cattan, V.; Thornton, S.N.; Labat, C.; Kakou, A.; Tual-Chalot, S.; Faure, S.; et al. Increased Microparticle Production and Impaired Microvascular Endothelial Function in Aldosterone-Salt-Treated Rats: Protective Effects of Polyphenols. PLoS ONE 2012, 7, e39235. [Google Scholar] [CrossRef] [Green Version]
- Burger, D.; Montezano, A.C.; Nishigaki, N.; He, Y.; Carter, A.; Touyz, R.M. Endothelial Microparticle Formation by Angiotensin II Is Mediated via Ang II Receptor Type I/NADPH Oxidase/Rho Kinase Pathways Targeted to Lipid Rafts. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1898–1907. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, L.; Mei, H.; Zhang, J.; Zhu, Y.; Han, X.; Zhu, D. Inflamed Macrophage Microvesicles Induce Insulin Resistance in Human Adipocytes. Nutr. Metab. 2015, 12, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrante, S.C.; Nadler, E.P.; Pillai, D.K.; Hubal, M.J.; Wang, J.M.; Gordish-dressman, H.; Koeck, E.; Wiles, A.A.; Freishtat, R.J.; Wang, J.M.; et al. Adipocyte-Derived Exosomal MiRNAs: A Novel Mechanism for Obesity-Related Disease. Pediatr. Res. 2015, 77, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Amosse, J.; Durcin, M.; Malloci, M.; Vergori, L.; Fleury, A.; Gagnadoux, F.; Dubois, S.; Simard, G.; Boursier, J.; Hue, O.; et al. Phenotyping of Circulating Extracellular Vesicles (EVs) in Obesity Identifies Large EVs as Functional Conveyors of Macrophage Migration Inhibitory Factor. Mol. Metab. 2018, 18, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Camino, T.; Lago-Baameiro, N.; Bravo, S.B.; Molares-Vila, A.; Sueiro, A.; Couto, I.; Baltar, J.; Casanueva, E.F.; Pardo, M. Human Obese White Adipose Tissue Sheds Depot-Specific Extracellular Vesicles and Reveals Candidate Biomarkers for Monitoring Obesity and Its Comorbidities. Transl. Res. 2022, 239, 85–102. [Google Scholar] [CrossRef]
- Crewe, C.; Joffin, N.; Rutkowski, J.M.; Kim, M.; Zhang, F.; Dwight, A.T.; Gordillo, R.; Scherer, P.E. An Endothelial to Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell 2019, 175, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, X.; Wang, Y.; Cao, Y.; Yao, D.; Sun, L.; Qin, L.; Qiu, H.; Zhan, X. Adipocyte-Derived Extracellular Vesicles Modulate Appetite and Weight through MTOR Signalling in the Hypothalamus. Acta Physiol. 2020, 228, e13339. [Google Scholar] [CrossRef]
- Bushman, T.; Lin, T.-Y.; Chen, X. Intermittent Fasting Alters Serum Exosomes in Middle-Aged Male Mice on Long-Term High-Fat Diet. Curr. Dev. Nutr. 2021, 5 (Suppl. S2), 1199. [Google Scholar] [CrossRef]
- Fu, Q.; Li, Y.; Jiang, H.; Shen, Z.; Gao, R.; He, Y.; Liu, Y. Hepatocytes Derived Extracellular Vesicles from High-Fat Diet Induced Obese Mice Modulate Genes Expression and Proliferation of Islet b Cells. Biochem. Biophys. Res. Commun. 2019, 516, 1159–1166. [Google Scholar] [CrossRef]
- Eichner, N.Z.M.; Gilbertson, N.M.; Musante, L.; La Salvia, S.; Weltman, A.; Erdbrügger, U.; Malin, S.K. An Oral Glucose Load Decreases Postprandial Extracellular Vesicles in Obese Adults with and without Prediabetes. Nutrient 2019, 11, 580. [Google Scholar] [CrossRef] [Green Version]
- Hohensinner, P.J.; Kaun, C.; Ebenbauer, B.; Hackl, M.; Demyanets, S.; Richter, D.; Prager, M.; Wojta, J.; Rega-Kaun, G. Reduction of Premature Aging Markers after Gastric Bypass Surgery in Morbidly Obese Patients. Obes. Surg. 2018, 28, 2804–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rega-Kaun, G.; Kaun, C.; Ebenbauer, B.; Jaegersberger, G.; Prager, M.; Wojta, J.; Hohensinner, P.J. Bariatric Surgery in Morbidly Obese Individuals Affects Plasma Levels of Protein C and Thrombomodulin. J. Thromb. Thrombolysis 2019, 47, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, O.; Luca, F.; Grunebaum, L.; Jesel, L.; Meyer, N.; Desprez, D.; Robert, S.; Dignat-George, F.; Toti, F.; Simon, C.; et al. Short-Term Very Low-Calorie Diet in Obese Females Improves the Haemostatic Balance through the Reduction of Leptin Levels, PAI-1 Concentrations and a Diminished Release of Platelet and Leukocyte-Derived Microparticles. Int. J. Obes. 2011, 35, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-E.; Moon, P.-G.; Lee, I.-K.; Baek, M.-C. Proteomic Analysis of Extracellular Vesicles Released by Adipocytes of Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Protein J. 2015, 34, 220–235. [Google Scholar] [CrossRef]
- Barrachina, M.N.; Sueiro, A.M.; Casas, V.; Izquierdo, I.; Hermida-Nogueira, L.; Guitián, E.; Casanueva, F.F.; Abián, J.; Carrascal, M.; Pardo, M.; et al. A Combination of Proteomic Approaches Identifies A Panel of Circulating Extracellular Vesicle Proteins Related to the Risk of Suffering Cardiovascular Disease in Obese Patients. Proteomics 2018, 19, 1800248. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wei, Z.; Wu, X.; Yang, H. Screening of Exosomal MiRNAs Derived from Subcutaneous and Visceral Adipose Tissues: Determination of Targets for the Treatment of Obesity and Associated Metabolic Disorders. Mol. Med. Rep. 2018, 18, 3314–3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrush, A.B.; Antoun, G.; Nikpay, M.; Patten, D.A.; Devlugt, C.; Mauger, J.; Beauchamp, B.L.; Lau, P.; Reshke, R.; Doucet, É.; et al. Diet-Resistant Obesity Is Characterized by a Distinct Plasma Proteomic Signature and Impaired Muscle Fiber Metabolism. Int. J. Obes. 2018, 42, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Rega-kaun, G.; Ritzel, D.; Kaun, C.; Ebenbauer, B.; Thaler, B.; Prager, M.; Demyanets, S.; Wojta, J.; Hohensinner, P.J. Changes of Circulating Extracellular Vesicles from the Liver after Roux-En-Y Bariatric Surgery. Int. J. Mol. Sci. 2019, 20, 2153. [Google Scholar] [CrossRef] [Green Version]
- Witczak, J.K.; Min, T.; Prior, S.L.; Stephens, J.W.; James, P.E.; Rees, A. Bariatric Surgery Is Accompanied by Changes in Extracellular Vesicle-Associated and Plasma Fatty Acid Binding Protein 4. Obes. Surg. 2018, 28, 767–774. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal Muscle Mass and Distribution in 468 Men and Women Aged 18–88 Yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Seok, W.P.; Goodpaster, B.H.; Strotmeyer, E.S.; Kuller, L.H.; Broudeau, R.; Kammerer, C.; De Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; et al. Accelerated Loss of Skeletal Muscle Strength in Older Adults with Type 2 Diabetes: The Health, Aging, and Body Composition Study. Diabetes Care 2007, 30, 1507–1512. [Google Scholar] [CrossRef] [Green Version]
- Lemmer, J.T.; Hurlbut, D.E.; Martel, G.F.; Tracy, B.L.; Ivey, F.M.; Metter, E.J.; Fozard, J.L.; Fleg, J.L.; Hurley, B.F. Age and Gender Responses to Strength Training and Detraining. Med. Sci. Sports Exerc. 2000, 32, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Suetta, C.; Caserotti, P.; Magnusson, S.P.; Kjær, M. Role of the Nervous System in Sarcopenia and Muscle Atrophy with Aging: Strength Training as a Countermeasure. Scand. J. Med. Sci. Sport. 2010, 20, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Åkerström, T.C.A.; Nielsen, A.R.; Fischer, C.P. Role of Myokines in Exercise and Metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trovato, E.; Felice, V.D.; Barone, R. Extracellular Vesicles: Delivery Vehicles of Myokines. Front. Phisiol. 2019, 10, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osti, D.; Bene, M.D.; Rappa, G.; Santos, M.; Matafora, V.; Richichi, C.; Faletti, S.; Beznoussenko, G.V.; Mironov, A.; Bachi, A.; et al. Clinical Significance of Extracellular Vesicles in Plasma from Glioblastoma Patients. Clin. Cancer Res. 2019, 25, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, P.S.; Romaniuk, M.A.; Duette, G.A.; Zhao, Z.; Huang, Y.; Martin-Jaular, L.; Witwer, K.W.; Théry, C.; Ostrowski, M. Extracellular Vesicles and Chronic Inflammation during HIV Infection. J. Extracell. Vesicles 2019, 8, 1687275. [Google Scholar] [CrossRef]
- Gasecka, A.; Nieuwland, R.; Budnik, M.; Dignat-George, F.; Eyileten, C.; Harrison, P.; Huczek, Z.; Kapłon-Cieślicka, A.; Lacroix, R.; Opolski, G.; et al. Randomized Controlled Trial Protocol to Investigate the Antiplatelet Therapy Effect on Extracellular Vesicles (AFFECT EV) in Acute Myocardial Infarction. Platelets 2020, 31, 26–32. [Google Scholar] [CrossRef]
- Lundwall, K.; Mörtberg, J.; Mobarrez, F.; Jacobson, S.H.; Jörneskog, G.; Spaak, J. Changes in Microparticle Profiles by Vitamin D Receptor Activation in Chronic Kidney Disease—A Randomized Trial. BMC Nephrol. 2019, 20, 290. [Google Scholar] [CrossRef] [Green Version]
- Lovett, J.A.C.; Durcan, P.J.; Myburgh, K.H. Investigation of Circulating Extracellular Vesicle MicroRNA Following Two Consecutive Bouts of Muscle-Damaging Exercise. Front. Physiol. 2018, 9, 1149. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Bollati, V.; Pergoli, L.; Iodice, S.; De Col, A.; Tamini, S.; Cicolini, S.; Tringali, G.; De Micheli, R.; Cella, S.G.; et al. Effects of an Acute Bout of Exercise on Circulating Extracellular Vesicles: Tissue-, Sex-, and BMI-Related Differences. Int. J. Obes. 2020, 44, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Bei, Y.; Xu, T.; Lv, D.; Yu, P.; Xu, J.; Che, L.; Das, A.; Tigges, J.; Toxavidis, V.; Ghiran, I.; et al. Exercise-Induced Circulating Extracellular Vesicles Protect against Cardiac Ischemia–Reperfusion Injury. Basic Res. Cardiol. 2017, 112, 38. [Google Scholar] [CrossRef] [PubMed]
- Whitham, M.; Parker, B.L.; Friedrichsen, M.; James, D.E.; Febbraio, M.A.; Whitham, M.; Parker, B.L.; Friedrichsen, M.; Hingst, J.R.; Hjorth, M.; et al. Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise Resource. Cell Metab. 2018, 27, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guescini, M.; Canonico, B.; Lucertini, F.; Maggio, S.; Annibalini, G.; Barbieri, E.; Luchetti, F.; Papa, S.; Stocchi, V. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying MiRNAs in the Bloodstream. PLoS ONE 2015, 10, e0125094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.; Ruts, E.; Visser, M.; Heshka, S.; Baumgartner, R.N.; Wang, J.; Pierson, R.N.; Pi-Sunyer, F.X.; Heymsfield, S.B. Weight Stability Masks Sarcopenia in Elderly Men and Women. Am. J. Physiol. Endocrinol. Metab. 2000, 279, 366–375. [Google Scholar] [CrossRef]
- Ezeoke, C.C.; Morley, J.E. Pathophysiology of Anorexia in the Cancer Cachexia Syndrome. J. Cachexia. Sarcopenia Muscle 2015, 6, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jun, H.-S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
- Goiburu, M.E.; Jure Goiburu, M.M.; Bianco, H.; Ruiz Díaz, J.; Alderete, F.; Palacios, M.C.; Cabral, V.; Escobar, D.; López, R.; Waitzberg, D.L. The Impact of Malnutrition on Morbidity, Mortality and Length of Hospital Stay in Trauma Patients. Nutr. Hosp. 2006, 21, 604–610. [Google Scholar]
- He, W.A.; Calore, F.; Londhe, P.; Canella, A.; Guttridge, D.C.; Croce, C.M. Microvesicles Containing MiRNAs Promote Muscle Cell Death in Cancer Cachexia via TLR7. Proc. Natl. Acad. Sci. USA 2014, 111, 4525–4529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Liu, Z.; Ding, H.; Zhou, Y.; Doan, H.A.; Wai, K.; Sin, T.; Zhu, Z.J.; Flores, R.; Wen, Y.; et al. Tumor Induces Muscle Wasting in Mice through Releasing Extracellular Hsp70 and Hsp90. Nat. Commun. 2017, 8, 589. [Google Scholar] [CrossRef] [Green Version]
- Beltrà, M.; Costelli, P.; Penna, F. Promising Treatments for Muscle Wasting in Cancer: Focus on MicroRNA. Expert Rev. Qual. Life Cancer Care 2016, 1, 313–321. [Google Scholar] [CrossRef]
- Marinho, R.; Alcântara, P.S.M.; Ottoch, J.P.; Seelaender, M. Role of Exosomal MicroRNAs and MyomiRs in the Development of Cancer Cachexia-Associated Muscle Wasting. Front. Nutr. 2018, 4, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year (Refs.) | Source of Isolation | EVs Size /Method of Isolation | EVs Classification | Specific Cell Marker | EVs Characteristics | Main Finding |
---|---|---|---|---|---|---|
Goichot, 2006 [42] | Plasma | NR A | MP | Annexin V | Increase in EVs concentration (ug/mL) | Negative association with BMI |
Esposito, 2006 [43] | Plasma | NR A | MP | CD31, CD42 | Increase in the number of EVs | Association with waist-hip ratio; C-reactive protein; HOMA-IR |
Murakami, 2007 [44] | Plasma | NR A | MP | CD41 | Increase in the number of EVs | Association with BMI; waist circumference; subcutaneous body fat |
Stepanian, 2013 [45] | Plasma | NR A | MP | CD41, CD31, Annexin V | Increase in the number of EVs | The characteristics of EVs are independent of the metabolic syndrome |
Kranendonk, 2014 [46] | Explant subcutaneous and omental adipose tissue | NR B | EVs | CD9 Adiponectin | Association between the amount of EVs and WC and liver enzymes | Adipose tissue EVs can stimulate or inhibit insulin signaling at the liver level, depending on their adipokine content |
Campello, 2015 [47] | Plasma | NR A | MP | Annexin V, CD62, CD61, CD45 | Increase in the number of EVs | Association with BMI, waist, fibrinogen, IL6, and FVIII; overproduction of EVs could induce the generation of thrombin |
Koeck, 2015 [48] | Subcutaneous and visceral adipose tissue | 50–100 nm C | EXO | CD63 | Increase in EVs concentration (ug/mL) | Higher BMI decreases the concentration of EVs |
Togliatto, 2016 [41] | Visceral adipocyte stem cells primary culture | <1000 nm D | EVs | CD63, CD81 | No apparent change in size or quantity | Obesity impacts on the proangiogenic potential of EVs |
Eguchi, 2016 [49] | Adipose tissue | NRD | EXO & ET | Perilipin A | Increase in EVs quantity | Association with biomarkers: glucose, insulin, and HOMA-IR; presence of perilipin A in adipocyte EVs |
Mleczko, 2018 [50] | Plasma and adipocytes culture | 100–150 D | EXO | CD81, MHCI TSG101 | No apparent change in size or quantity | EVs of obese subjects decrease insulin-stimulated 2-deoxyglucose caption in adipocytes |
Mendivil, 2019 [51] | Plasma | <100 nm C | EXO | ALIX | Increase in size of EVs | Association with BMI, TG, and % body fat |
Santamarina, 2019 [52] | Plasma | <116 nm D | EVs | NR | Smaller EVs size | Glucose, HOMA-IR, BMI, TG, HDL, and HA1c |
Reza, 2020 [53] | Plasma | 161 nm D | EXO | CD63 | No changes between groups were find | Participation in the insulin signaling pathway; increase in the intracellular content of TG and decrease the secretion of FGF21 in hepatocytes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendivil-Alvarado, H.; Sosa-León, L.A.; Carvajal-Millan, E.; Astiazaran-Garcia, H. Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients 2022, 14, 1002. https://doi.org/10.3390/nu14051002
Mendivil-Alvarado H, Sosa-León LA, Carvajal-Millan E, Astiazaran-Garcia H. Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients. 2022; 14(5):1002. https://doi.org/10.3390/nu14051002
Chicago/Turabian StyleMendivil-Alvarado, Herminia, Leopoldo Alberto Sosa-León, Elizabeth Carvajal-Millan, and Humberto Astiazaran-Garcia. 2022. "Malnutrition and Biomarkers: A Journey through Extracellular Vesicles" Nutrients 14, no. 5: 1002. https://doi.org/10.3390/nu14051002
APA StyleMendivil-Alvarado, H., Sosa-León, L. A., Carvajal-Millan, E., & Astiazaran-Garcia, H. (2022). Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients, 14(5), 1002. https://doi.org/10.3390/nu14051002