Cardiometabolic Indices after Weight Loss with Calcium or Dairy Foods: Secondary Analyses from a Randomized Trial with Overweight/Obese Postmenopausal Women
Abstract
:1. Introduction
2. Methods
2.1. Weight Reduction Protocol and Dietary Plan
2.2. Participants
2.3. Measurements
2.3.1. Anthropometry, Body Composition and Clinical Chemistry
2.3.2. Dietary and Physical Activity Assessment
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO CVD Risk Chart Working Group. World Health Organization Cardiovascular Disease Risk Charts: Revised Models to Estimate Risk in 21 Global Regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging Human Body: Changes in Bone, Muscle and Body Fat with Consequent Changes in Nutrient Intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 27 December 2021).
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and Dairy Consumption and Risk of Cardiovascular Diseases and All-Cause Mortality: Dose-Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Sonestedt, E.; Wirfält, E.; Wallström, P.; Gullberg, B.; Orho-Melander, M.; Hedblad, B. Dairy Products and Its Association with Incidence of Cardiovascular Disease: The Malmö Diet and Cancer Cohort. Eur. J. Epidemiol. 2011, 26, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Trichia, E.; Luben, R.; Khaw, K.-T.; Wareham, N.J.; Imamura, F.; Forouhi, N.G. The Associations of Longitudinal Changes in Consumption of Total and Types of Dairy Products and Markers of Metabolic Risk and Adiposity: Findings from the European Investigation into Cancer and Nutrition (EPIC)-Norfolk Study, United Kingdom. Am. J. Clin. Nutr. 2020, 111, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Michaëlsson, K.; Wolk, A.; Langenskiöld, S.; Basu, S.; Lemming, E.W.; Melhus, H.; Byberg, L. Milk Intake and Risk of Mortality and Fractures in Women and Men: Cohort Studies. BMJ 2014, 349, g6015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Wang, L.; Zuo, P.; Han, Z.; Fang, Z.; Li, W.; Liu, J. D-Galactose-Caused Life Shortening in Drosophila Melanogaster and Musca Domestica Is Associated with Oxidative Stress. Biogerontology 2004, 5, 317–325. [Google Scholar] [CrossRef]
- Astrup, A. The Role of Calcium in Energy Balance and Obesity: The Search for Mechanisms. Am. J. Clin. Nutr. 2008, 88, 873–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolland, M.J.; Leung, W.; Tai, V.; Bastin, S.; Gamble, G.D.; Grey, A.; Reid, I.R. Calcium Intake and Risk of Fracture: Systematic Review. BMJ 2015, 351, h4580. [Google Scholar] [CrossRef] [Green Version]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium Supplements with or without Vitamin D and Risk of Cardiovascular Events: Reanalysis of the Women’s Health Initiative Limited Access Dataset and Meta-Analysis. BMJ 2011, 342, d2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannata-Andía, J.B.; Carrillo-López, N.; Messina, O.D.; Hamdy, N.A.T.; Panizo, S.; Ferrari, S.L.; on behalf of the International Osteoporosis Foundation (IOF) Working Group on Bone and Cardiovascular Diseases. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients 2021, 13, 3835. [Google Scholar] [CrossRef]
- Lewis, J.R.; Calver, J.; Zhu, K.; Flicker, L.; Prince, R.L. Calcium Supplementation and the Risks of Atherosclerotic Vascular Disease in Older Women: Results of a 5-Year RCT and a 4.5-Year Follow-Up. J. Bone Miner. Res. 2011, 26, 35–41. [Google Scholar] [CrossRef]
- Lewis, J.R.; Radavelli-Bagatini, S.; Rejnmark, L.; Chen, J.S.; Simpson, J.M.; Lappe, J.M.; Mosekilde, L.; Prentice, R.L.; Prince, R.L. The Effects of Calcium Supplementation on Verified Coronary Heart Disease Hospitalization and Death in Postmenopausal Women: A Collaborative Meta-Analysis of Randomized Controlled Trials. J. Bone Miner. Res. 2015, 30, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Kim, M.S.; Hong, N.; Bae, J.H.; Kim, K.J.; Kim, N.H.; Rhee, Y.; Lee, J.; Kim, S.G. Cardiovascular Risks Associated with Calcium Supplementation in Patients with Osteoporosis: A Nationwide Cohort Study. Eur. Heart J. Cardiovasc. Pharm. 2021, pvab054. [Google Scholar] [CrossRef]
- Gallo, L.; Faniello, M.C.; Canino, G.; Tripolino, C.; Gnasso, A.; Cuda, G.; Costanzo, F.S.; Irace, C. Serum Calcium Increase Correlates With Worsening of Lipid Profile: An Observational Study on a Large Cohort From South Italy. Medicine 2016, 95, e2774. [Google Scholar] [CrossRef]
- Derakhshandeh-Rishehri, S.-M.; Ghobadi, S.; Akhlaghi, M.; Faghih, S. The Effect of Calcium Supplement Intake on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Crit. Rev. Food Sci. Nutr. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, E1606. [Google Scholar] [CrossRef] [Green Version]
- Gil, Á.; Ortega, R.M. Introduction and Executive Summary of the Supplement, Role of Milk and Dairy Products in Health and Prevention of Noncommunicable Chronic Diseases: A Series of Systematic Reviews. Adv. Nutr. 2019, 10, S67–S73. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Cormick, M.S.; Belizán, J.M. Calcium Supplementation for Prevention of Primary Hypertension. Cochrane Database Syst. Rev. 2021, 8, CD010037. [Google Scholar] [CrossRef] [PubMed]
- Ilich, J.Z.; Kelly, O.J.; Liu, P.-Y.; Shin, H.; Kim, Y.; Chi, Y.; Wickrama, K.K.A.S.; Colic-Baric, I. Role of Calcium and Low-Fat Dairy Foods in Weight-Loss Outcomes Revisited: Results from the Randomized Trial of Effects on Bone and Body Composition in Overweight/Obese Postmenopausal Women. Nutrients 2019, 11, E1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A New Predictive Equation for Resting Energy Expenditure in Healthy Individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Shin, J.; Liu, P.-Y.; Dutton, G.R.; Abood, D.A.; Ilich, J.Z. Self-Efficacy Improves Weight Loss in Overweight/Obese Postmenopausal Women during a 6-Month Weight Loss Intervention. Nutr. Res. 2011, 31, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Perri, M.G.; Nezu, A.M.; McKelvey, W.F.; Shermer, R.L.; Renjilian, D.A.; Viegener, B.J. Relapse Prevention Training and Problem-Solving Therapy in the Long-Term Management of Obesity. J. Consult. Clin. Psychol. 2001, 69, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Ilich, J.Z.; Blanusa, M.; Orlić, Z.C.; Orct, T.; Kostial, K. Comparison of Calcium, Magnesium, Sodium, Potassium, Zinc, and Creatinine Concentration in 24-h and Spot Urine Samples in Women. Clin. Chem. Lab. Med. 2009, 47, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Lemacks, J.L.; Ilich, J.Z.; Liu, P.-Y.; Shin, H.; Ralston, P.A.; Cui, M.; Wickrama, K.A.S. Dietary Influence on Calcitropic Hormones and Adiposity in Caucasian and African American Postmenopausal Women Assessed by Structural Equation Modeling (SEM). J. Nutr. Health Aging 2016, 20, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Ilich, J.Z.; Brownbill, R.A. Habitual and Low-Impact Activities Are Associated with Better Bone Outcomes and Lower Body Fat in Older Women. Calcif. Tissue Int. 2008, 83, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Tremblay, A.; Leblanc, C.; Lortie, G.; Savard, R.; Thériault, G. A Method to Assess Energy Expenditure in Children and Adults. Am. J. Clin. Nutr. 1983, 37, 461–467. [Google Scholar] [CrossRef]
- Chao, D.; Espeland, M.A.; Farmer, D.; Register, T.C.; Lenchik, L.; Applegate, W.B.; Ettinger, W.H. Effect of Voluntary Weight Loss on Bone Mineral Density in Older Overweight Women. J. Am. Geriatr. Soc. 2000, 48, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V.; Akbarian-Moghari, A. Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus and Bifidobacterium Lactis on Lipid Profile in Individuals with Type 2 Diabetes Mellitus. J. Dairy Sci. 2011, 94, 3288–3294. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvijetic, S.; Kern, J.; Vuletic, S.; Ilich, J.Z. Lifestyle Characteristics Influencing Hypertension in Middle-Age to Old People: Comparison of Two Populations. Arter. Hypertens. 2020, 24, 173–180. [Google Scholar] [CrossRef]
- van Mierlo, L.A.; Arends, L.R.; Streppel, M.T.; Zeegers, M.P.A.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood Pressure Response to Calcium Supplementation: A Meta-Analysis of Randomized Controlled Trials. J. Hum. Hypertens. 2006, 20, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolis, K.L.; Ray, R.M.; Van Horn, L.; Manson, J.E.; Allison, M.A.; Black, H.R.; Beresford, S.A.A.; Connelly, S.A.; Curb, J.D.; Grimm, R.H.; et al. Effect of Calcium and Vitamin D Supplementation on Blood Pressure: The Women’s Health Initiative Randomized Trial. Hypertension 2008, 52, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietsema, S.; Eelderink, C.; Joustra, M.L.; van Vliet, I.M.Y.; van Londen, M.; Corpeleijn, E.; Singh-Povel, C.M.; Geurts, J.M.W.; Kootstra-Ros, J.E.; Westerhuis, R.; et al. Effect of High Compared with Low Dairy Intake on Blood Pressure in Overweight Middle-Aged Adults: Results of a Randomized Crossover Intervention Study. Am. J. Clin. Nutr. 2019, 110, 340–348. [Google Scholar] [CrossRef]
- Laffin, L.J.; Kaufman, H.W.; Chen, Z.; Niles, J.K.; Arellano, A.R.; Bare, L.A.; Hazen, S.L. Rise in Blood Pressure Observed Among US Adults During the COVID-19 Pandemic. Circulation 2021, 145, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Villa-Etchegoyen, C.; Lombarte, M.; Matamoros, N.; Belizán, J.M.; Cormick, G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients 2019, 11, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, T.; Palmieri, G.M. Calcium paradox disease: Calcium deficiency prompting secondary hyperparathyroidism and cellular calcium overload. J. Bone Miner. Metab. 2000, 18, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Shi, H.; Greer, B.; Dirienzo, D.; Zemel, P.C. Regulation of adiposity by dietary calcium. FASEB J. 2000, 14, 1132–1138. [Google Scholar] [CrossRef]
- Scharger, S. Dietary Calcium Intake and Obesity. J. Am. Board Fam. Pract. 2005, 18, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Mulet-Cabero, A.-I.; Wilde, P.J. Role of Calcium on Lipid Digestion and Serum Lipids: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–14. [Google Scholar] [CrossRef]
- European Association for Cardiovascular Prevention & Rehabilitation; Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.-R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; et al. ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef] [Green Version]
- McQueen, M.J.; Hawken, S.; Wang, X.; Ounpuu, S.; Sniderman, A.; Probstfield, J.; Steyn, K.; Sanderson, J.E.; Hasani, M.; Volkova, E.; et al. Lipid.ds, Lipoproteins, and Apolipoproteins as Risk Markers of Myocardial Infarction in 52 Countries (the INTERHEART Study): A Case-Control Study. Lancet 2008, 372, 224–233. [Google Scholar] [CrossRef]
- Thompson, A.; Danesh, J. Associations between Apolipoprotein B, Apolipoprotein AI, the Apolipoprotein B/AI Ratio and Coronary Heart Disease: A Literature-Based Meta-Analysis of Prospective Studies. J. Intern. Med. 2006, 259, 481–492. [Google Scholar] [CrossRef]
- Kaneva, A.M.; Potolitsyna, N.N.; Bojko, E.R.; Odland, J.Ø. The Apolipoprotein B/Apolipoprotein A-I Ratio as a Potential Marker of Plasma Atherogenicity. Dis. Markers 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ghantous, C.M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A. Differential Role of Leptin and Adiponectin in Cardiovascular System. Int. J. Endocrinol. 2015, 2015, e534320. [Google Scholar] [CrossRef] [PubMed]
- Iikuni, N.; Lam, Q.L.K.; Lu, L.; Matarese, G.; La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, Cardiovascular Diseases and Type 2 Diabetes Mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebello, C.J.; Kirwan, J.P.; Greenway, F.L. Obesity, the Most Common Comorbidity in SARS-CoV-2: Is Leptin the Link? Int. J. Obes. 2020, 44, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- Norman, P.E.; Powell, J.T. Vitamin D and Cardiovascular Disease. Circ. Res. 2014, 114, 379–393. [Google Scholar] [CrossRef]
- Kendrick, J.; Targher, G.; Smits, G.; Chonchol, M. 25-Hydroxyvitamin D Deficiency Is Independently Associated with Cardiovascular Disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis 2009, 205, 255–260. [Google Scholar] [CrossRef]
- Beveridge, L.A.; Struthers, A.D.; Khan, F.; Jorde, R.; Scragg, R.; Macdonald, H.M.; Alvarez, J.A.; Boxer, R.S.; Dalbeni, A.; Gepner, A.D.; et al. Effect of Vitamin D Supplementation on Blood Pressure: A Systematic Review and Meta-analysis Incorporating Individual Patient Data. JAMA Intern. Med. 2015, 175, 745–754. [Google Scholar] [CrossRef] [Green Version]
- McCarty, M.F.; Thomas, C.A. PTH Excess May Promote Weight Gain by Impeding Catecholamine-Induced Lipolysis-Implications for the Impact of Calcium, Vitamin D, and Alcohol on Body Weight. Med. Hypotheses 2003, 61, 535–542. [Google Scholar] [CrossRef]
- Pfeifer, M.; Begerow, B.; Minne, H.W.; Nachtigall, D.; Hansen, C. Effects of a Short-Term Vitamin D3 and Calcium Supplementation on Blood Pressure and Parathyroid Hormone Levels in Elderly Women. J. Clin. Endocrinol. Metab. 2001, 86, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Gunther, C.W.; Legowski, P.A.; Lyle, R.M.; McCabe, G.P.; Eagan, M.S.; Peacock, M.; Teegarden, D. Dairy Products Do Not Lead to Alterations in Body Weight or Fat Mass in Young Women in a 1-y Intervention. Am. J. Clin. Nutr. 2005, 81, 751–756. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Katz, R.; de Boer, I.; Hoofnagle, A.; Sarnak, M.J.; Shlipak, M.G.; Jenny, N.S.; Siscovick, D.S. Vitamin D, Parathyroid Hormone, and Cardiovascular Events among Older Adults. J. Am. Coll. Cardiol. 2011, 58, 1433–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagström, E.; Ingelsson, E.; Sundström, J.; Hellman, P.; Larsson, T.; Berglund, L.; Melhus, H.; Held, C.; Michaëlsson, K.; Lind, L.; et al. Plasma Parathyroid Hormone and Risk of Congestive Heart Failure in the Community. Eur. J. Heart Fail. 2010, 12, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Frestedt, J.L.; Zenk, J.L.; Kuskowski, M.A.; Ward, L.S.; Bastian, E.D. A Whey-Protein Supplement Increases Fat Loss and Spares Lean Muscle in Obese Subjects: A Randomized Human Clinical Study. Nutr. Metab. 2008, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eder, K.; Ringseis, R. Metabolism and Actions of Conjugated Linoleic Acids on Atherosclerosis-related Events in Vascular Endothelial Cells and Smooth Muscle Cells. Mol. Nutr. Food Res. 2010, 54, 17–36. [Google Scholar] [CrossRef]
- Layman, D.K. The Role of Leucine in Weight Loss Diets and Glucose Homeostasis. J. Nutr. 2003, 133, 261S–267S. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Choi, H.K.; Ford, E.; Song, Y.; Klevak, A.; Buring, J.E.; Manson, J.E. A Prospective Study of Dairy Intake and the Risk of Type 2 Diabetes in Women. Diabetes Care 2006, 29, 1579–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, E.; Hu, F.B. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr Atheroscler. Rep. 2018, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Sluik, D.; Singh-Povel, C.M.; Feskens, E.J.M. Dairy Product Consumption Is Associated with Pre-Diabetes and Newly Diagnosed Type 2 Diabetes in the Lifelines Cohort Study. Br. J. Nutr. 2018, 119, 442–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dairy Consumption Is Inversely Associated with the Prevalence of the Metabolic Syndrome in Tehranian Adults. Am. J. Clin. Nutr. 2005, 82, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Faghih, S.; Abadi, A.R.; Hedayati, M.; Kimiagar, S.M. Comparison of the Effects of Cows’ Milk, Fortified Soy Milk, and Calcium Supplement on Weight and Fat Loss in Premenopausal Overweight and Obese Women. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Stuart, E.A. Best (but Oft-Forgotten) Practices: Missing Data Methods in Randomized Controlled Nutrition Trials. Am. J. Clin. Nutr. 2019, 109, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Thompson, W.; Milstead, A.; Morris, K.; Campbell, P. Calcium and Dairy Acceleration of Weight and Fat Loss during Energy Restriction in Obese Adults. Obes. Res. 2004, 12, 582–590. [Google Scholar] [CrossRef]
Variables | n = 97 | |
---|---|---|
Age (y) | 55.8 ± 3.7 | |
Years Since Menopause (y) | 6.6 ± 3.4 | |
Blood Pressure | Reference | |
Systolic blood pressure (mmHg) | 121.5 ± 15.1 | <120 |
Diastolic blood pressure (mmHg) | 80.0 ± 9.4 | <80 |
Anthropometry/Body Composition | ||
Weight (kg) | 83.0 ± 13.5 | |
Height (cm) | 163.5 ± 5.8 | |
Body Mass Index (kg/m2) | 31.0 ± 4.8 | |
Total body fat (kg) Total body fat (%) Total body lean mass (kg) | 37.8 ± 10.5 45.4 ± 4.8 42.1 ± 5.1 | |
Serum Parameters | Reference Range | |
Glucose (mg/dL) | 100.6 ± 17.3 | 65–99 |
Insulin (µIU/mL) | 10.0 ± 8.8 | <17 |
Triglycerides (mg/dL) | 135.8 ± 75.8 | <149 |
TC (mg/dL) | 214.2 ± 42.4 | 100–199 |
LDL-C (mg/dL) | 130.3 ± 39.9 | <99 |
HDL-C (mg/dL) | 57.0 ± 17.6 | >39 |
TC/HDL-C ratio | 4.1 ± 1.4 | 3.5–5 |
Leptin (ng/mL) | 38.9 ± 26.0 | 3–18 |
Adiponectin (µg/mL) | 12.1 ± 6.0 | 5–30 |
ApoA1 (mg/dL) | 85.4 ± 69.3 | 100–205 |
ApoB (mg/dL) | 114.2 ± 49.1 | <100 |
ApoB/ApoA1 | 1.3 ± 0.7 | 0.8–0.9 |
hs-CRP (mg/L) | 4.7 ± 5.0 | 1–3 |
25(OH)D (nmol/L) | 65.6 ± 28.0 | 50–125 |
Parathyroid hormone (pmol/L) | 3.1 ± 1.6 | 1.6–6.9 |
Energy and Selected Nutrients | DRI | |
Energy (kcal/day) | 1769.2 ± 426.1 | |
Protein (g/day) | 73.9 ± 20.0 | |
Protein (g/kg/day) | 0.90 ± 1.6 | 0.8 |
Carbohydrates (g/day) | 209.0 ± 60.3 | |
Fat (g/day) | 68.7 ± 23.2 | |
Total calcium (mg/day) * | 905.6 ± 383.9 | 1200 |
Total vitamin D (IU/day) * | 343.6 ± 288.2 | 600–800 |
Physical Activity | ||
Total activity (h/week) ** | 7.9 ± 6.8 | |
MET | 44.1 ± 5.3 |
Serum Parameters | Weight | BMI | Body Fat (kg) | Body Fat (%) | Lean Mass (kg) | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
SBP | 0.111 | ns | 0.234 | 0.0196 | 0.144 | ns | 0.138 | ns | 0.031 | ns |
DBP | 0.093 | ns | 0.204 | 0.0431 | 0.101 | ns | 0.117 | ns | 0.032 | ns |
Glucose | 0.223 | 0.0258 | 0.211 | 0.0352 | 0.190 | ns | 0.135 | ns | 0.247 | 0.0131 |
Insulin | 0.422 | ≤0.0001 | 0.474 | ≤0.0001 | 0.393 | ≤0.0001 | 0.233 | 0.0211 | 0.402 | ≤0.0001 |
Triglycerides | 0.139 | ns | 0.223 | 0.0258 | 0.118 | ns | 0.079 | ns | 0.148 | ns |
TC | −0.009 | ns | −0.024 | ns | −0.044 | ns | −0.026 | ns | 0.007 | ns |
LDL-C | 0.039 | ns | −0.005 | ns | 0.035 | ns | 0.037 | ns | 0.035 | ns |
HDL-C | −0.189 | ns | −0.223 | 0.0258 | −0.189 | ns | −0.175 | ns | −0.167 | ns |
TC/HDL-C | 0.183 | ns | 0.185 | ns | 0.130 | ns | 0.105 | ns | 0.203 | 0.0430 |
Leptin | 0.534 | ≤0.0001 | 0.604 | ≤0.0001 | 0.593 | ≤0.0001 | 0.581 | ≤0.0001 | 0.296 | 0.0028 |
Adiponectin | 0.035 | ns | −0.033 | ns | 0.015 | ns | −0.051 | ns | 0.039 | ns |
ApoA1 | −0.158 | ns | −0.110 | ns | −0.127 | ns | −0.070 | ns | −0.182 | ns |
ApoB | 0.220 | 0.0289 | 0.254 | 0.0111 | 0.203 | 0.0453 | 0.122 | ns | 0.220 | 0.0289 |
hs-CRP | 0.438 | ≤0.0001 | 0.467 | ≤0.0001 | 0.493 | ≤0.0001 | 0.431 | ≤0.0001 | 0.274 | 0.0057 |
25(OH)D | −0.204 | 0.0386 | −0.181 | ns | −0.212 | 0.0351 | −0.229 | 0.0216 | −0.110 | ns |
PTH | 0.035 | ns | 0.067 | ns | 0.066 | ns | 0.156 | ns | −0.071 | ns |
Variables † | Baseline | pab | 6 Months | p ” | ||||
---|---|---|---|---|---|---|---|---|
C | S | D | C | S | D | |||
Glucose (mg/dL) | 104.4 ± 16.9 | 97.3 ± 7.2 | 98.5 ± 8.6 | NS | 101.1 ± 11.2 | 95.7 ± 8.3 | 97.2 ± 10.4 | NS |
Insulin (µIU/mL) | 11.2 ± 10.9 | 9.6 ± 8.9 | 9.2 ± 6.7 | NS | 9.7 ” ± 5.8 | 8.3 ”a ± 5.4 | 9.3 ± 7.1 | |
Leptin (ng/mL) | 46.4 a ± 34.9 | 32.5 b ± 19.1 | 37.8 b ± 19.1 | 37.9 ”a ± 26.3 | 28.9 ”b ± 16.9 | 29.5 ”b ± 21.7 | ||
Adiponectin (µg/mL) | 11.7 ± 5.2 | 11.8 ± 5.9 | 12.7 ± 6.5 | NS | 17.9 ” ± 8.5 | 16.4 ” ± 9.3 | 15.4 ” ± 5.8 | |
ApoA1 (mg/dL) | 77.4 ± 55.3 | 86.9 ± 65.3 | 84.1 ± 63.5 | NS | 102.8 ”a ± 59.9 | 117.8 ”b ± 78.7 | 105.6 ”a ± 60.0 | |
ApoB (mg/dL) | 121.4 ± 56.5 | 114.0 ± 43.7 | 117.6 ± 42.4 | NS | 95.6 ” ± 36.5 | 97.8 ” ± 31.8 | 92.9 ” ± 27.5 | |
ApoB/ApoA1 | 1.6 ± 1.0 | 1.3 ± 0.7 | 1.4 ± 0.7 | 0.9 ” ± 0.6 | 0.8 ” ± 0.4 | 0.9 ” ± 0.5 | ||
hs-CRP (mg/L) | 4.8 ± 4.7 | 4.6 ± 5.7 | 4.8 ± 4.7 | NS | 4.8 ± 5.3 | 4.6 ± 5.7 | 4.9 ± 6.5 | NS |
Serum 25(OH)D (nmol/L) | 65.8 ± 24.4 | 70.7 ± 32.7 | 66.6 ± 27.5 | NS | 71.9 a ± 30.9 | 83.0 ”b ± 23.4 | 82.8 ”b ± 46.8 | |
Parathyroid hormone (pmol/L) | 3.0 ± 1.4 | 3.1 ± 1.7 | 3.2 ± 1.8 | NS | 3.5 ± 1.3 | 2.8 ” ± 1.2 | 3.0 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilich, J.Z.; Liu, P.-Y.; Shin, H.; Kim, Y.; Chi, Y. Cardiometabolic Indices after Weight Loss with Calcium or Dairy Foods: Secondary Analyses from a Randomized Trial with Overweight/Obese Postmenopausal Women. Nutrients 2022, 14, 1082. https://doi.org/10.3390/nu14051082
Ilich JZ, Liu P-Y, Shin H, Kim Y, Chi Y. Cardiometabolic Indices after Weight Loss with Calcium or Dairy Foods: Secondary Analyses from a Randomized Trial with Overweight/Obese Postmenopausal Women. Nutrients. 2022; 14(5):1082. https://doi.org/10.3390/nu14051082
Chicago/Turabian StyleIlich, Jasminka Z., Pei-Yang Liu, Hyehyung Shin, Youjin Kim, and Yichih Chi. 2022. "Cardiometabolic Indices after Weight Loss with Calcium or Dairy Foods: Secondary Analyses from a Randomized Trial with Overweight/Obese Postmenopausal Women" Nutrients 14, no. 5: 1082. https://doi.org/10.3390/nu14051082
APA StyleIlich, J. Z., Liu, P. -Y., Shin, H., Kim, Y., & Chi, Y. (2022). Cardiometabolic Indices after Weight Loss with Calcium or Dairy Foods: Secondary Analyses from a Randomized Trial with Overweight/Obese Postmenopausal Women. Nutrients, 14(5), 1082. https://doi.org/10.3390/nu14051082