Chinese Tea Alleviates CCl4-Induced Liver Injury through the NF-κBorNrf2Signaling Pathway in C57BL-6J Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tea Extracts
2.2. Determination of the Main Components of Tea
2.3. High-Performance Liquid Chromatography (HPLC)
2.4. Establishment of Murine Liver Injury Model
2.5. Biochemical Assays
2.6. Histopathological Staining
2.7. Western Blotting
2.8. Statistical Analysis
3. Results
3.1. Composition of the Tea Extracts
3.2. The Different Tea Extracts Mitigated CCl4-Induced Liver Injury
3.3. Fermented Tea Inhibited CCl4-Induced Liver Inflammation by Blocking the NF-κB Pathway
3.4. Unfermented Tea Reduced Oxidative Stress by Activating the Nrf2 Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, B.B.; Li, Y.L.; Wang, B.Y. Research advances in risk factors for alcoholic liver disease. ZhonghuaGanZang Bing ZaZhi = ZhonghuaGanzangbingZazhi = Chin. J. Hepatol. 2017, 25, 397–400. [Google Scholar]
- Kayesh, M.E.H.; Ezzikouri, S.; Sanada, T.; Chi, H.; Hayashi, Y.; Rebbani, K.; Kitab, B.; Matsuu, A.; Miyoshi, N.; Hishima, T.; et al. Oxidative stress and immune responses during hepatitis C virus infection in Tupaiabelangeri. Sci. Rep. 2017, 7, 9848. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhang, X.; Han, J.; Man, K.; Zhang, Y.; Chu, E.S.; Nan, Y.; Yu, J. Pro-inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis. Theranostics 2017, 7, 4192–4203. [Google Scholar] [CrossRef]
- Burk, R.F.; Lane, J.M.; Patel, K. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. J. Clin. Investig. 1984, 74, 1996–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Cai, G.M.; He, Q. Oxidative stress and hepatic injury. World Chin. J. Digestol. 2008, 16, 3310–3315. [Google Scholar] [CrossRef]
- Choudhury, S.; Ghosh, S.; Mukherjee, S.; Gupta, P.; Bhattacharya, S.; Adhikary, A.; Chattopadhyay, S. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells. J. Nutr. Biochem. 2016, 38, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016, 8, E552. [Google Scholar] [CrossRef] [Green Version]
- Megow, I.; Darvin, M.E.; Meinke, M.C.; Lademann, J. A randomized controlled trial of green tea beverages on the in vivo radical scavenging activity in human skin. Skin Pharmacol. Physiol. 2017, 30, 225–233. [Google Scholar] [CrossRef]
- Yi, R.; Wang, R.; Sun, P.; Zhao, X. Antioxidant-mediated preventative effect of Dragon-pearl tea crude polyphenol extract on reserpine-induced gastric ulcers. Exp. Ther. Med. 2015, 10, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.J.; Gong, Z.J.; Sun, X.M.; Zheng, S.H.; Li, X. Tea polyphenols inhibit expressions of iNOS and TNF-alpha and prevent lipopolysaccharide-induced liver injury in rats. Hepatobiliary Pancreat. Dis. Int. 2006, 5, 262–267. [Google Scholar]
- Salomone, F.; Godos, J.; Zelber-Sagi, S. Natural antioxidants for non-alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int. 2016, 36, 5–20. [Google Scholar] [CrossRef]
- Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Luo, Y.; Wang, X.; Luo, L.; Sun, K.; Zeng, L. Gut Microbiome and Metabolome Response of Pu-erh Tea on Metabolism Disorder Induced by Chronic Alcohol Consumption. J. Agric. Food Chem. 2020, 68, 6615–6627. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Huang, Y.S.; Liu, G.P.; Rao, W.Y.; Qin, L.; Deng, Y.Y. The effects of Liubao tea on blood lipid and antioxidation and hyperlipidemia mice. J. Med. Theory Pract. 2013, 26, 563–564. [Google Scholar]
- Zhao, Y.Y.; Huang, L.; Wei, B.Y.; Teng, J.W.; Xia, N. Effect of Liupao tea extract on fecal microbiota in hyperlipidemic mice. Sci. Technol. Food Ind. 2015, 36, 364–367. [Google Scholar]
- Teng, Q.Q.; Liu, Z.H.; Gong, S.J.; Peng, Y.X.; Ma, R. Effect of Liupao Tea on glucose and lipid metabolism in palmitate-induced insulin resistance 3T3-L1 adipocytes. J. Tea Sci. 2014, 34, 230–238. [Google Scholar]
- Hodgson, J.M.; Croft, K.D. Tea flavonoids and cardiovascular health. Mol. Asp. Med. 2010, 31, 495–502. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Sun, L.; Lai, X.; Li, Q.; Zhang, W.; Xiang, L.; Sun, S.; Cao, F. Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Food Funct. 2019, 10, 2061–2074. [Google Scholar] [CrossRef]
- Wen, S.; Sun, L.; An, R.; Zhang, W.; Xiang, L.; Li, Q.; Lai, X.; Huo, M.; Li, D.; Sun, S. A combination of Citrusrecticulata peel and black tea inhibits migration and invasion of liver cancer via PI3K/AKT and MMPs signaling pathway. Mol. Biol. Rep. 2020, 47, 507–519. [Google Scholar] [CrossRef]
- Yan, L.; Hu, X.; Wu, Q.; Jiang, R.; Zhang, S.; Ling, Q.; Liu, H.; Jiang, X.; Wan, J.; Liu, Y. CQMUH-011, a novel adamantane sulfonamide compound, inhibits lipopolysaccharide- and D-galactosamine-induced fulminant hepatic failure in mice. Int. Immunopharmacol. 2017, 47, 231–243. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Abdelrahman, S.A.; Salama, A.E. Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats. Ultrastruct. Pathol. 2017, 41, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Maksymchuk, O.; Shysh, A.; Rosohatska, I.; Chashchyn, M. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol. Rep. 2017, 69, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, Y.; Duan, H.; Sivakumar, R.; Li, X. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells. Chemosphere 2018, 192, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Kampan, N.C.; Madondo, M.T.; McNally, O.M.; Stephens, A.N.; Quinn, M.A.; Plebanski, M. Interleukin 6 present in inflammatory ascites from advanced epithelial ovarian cancer patients promotes tumor necrosis factor receptor 2-expressing regulatory T. cells. Front. Immunol. 2017, 8, 1482. [Google Scholar] [CrossRef]
- Erkasap, S.; Erkasap, N.; Bradford, B.; Mamedova, L.; Uysal, O.; Ozkurt, M.; Ozyurt, R.; Kutlay, O.; Bayram, B. The effect of leptin and resveratrol on JAK/STAT pathways and Sirt-1 gene expression in the renal tissue of ischemia/reperfusion induced rats. Bratisl. Med. J. Bratisl. Lek. Listy 2017, 118, 443–448. [Google Scholar] [CrossRef]
- Chan, P.; Liu, C.; Chiang, F.Y.; Wang, L.F.; Lee, K.W.; Chen, W.T.; Kuo, P.L.; Liang, C.H. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway and reduction of JNK in HNSCC. Oncotarget 2017, 8, 56375–56388. [Google Scholar] [CrossRef] [Green Version]
- El-Gohary, A. Obestatin improves hepatic injury induced by ischemia/reperfusion in rats: Role of nitric oxide. Gen. Physiol. Biophys. 2017, 36, 109–115. [Google Scholar] [CrossRef]
- Bachmann, M.; Waibler, Z.; Pleli, T.; Pfeilschifter, J.; Mühl, H. Type I interferon supports inducible nitric oxide synthase in murine hepatoma cells and hepatocytes and during experimental acetaminophen-induced liver damage. Front. Immunol. 2017, 8, 890. [Google Scholar] [CrossRef] [Green Version]
- AraújoJúnior, R.F.; Garcia, V.B.; Leitão, R.F.; Brito, G.A.; Miguel Ede, C.; Guedes, P.M.; de Araújo, A.A. Carvedilol improves inflammatory response, oxidative stress and fibrosis in the alcohol-induced liver injury in rats by regulating Kuppfer cells and hepatic stellate cells. PLoS ONE 2016, 12, e0148868. [Google Scholar]
- Zeng, B.; Su, M.; Chen, Q.; Chang, Q.; Wang, W.; Li, H. Protective effect of a polysaccharide from Anoectochilusroxburghii against carbon tetrachloride-induced acute liver injury in mice. J. Ethnopharmacol. 2017, 200, 124–135. [Google Scholar] [CrossRef]
- Najafpour, M.M. A possible evolutionary origin for the Mn4 cluster in photosystem II: From manganese superoxide dismutase to oxygen evolving complex. Orig. Life Evol. Biosph. 2009, 32, 151–163. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, C.M.; Qin, Z.H.; Jiang, J.H.; Sun, Y.Z. Ganodermaapplanatum terpenes protect mouse liver against benzo(α)pyren-induced oxidative stress and inflammation. Environ. Toxicol. Pharmacol. 2011, 31, 460–468. [Google Scholar] [CrossRef]
- Liu, C.M.; Zheng, Y.L.; Lu, J.; Zhang, Z.F.; Fan, S.H.; Wu, D.M.; Ma, J.Q. Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ. Toxicol. Pharmacol. 2010, 29, 158–166. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.J.; Feng, R.; Jiang, Y.; Zhang, D.Y.; He, C.; Li, P.; Wan, J.B. Hepatoprotective properties of Penthorumchinense Pursh against carbon tetrachloride-induced acute liver injury in mice. Chin. Med. 2017, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Alam, M.S.; Jabbar, Z.; Javed, K.; Athar, M. Evaluation of antioxidant activity of Cassia siamea flowers. J. Ethnopharmacol. 2006, 108, 340–348. [Google Scholar] [CrossRef]
- Niu, C.; Ma, M.; Han, X.; Wang, Z.; Li, H. Hyperin protects against cisplatin-induced liver injury in mice. Acta Cir. Bras. 2017, 32, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim.Biophys.Acta Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Zou, L.; Lei, H.; Shen, J.; Liu, X.; Zhang, X.; Wu, L.; Hao, J.; Jiang, W.; Hu, Z. HO-1 induced autophagy protects against IL-1 β-mediated apoptosis in human nucleus pulposus cells by inhibiting NF-κB. Aging 2020, 12, 2440–2452. [Google Scholar] [CrossRef]
Component | GT | WT | YT | OT | BT | DT |
---|---|---|---|---|---|---|
Gallic Acid | 0.370 ± 0.031 c | 1.220 ± 0.099 a | 0.803 ± 0.054 b | 1.342 ± 0.053 a | 0.956 ± 0.318 b | 1.310 ± 0.064 a |
Gallocatechin | 10.628 ± 1.042 c | 74.952 ± 2.721 a | 6.606 ± 0.442 c | 3.432 ± 0.356 d | 49.921 ± 0.554 b | 79.080 ± 2.069 a |
Epigallocatechin | 39.004 ± 4.015 a | 12.403 ± 0.795 c | 28.829 ± 1.240 b | 22.741 ± 0.756 bc | 7.494 ± 0.843 c | 1.482 ± 0.071 d |
Catechin | 16.216 ± 0.762 a | 4.374 ± 0.317 d | 12.615 ± 1.051 b | 8.715 ± 0.777 c | 1.708 ± 0.451 de | 0.683 ± 0.016 e |
Caffeine | 50.511 ± 2.229 a | 34.156 ± 1.425 b | 38.868 ± 1.983 b | 34.127 ± 0.115 b | 30.612 ± 0.509 c | 34.600 ± 1.023 b |
Epicatechin | 24.351 ± 2.161 a | 3.607 ± 0.514 d | 17.523 ± 0.777 b | 11.605 ± 0.387 c | 1.922 ± 0.842 d | 0.570 ± 0.027 d |
EpigallocatechinGallate | 81.779 ± 5.148 a | 20.714 ± 1.180 d | 53.648 ± 2.254 b | 32.914 ± 0.779 c | 2.266 ± 0.256 e | / |
GallocatechinGallate | 4.990 ± 1.778 a | 1.554 ± 0.164 b | 2.817 ± 0.125 a | 2.240 ± 0.470 a | 0.808 ± 0.452 b | / |
EpicatechinGallate | 67.266 ± 2.108 a | 29.543 ± 2.072 c | 48.878 ± 2.875 b | 30.301 ± 0.531 c | 5.788 ± 0.440 d | / |
CatechinGallate | 0.948 ± 0.233 b | 1.330 ± 0.200 ab | 2.417 ± 0.507 a | 0.584 ± 0.339 b | 0.875 ± 0.153 b | / |
Component | GT | WT | YT | OT | BT | DT |
---|---|---|---|---|---|---|
Water (%) | 4.675 ± 0.013 a | 7.775 ± 0.017 a | 4.050 ± 0.025 a | 5.000 ± 0.015 a | 6.100 ± 0.022 a | 8.400 ± 0.012 a |
Water Extract(%) | 42.413 ± 0.022 b | 52.377 ± 0.004 a | 43.527 ± 0.019 b | 43.692 ± 0.008 b | 55.326 ± 0.012 a | 47.891 ± 0.018 ab |
Tea Polyphenols(%) | 27.166 ± 0.023 a | 16.394 ± 0.007 bc | 20.705 ± 0.00 b | 16.261 ± 0.014 bc | 9.774 ± 0.006 c | 5.066 ± 0.006 cd |
Amino Acid(%) | 2.798 ± 0.291 a | 2.843 ± 0.051 a | 3.051 ± 0.189 a | 3.247 ± 0.094 a | 3.207 ± 0.077 a | 1.446 ± 0.054 b |
Flavonoid(%) | 5.636 ± 1.267 bc | 9.888 ± 0.262 b | 6.530 ± 0.136 b | 5.261 ± 0.270 c | 16.228 ± 0.087 a | 17.694 ± 0.572 a |
Soluble Sugar(%) | 6.644 ± 0.003 c | 11.486 ± 0.002 a | 8.231 ± 0.000 b | 8.840 ± 0.003 b | 6.056 ± 0.003 c | 7.103 ± 0.002 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Sun, L.; Chen, R.; Wen, S.; Li, Q.; Lai, X.; Zhang, Z.; Cao, F.; Sun, S. Chinese Tea Alleviates CCl4-Induced Liver Injury through the NF-κBorNrf2Signaling Pathway in C57BL-6J Mice. Nutrients 2022, 14, 972. https://doi.org/10.3390/nu14050972
Wu Z, Sun L, Chen R, Wen S, Li Q, Lai X, Zhang Z, Cao F, Sun S. Chinese Tea Alleviates CCl4-Induced Liver Injury through the NF-κBorNrf2Signaling Pathway in C57BL-6J Mice. Nutrients. 2022; 14(5):972. https://doi.org/10.3390/nu14050972
Chicago/Turabian StyleWu, Zhaoyu, Lingli Sun, Ruohong Chen, Shuai Wen, Qiuhua Li, Xingfei Lai, Zhenbiao Zhang, Fanrong Cao, and Shili Sun. 2022. "Chinese Tea Alleviates CCl4-Induced Liver Injury through the NF-κBorNrf2Signaling Pathway in C57BL-6J Mice" Nutrients 14, no. 5: 972. https://doi.org/10.3390/nu14050972
APA StyleWu, Z., Sun, L., Chen, R., Wen, S., Li, Q., Lai, X., Zhang, Z., Cao, F., & Sun, S. (2022). Chinese Tea Alleviates CCl4-Induced Liver Injury through the NF-κBorNrf2Signaling Pathway in C57BL-6J Mice. Nutrients, 14(5), 972. https://doi.org/10.3390/nu14050972