Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review
Abstract
:1. Introduction
1.1. Arterial Stiffness as a Marker of Subclinical Atherosclerosis
1.2. Factors Influencing Arterial Stiffness
1.3. Alcohol Consumption and CV Health
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Screening
2.4. Data Extraction and Quality Assessment
2.5. Strategy for Data Synthesis
3. Qualitative Analysis (Systematic Review)
3.1. Identification and Selection of the Included Articles
3.2. Description and Characteristics of the Studies
3.2.1. Participant Characteristics
3.2.2. Study Design and Methods
3.2.3. Summary of the Main Findings on Alcohol Consumption and PWV
4. Discussion
4.1. Relationship between Alcohol Consumption and Arterial Stiffness
4.2. Candidate Physio-Pathological Mechanisms
4.3. The Long-Term Impact of Alcohol Consumption on Health
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.S.; Pilkerton, C.S.; Shrader, C.D.; Frisbee, S.J. Subclinical atherosclerosis, cardiovascular health, and disease risk: Is there a case for the Cardiovascular Health Index in the primary prevention population? BMC Public Health 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wykretowicz, A.; Gerstenberger, P.; Guzik, P.; Milewska, A.; Krauze, T.; Adamska, K.; Rutkowska, A.; Wysocki, H. Arterial stiffness in relation to subclinical atherosclerosis. Eur. J. Clin. Investig. 2009, 39, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Oh, B.-H. Aging and arterial stiffness. Circ. J. 2010, 74, 2257–2262. [Google Scholar] [CrossRef] [Green Version]
- Segers, P.; Rietzschel, E.R.; Chirinos, J.A. How to measure arterial stiffness in humans. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1034–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milan, A.; Zocaro, G.; Leone, D.; Tosello, F.; Buraioli, I.; Schiavone, D.; Veglio, F. Current assessment of pulse wave velocity: Comprehensive review of validation studies. J. Hypertens. 2019, 37, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Safar, H.; Mourad, J.J.; Safar, M.; Blacher, J. Aortic pulse wave velocity, an independent marker of cardiovascular risk. Arch. Mal. Coeur Vaiss. 2002, 11, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.E.; Park, C.G.; Shin, S.H.; Ahn, J.C.; Seo, H.S.; Oh, D.J. Aortic pulse wave velocity as an independent marker of coronary artery disease. Blood Press. 2004, 13, 369–375. [Google Scholar] [CrossRef]
- Pucci, G.; Tarnoki, A.D.; Medda, E.; Tarnoki, D.L.; Littvay, L.; Maurovich-Horvat, P.; Jermendy, A.L.; Godor, E.; Fejer, B.; Hernyes, A. Genetic and environmental determinants of longitudinal stability of arterial stiffness and wave reflection: A twin study. J. Hypertens. 2018, 36, 2316–2323. [Google Scholar] [CrossRef]
- Rode, M.; Teren, A.; Wirkner, K.; Horn, K.; Kirsten, H.; Loeffler, M.; Scholz, M.; Pott, J. Genome-wide association analysis of pulse wave velocity traits provide new insights into the causal relationship between arterial stiffness and blood pressure. PLoS ONE 2020, 15, e0237237. [Google Scholar] [CrossRef] [PubMed]
- Del Giorno, R.; Ceresa, C.; Gabutti, S.; Troiani, C.; Gabutti, L. Arterial stiffness and central hemodynamics are associated with low diurnal urinary sodium excretion. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3289. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Elias, M.F.; Dore, G.A.; Abhayaratna, W.P.; Robbins, M.A. Relations between dairy food intake and arterial stiffness: Pulse wave velocity and pulse pressure. Hypertension 2012, 59, 1044–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Sanchez, J.; Garcia-Ortiz, L.; Rodriguez-Sanchez, E.; Maderuelo-Fernandez, J.A.; Tamayo-Morales, O.; Lugones-Sanchez, C.; Recio-Rodriguez, J.I.; Gomez-Marcos, M.A.; Investigators, E. The Relationship Between Alcohol Consumption With Vascular Structure and Arterial Stiffness in the Spanish Population: EVA Study. Alcohol. Clin. Exp. Res. 2020, 44, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, M.; Yamaguchi, T.; Nishida, R.; Matsumoto, N. Dose of alcohol from beer required for acute reduction in arterial stiffness. Front. Physiol. 2020, 11, 1033. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.-L.; Piano, M.R.; Thur, L.A.; Peters, T.A.; da Silva, A.L.G.; Phillips, S.A. The effects of repeated binge drinking on arterial stiffness and urinary norepinephrine levels in young adults. J. Hypertens. 2020, 38, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Hwang, I.C.; Kim, K.K.; Kang, W.C.; Cha, J.-Y.; Moon, Y.-A. Casual alcohol consumption is associated with less subclinical cardiovascular organ damage in Koreans: A cross-sectional study. BMC Public Health 2018, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhan, J.; Liu, Y.-J.; Li, D.-J.; Wang, S.-Q.; He, Q.-Q. Association between alcohol consumption and risk of cardiovascular disease and all-cause mortality in patients with hypertension: A meta-analysis of prospective cohort studies. Mayo Clin. Proc. 2014, 89, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Daskalopoulou, M.; Rapsomaniki, E.; George, J.; Britton, A.; Bobak, M.; Casas, J.P.; Dale, C.E.; Denaxas, S.; Shah, A.D. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population based cohort study using linked health records. BMJ 2017, 356, j909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senault, C.; Betoulle, D.; Luc, G.; Hauw, P.; Rigaud, D.; Fumeron, F. Beneficial effects of a moderate consumption of red wine on cellular cholesterol efflux in young men. Nutr. Metab. Cardiovasc. Dis. 2000, 10, 63–69. [Google Scholar] [PubMed]
- Rosales, C.; Gillard, B.K.; Gotto, A.M.; Pownall, H.J. The alcohol–high-density lipoprotein athero-protective axis. Biomolecules 2020, 10, 987. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Totoki, T.; Nakamura, C.; Yasuma, T.; D’Alessandro-Gabazza, C.N.; Mifuji-Moroka, R.; Nishihama, K.; Iwasa, M.; Horiki, N.; Gabazza, E.C. Low dose of alcohol attenuates pro-atherosclerotic activity of thrombin. Atherosclerosis 2017, 265, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Stote, K.; Tracy, R.; Taylor, P.; Baer, D. The effect of moderate alcohol consumption on biomarkers of inflammation and hemostatic factors in postmenopausal women. Eur. J. Clin. Nutr. 2016, 70, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Spaggiari, G.; Cignarelli, A.; Sansone, A.; Baldi, M.; Santi, D. To beer or not to beer: A meta-analysis of the effects of beer consumption on cardiovascular health. PLoS ONE 2020, 15, e0233619. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.L.; Harris, F.L.; Brown, L.A.S.; Yeligar, S.M. Alcohol induces mitochondrial derangements in alveolar macrophages by upregulating NADPH oxidase 4. Alcohol 2021, 90, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Albano, E. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc. 2006, 65, 278–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Xu, X.; Li, Q.; Deng, Y.; Xie, M.; Zheng, Y.; Ou, W.; He, Q.; Xu, X.; Wu, W.; et al. Chronic Alcohol Intake Exacerbates Cardiac Dysfunction After Myocardial Infarction. Alcohol Alcohol. 2020, 55, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Piano, M.R. Alcohol’s Effects on the Cardiovascular System. Alcohol Res. 2017, 38, 219–241. [Google Scholar] [PubMed]
- Tasnim, S.; Tang, C.; Musini, V.M.; Wright, J.M. Effect of alcohol on blood pressure. Cochrane Database Syst. Rev. 2020, 7, CD012787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, S.M.; Trower, A.J.; Jia, X.; Scott, D.J.A.; Greenwood, D.C. Meta-analysis of the association between alcohol consumption and abdominal aortic aneurysm. Br. J. Surg. 2017, 104, 1756–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a knowledge representation for clinical questions. In Proceedings of the AMIA Annual Symposium, Washington, DC, USA, 11–15 November 2006; Volume 2006, pp. 359–363. [Google Scholar]
- Sluyter, J.; Hughes, A.; Thom, S.; Lowe, A.; Camargo, C., Jr.; Hametner, B.; Wassertheurer, S.; Parker, K.; Scragg, R. Arterial waveform parameters in a large, population-based sample of adults: Relationships with ethnicity and lifestyle factors. J. Hum. Hypertens. 2017, 31, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Wu, Q.; Luo, L.; Ye, P. Relationships of drinking and smoking with peripheral arterial stiffness in Chinese community-dwelling population without symptomatic peripheral arterial disease. Tob. Induc. Dis. 2017, 15, 1–5. [Google Scholar] [CrossRef]
- Nishiwaki, M.; Kora, N.; Matsumoto, N. Ingesting a small amount of beer reduces arterial stiffness in healthy humans. Physiol. Rep. 2017, 5, e13381. [Google Scholar] [CrossRef]
- O’Neill, D.; Britton, A.; Brunner, E.J.; Bell, S. Twenty-five-year alcohol consumption trajectories and their association with arterial aging: A prospective cohort study. J. Am. Heart Assoc. 2017, 6, e005288. [Google Scholar] [CrossRef] [Green Version]
- Uemura, H.; Katsuura-Kamano, S.; Yamaguchi, M.; Arisawa, K. Relationships of elevated levels of serum hepatic enzymes and alcohol intake with arterial stiffness in men. Atherosclerosis 2015, 238, 83–88. [Google Scholar] [CrossRef]
- Kim, M.; Shin, J.; Kweon, S.-S.; Shin, D.; Lee, Y.-H.; Chun, B.-Y.; Choi, B. Harmful and beneficial relationships between alcohol consumption and subclinical atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Yoshioka, E.; Saijo, Y.; Kita, T.; Okada, E.; Tamakoshi, A.; Kishi, R. Relation between alcohol consumption and arterial stiffness: A cross-sectional study of middle-aged Japanese women and men. Alcohol 2013, 47, 643–649. [Google Scholar] [CrossRef]
- Karatzi, K.; Rontoyanni, V.G.; Protogerou, A.D.; Georgoulia, A.; Xenos, K.; Chrysou, J.; Sfikakis, P.P.; Sidossis, L.S. Acute effects of beer on endothelial function and hemodynamics: A single-blind, crossover study in healthy volunteers. Nutrition 2013, 29, 1122–1126. [Google Scholar] [CrossRef] [Green Version]
- Mitani, S.; Fujita, M.; Shigeta, M.; Kuriyama, N.; Ozaki, E.; Yoshikawa, A.; Matsui, D.; Watanabe, I.; Inoue, K.; Watanabe, Y. Determinants of brachial–ankle pulse wave velocity in a Japanese population: A cohort study. Blood Press. 2012, 21, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Qin, Y.Y.; Chen, Q.; Jiang, H.; Chen, X.Z.; Xu, C.L.; Mao, P.J.; He, J.; Zhou, Y.H. Alcohol intake and risk of stroke: A dose-response meta-analysis of prospective studies. Int. J. Cardiol. 2014, 174, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, E.; Chahal, H.S.; Mukamal, K.J.; Rimm, E.B.; Mittleman, M.A. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation 2016, 133, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Juonala, M.; Viikari, J.S.; Kähönen, M.; Laitinen, T.; Taittonen, L.; Loo, B.M.; Jula, A.; Marniemi, J.; Räsänen, L.; Rönnemaa, T.; et al. Alcohol consumption is directly associated with carotid intima-media thickness in Finnish young adults: The Cardiovascular Risk in Young Finns Study. Atherosclerosis 2009, 204, e93–e98. [Google Scholar] [CrossRef] [PubMed]
- Laguzzi, F.; Baldassarre, D.; Veglia, F.; Strawbridge, R.J.; Humphries, S.E.; Rauramaa, R.; Smit, A.J.; Giral, P.; Silveira, A.; Tremoli, E.; et al. Alcohol consumption in relation to carotid subclinical atherosclerosis and its progression: Results from a European longitudinal multicentre study. Eur. J. Nutr. 2021, 60, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal study of alcohol consumption and HDL concentrations: A community-based study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol. 2019, 70, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Ying, Y.Y.; Li, S.X.; Wang, S.J.; Gong, Q.H.; Li, H. Association between alcohol consumption and metabolic syndrome among Chinese adults. Public Health Nutr. 2021, 24, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Nkpaa, K.W.; Owoeye, O.; Amadi, B.A.; Adedara, I.A.; Abolaji, A.O.; Wegwu, M.O.; Farombi, E.O. Ethanol exacerbates manganese-induced oxidative/nitrosative stress, pro-inflammatory cytokines, nuclear factor-κB activation, and apoptosis induction in rat cerebellar cortex. J. Biochem. Mol. Toxicol. 2021, 35, e22681. [Google Scholar] [CrossRef] [PubMed]
- Zilkens, R.R.; Burke, V.; Watts, G.; Beilin, L.J.; Puddey, I.B. The effect of alcohol intake on insulin sensitivity in men: A randomized controlled trial. Diabetes Care 2003, 26, 608–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahill, P.A.; Redmond, E.M. Alcohol and cardiovascular disease--modulation of vascular cell function. Nutrients 2012, 4, 297–318. [Google Scholar] [CrossRef] [Green Version]
- Mouton, A.J.; El Hajj, E.C.; Ninh, V.K.; Siggins, R.W.; Gardner, J.D. Inflammatory cardiac fibroblast phenotype underlies chronic alcohol-induced cardiac atrophy and dysfunction. Life Sci. 2020, 245, 117330. [Google Scholar] [CrossRef] [PubMed]
- Pöschl, G.; Seitz, H.K. Alcohol and cancer. Alcohol Alcohol. 2004, 39, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehm, J.; Gmel, G.E., Sr.; Gmel, G.; Hasan, O.S.M.; Imtiaz, S.; Popova, S.; Probst, C.; Roerecke, M.; Room, R.; Samokhvalov, A.V.; et al. The relationship between different dimensions of alcohol use and the burden of disease-an update. Addiction 2017, 112, 968–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortolá, R.; García-Esquinas, E.; Galán, I.; Guallar-Castillón, P.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. Patterns of alcohol consumption and risk of falls in older adults: A prospective cohort study. Osteoporos. Int. 2017, 28, 3143–3152. [Google Scholar] [CrossRef] [PubMed]
- Beilin, L.J.; Puddey, I.B. Alcohol and hypertension: An update. Hypertension 2006, 47, 1035–1038. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Figueredo, V.M. Alcohol and arrhythmias: A comprehensive review. J. Cardiovasc. Med. (Hagerstown) 2010, 11, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, J.D.; Mouton, A.J. Alcohol effects on cardiac function. Compr. Physiol. 2015, 5, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Weathermon, R.; Crabb, D.W. Alcohol and medication interactions. Alcohol Res. Health 1999, 23, 40–54. [Google Scholar] [PubMed]
- Kerr, W.C.; Stockwell, T. Understanding standard drinks and drinking guidelines. Drug Alcohol Rev. 2012, 31, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.; Department of Health and Human Services and U.S. Department of Agriculture: Washington, DC, USA, 2015.
- Drinking Levels Defined. NIAAA Alcohol & Your Health Website. Available online: https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking (accessed on 22 March 2021).
Inclusion | Exclusion | |
---|---|---|
Population | General population of adults—both genders | Pregnant women, adolescents, children, all individulas younger than 18 years; populations affected by any chronic or acute diseases (e.g., NAFLD, diabetes, overweight/obese), animals |
Intervention/exposure | Consumption of alcoholic beverages (any type) | Consumption of ad libitum alcohol in non specific dosages |
Comparator | PWV in alcohol vs. non alcohol consumers | Not applicable |
Outcome | Arterial stiffness assessed by Pulse Wave Velocity (any method) | Arterial stiffness assessed by Pulse Pressure, Augmentation Index or measures different than PWV |
Study design | All types of study design within the field of interest | Systematic reviews, meta-analyses, conference reports, editorials, comments, letters, case reports, case series |
First Author, Year, Country | Setting, Study Population | Study Design, Sample Selection | Study Quality | Sample Size | Age, Mean (SD) d or Range | BMI (kg/m2) | Men/Women |
---|---|---|---|---|---|---|---|
Gonzalez-Sanchez J, 2020 Spain [13] | Community men and women | Population-based, cross-sectional random sampling | Good | 501 | 55.9 ± 14.2 | 26.5 ± 4.2 | 249/252 |
Nishiwaki M, 2020 Japan [14] | Community healthy men | Randomized trial, men | Fair | 9 | 21.1 ± 0.2 | 22.9 ± 1.1 | 9/0 |
Hwang CL, 2020 USA [15] | Community healthy men and women | Cross-sectional study, population-based, consecutive | Good | 49 | 23.3 ± 1 | 23.4 ± 0.7 | 25/24 |
Moon J, 2018 South Korea [16] | Community men and women | Cross-sectional study, population-based, consecutive | Fair | 1004 | 53 ± 10 | 25 ± 3 | 721/283 |
Sluyter JD, 2017 New Zeland [32] | Community men and women | Cross sectional study, population-based; randomized | Good | 4798 | 62.5 ± 7.8 | 30.1 ± 5.3 | 2778/2020 |
Fu S, 2017 China [33] | Community men and women | Cross-sectional population-based, cluster sampling | Good | 2624 | 54 (18 to 96) | 25.2 (23.0–27.4) | 1358/1266 |
Nishiwaki M, 2017 Japan [34] | Community healthy men | Randomized trial, men | Fair | 11 | 21.1 ± 0.2 | 21.5 ± 0.7 | 11/0 |
O’Neill D, 2017 UK [35] | Community men and women | Cohort Study, consecutive | Good | 3869 | 65 ± 5.7 | 26.2 ± 4.2 | 2852/1017 |
Uemura H, 2015 Japan [36] | Community men | Cohort study prospective, consecutive | Good | 647 | 48.8 ± 8.6 | 24.5 ± 3.4 | 647/0 |
Kim MK, 2014 South Korea [37] | Community, men and women | Cohort Study multistage cluster sampling | Good | 5539 | 60.5 ± 10.1 | 24.0 ± 3.1 | 2121/3418 |
Sasaki S, 2013 Japan [38] | Community, men and women | Cross-sectional study, population-based, consecutive | Fair | 3893 | 47.2 ± 7.0 | 22.7 ± 3.1 | 3081/812 |
Karatzi K, 2013 Greece [39] | Community healty men | Cross-over study, randomized; single–blind | Fair | 17 | 28.4 ± 5.2 | 24.3 ± 2.4 | 17/0 |
Mitani S, 2012 Japan [40] | Healthy workers, men and women | Cohort Study, consecutive | Fair | 528 | 47.9 ± 8.1 | 22.5 ± 2.9 | 270/258 |
Study Reference | Alcohol Type | Alcohol Assessment | Ethanol in Grams | Alcohol Frequency | Outcome Assessment | Device | Assessment Method |
---|---|---|---|---|---|---|---|
Gonzalez-Sanchez J, 2020 Spain [13] | wine, beer, aperitifs, spirits, liquor | Self-reported questionnaire | Abstemious ≤30 g/week >30 to 70 g/week >70 g/week | Previous year | Carotid–femoral PWV Brachial–ankle PWV | SphygmoCor(AtCor Medical Pty Ltd., Head Office, West Ryde, Australia); VaSera VS1500 device (Fukuda Denshi, Tokyo, Japan) | Tonometric Oscillometric |
Nishiwaki M, 2020 Japan [14] | Regular Beer | Experimental protocol. Ingestion of different amounts of beer (25 mL, 50 mL, 100 mL, 200 mL) | Alcohol (g) calculation based on body mass. All participants under 40 g/day. | 8 days | Carotid–femoral PWV Brachial–ankle PWV Heart–brachial PWV Heart–ankle PWV | TY-501A; Fukuda Denshi VS-1500AE/AN (Fukuda Denshi, Tokyo, Japan) | Tonometric Oscillometric |
Hwang CL, 2020 USA [15] | Beer, wine, spirits, liquor | Self-reported questionnaire; Alcohol Use Disorders Test (AUDIT); dry Blood phosphatidylethanol | 14 g alcohol (12 oz beer, 5 oz. wine, 1.5 oz. of 80-proof spirits, 8–9 oz. of malt liquor) | Binge Drinking (BD), moderate alcohol consumption (MOD); alcohol abstention (AB), based on consumption per year | Carotid–femoral PWV | SphygmoCor (AtCor Medical Australia) | Tonometric |
Moon J, 2018 South Korea [16] | Soju (distilled alcohol) > beer, wine, spirits and other liquors | Self-reported questionnaire | Alcoholic drinks/week (casual drinkers: <14 standard drinking/week for men, <7 standard drinking/week for women) | Abstainers, casual drinkers, problematic drinkers; drinking habits maintained for >5 years before the visit | Brachial–ankle PWV | Colin VP-1000 (Colin Medical Instrument Co., Komaki, Japan) | Oscillometric |
Sluyter JD, 2017 New Zealand [32] | Not specified | Interviewer- administered questionnaire | Heavy alcohol consumption (≥6 drinks per occasion) | Heavy consumers: never, ≤1 per month, Weekly, daily or almost daily | Aortic PWV | Calculated from validated algorithms | Calculated from validated algorithms |
Fu S, 2017 China [33] | Not specified | Interviewer- administered questionnaire | 30 g/week or more for at least 1 year | Previous years, drinkers and nondrinkers | Carotid–radial PWV | Complior Colson device (Createch Industrie, Garges les Gonesse, France) | Tonometric |
Nishiwaki M, 2017 Japan [34] | Beer | Experimental protocol. Ingestion of different amounts of beer (200 mL/350 mL) | Alcohol (g) calculation based on body mass. All participants under 40 g/day. | 4 days of experimental protocol | Carotid–femoral PWV Brachial–ankle PWV | TY-501a; Fukuda Denshi VS-1500AE/AN (Fukuda Denshi, Tokyo, Japan) | Tonometric Oscillometric |
O’Neill D, 2017 UK [35] | Wine, beer, cider, spirit, liqueur | Self-reported questionnaire | ≤112 g/week >112 g/week | Consumption 1 week before: Former drinker Stable Nondrinker Stable Moderate drinker Stable Heavy drinker Unstable Moderate drinker Unstable Heavy drinker | Carotid–femoral PWV | SphygmoCor device (AtCor Medical, Sydney, Australia) | Tonometric |
Uemura H, 2015 Japan [36] | Sake, beer, shochu (distilled beverage), chuhai (sweet beverage mixed with shochu), whiskey, wine | Self-reported questionnaire. | g of ethanol/day 0 0.1–22.9, 23.0–45.9, ≥46.0 | Previous year Alcohol drinking: Current, Past, Never | Brachial–ankle PWV | Colin Waveform Analyzer (Model BP203RPEIII; Colin, Co. Ltd., Komaki, Japan) | Oscillometric |
Kim MK, 2014 South Korea [37] | Soju (Korean distilled liquor), beer, Takju (unrefined rice wine), Cheongju (refined rice wine), wine, liquors | Interviewer- administered questionnaire | Males Never-drinkers, former-drinkers, 1.0–14.9 g/day, 15.0–29.9 g/day, 30.0–89.9 g/day, ≥90.0 g/day Females Never-drinkers, former-drinkers, 1.0–14.9 g/day, 15.0–29.9 g/day, ≥30.0 g/day | Previous year Light to moderate: <30.0 g/day = 1–2 drinks per day for men, and less than 15.0 g/day for women | Brachial–ankle PWV | Colin Waveform Analyzer (Colin-VP1000; Colin Co., Ltd., Komaki, Japan) | Oscillometric |
Sasaki S, 2013 Japan [38] | Beer, sake (rice wine), Shochu (traditional Japanese distilled spirit), whisky, wine, other mixed drinks | Self-reported questionnaire | g/day beer (5%), sake (15%), Shochu (25%), whisky (40%), wine (12%), other mixed drinks (5%) | Previous month Females Non-drinkers <10 g/day 10–19 g/day 20–29 g/day ≥30 g/day Males Non-drinkers <20 g/day 20–39 g/day 40–59 g/day ≥60 g/day | Brachial–ankle PWV | Colin Waveform Analyzer, (Form PWV/AVI; Model BP203RPEII; Colin Co., Komaki, Japan) | Oscillometric |
Karatzi K, 2013 Greece [39] | Beer, vodka | Experimental protocol. Ingestion of different amounts of beer and vodka (400 mL/67 mL) | Expressed in 20 g of ethanol | 3 days | Carotid–femoral PWV | SphygmoCor System (Actor Medical, Sydney, Australia) | Tonometric |
Mitani S, 2012 Japan [40] | Not specified | Self-reported questionnaire. | Current drinkers, non drinkers/past-drinkers | Current drinkers, non drinkers/past-drinkers | Brachial–ankle PWV | Form/ABI: Omron-Colin, Kyoto, Japan | Oscillometric |
Study Ref | PWV in Alcohol Users and Non-Users | Main Results Indicating the Association between Alcohol and PWV | Counfunding Factors | HYP n (%) | SBP/DBP/MAP (mmHg) |
---|---|---|---|---|---|
Gonzalez-Sanchez J, 2020 Spain [13] | Cf-PWV (m/s) Nondrinkers: 6.3 ± 1.9 Drinkers (g/week) ≤30/30–70/>70: 5.8 ± 1.3/6.5 ± 2.1/7.5 ± 2.3 Ba-PWV (m/s) Nondrinkers: 12.8 ± 2.6 Drinkers (g/week) ≤30/30–70/>70: 12.0 ± 2.4/12.8 ± 2.8/13.8 ± 2.5 | Cf-PWV (m/s) drinkers >70 g/week vs reference (Nondrinkers) β (CI): 0.42, p = 0.021 | Sex, age, smoking status, SBP, diet, physical activity | 147/501 (29.3) | SBP/DBP Nondrinkers: 117.5 ± 15.3/74.8 ± 9.3 Drinkers (g/week) ≤30, 30–70, >70 113.2 ± 17.5/72.3 ± 10.5; 123.7 ± 28.6/76.8 ± 11.2; 131.8 ± 32.5/78.8 ± 9.7 |
Nishiwaki M, 2020 Japan [14] | Baseline (cm/s) heart–brachial–/heart–ankle-/baPWV: 25 mL alcohol free beer: 324 ± 11/606 ± 13/1073 ± 29 25 mL beer: 322 ±11/602 ±18/1082 ± 28 50 mL beer: 326 ± 9/601 ± 12/1062 ± 25 100 mL beer: 327 ± 12/604 ± 15/1074 ± 30 200 mL beer: 325 ± 10/604 ± 17/1094 ± 36 | After 30–60 min absolute difference: heart–brachial–/heart–ankle-/baPWV 50 mL beer: −4.5 ± 2.4%/−3.7 ± 0.3%/−0.6 ± 2.0% 100 mL beer: −3.4 ± 1.3%/−3.3 ± 0.9%/−3.3 ± 1.1% 200 mL beer: −8.1 ± 2.6%/−8.1 ± 2.7%/−9.3 ± 3.0% Relationship between alcohol-heart–brachial–/heart–ankle-/baPWV: r = −0.47, p < 0.001/r = −0.45, p < 0.001/r = −0.31, p < 0.01 | Not specified | 0 | Baseline SBP/DBP and 60 min 25 mL alc. free: 124 ± 4/69 ± 2; 124 ± 3/69 ± 2 25 mL: 122 ± 3/70 ± 2; 122 ± 2/73 ± 2 50 mL: 122 ± 4/72 ± 2; 119 ± 3/70 ± 2 100 mL: 124 ± 5/71 ± 2; 122 ± 5/71 ± 3 200 mL: 122 ± 5/68 ± 2; 125 ± 3/69 ± 3 |
Hwang CL, 2020 USA [15] | Cf-PWV (m/s) Abstainers: 4.58 ± 0.53 Moderate: 5.09 ± 0.45 Binge: 5.19 ± 0.71 | Cf-PWV difference among groups: moderate alcohol consumption vs. alcohol abstention +0.5 (p = 0.035) binge drinking vs. alcohol abstention: +0.6 (p < 0.01) | Sex | Not specified | SBP/DBP Abstainers: 110 ± 2/65 ± 2 Moderate alcohol: 112 ± 2/69 ± 2 Binge drinking: 112 ± 2/65 ± 2 |
Moon J, 2018 South Korea [16] | Ba-PWV (cm/s) Nondrinkers: 1448 ± 284 Casual drinkers: 1340 ± 190 Problematic drinkers: 1447 ± 245 | Ba-PWV (cm/s)- alcohol β: Unadjusted/Adjusted Casual drinkers: −0.183 (p < 0.001)/−0.964 (p = 0.335) Problematic drinkers: −0.001 (p < 0.001)/0.928 (p = 0.354) | Sex, age, DM, hyp | 254/1004 (25) | SBP/DBP Nondrinkers: 123 ± 14/75 ± 10 Casual drinkers: 120 ± 16/74 ± 11 Problematic drinkers: 125 ± 14/80 ± 10 |
Sluyter JD, 2017 New Zeland [32] | Not specified | Aortic PWV (m/s) Neverdrinkers β (SE): 9.50 (0.02) β (95% CI): ≤ 1 per month: 9.56 (0.01, 0.12) Weekly/daily/almost daily, β (95% CI): 9.64 (0.04, 0.23); p = 0.0046 | Age, sex, ethnicity, antihypertensive use, DM, cardiovascular disease | 1878/ 4798 (39) | SBP Abstainers: 139.3 (0.6) ≤1 per month: 141.0 (0.4, 2.9) Weekly, daily or almost daily: 143.5 (1.9, 6.5) |
Fu S, 2017 China [33] | Cr-PWV (m/s) Nondrinkers: 9.2(8.3–10.0) Drinkers: 9.8(9.0–10.9) p = 0.008 | Cr-PWV (m/s), OR Alcohol drinking and cigarette smoking Unadjusted: 1.892; p < 0.001 Model 1: 1.163; p = 0.177 Model 2: 1.154; p = 0.204 | Model 1: age, sex Model 2: age, sex, BMI, waist circumference, PP, fasting blood glucose, HDL-cholesterol, LDL-cholesterol | Not specified | Not specified |
Nishiwaki M, 2017 Japan [34] | Not specified | After 60 min Cf-PWV (m/s); ba-PWV (cm/s): absolute difference 200 mL beer: −0.6 ± 0.2; −53 ± 18 350 mL beer: −0.6 ± 0.2; −57 ± 19 Relationship between alcohol cf-PWV/ba-PWV r = −0.54, p = 0.047/r = −0.083, p = 0.503 | Not specified | Not specified | Baseline SBP/DBP and 60 min 200 mL: 124 ± 3/71 ± 2; 122 ± 3/72 ± 2 350 mL: 123 ± 2/71 ± 2; 124 ± 3/70 ± 1 |
O’Neill D, 2017 UK [35] | Cf-PWV (m/s) mean (SD) Baseline Men/Women Former Drinker: 8.6 (2.1)/8.3 (1.8) Stable Nondrinker: 8.8 (2.0)/8.6 (2.5) Stable Moderate: 8.3 (2.0)/7.9 (1.8) Stable Heavy: 8.7 (2.0)/8.3 (2.2) Unstable Moderate: 8.5 (2.0)/8.4 (2.1) Unstable Heavy: 8.4 (1.9)/7.8 (1.7) | PWV at Baseline; PWV in 4 Years β Men Former Drinker: 0.09; p = 0.558; 0.11, p = 0.009 Stable Nondrinker: 0.30; p = 0.191; 0.05, p = 0.414 Stable Moderate: Reference Stable Heavy: 0.26; p = 0.045; 0.00; p = 0.937 Unstable Moderate: 0.13; p = 0.252; 0.00, p = 0.884 Unstable Heavy: 0.13, p = 0.260; 0.02, p = 0.416 Women Former Drinker: −0.06; p = 0.764; 0.02; p = 0.648 Stable Nondrinkers: −0.06, p = 0.813; 0.08, p = 0.188 Stable Moderate: Reference Stable Heavy: 0.42, p = 0.169; 0.00, p = 0.995; Unstable Moderate: 0.28; p = 0.091; 0.02, p = 0.560 Unstable Heavy: −0.12, p = 0.523; 0.03, p = 0.558 | Age, assessment interval, demographics, ethnicity, smoking, exercise, socioeconomic position, BMI, heart rate, mean arterial pressure, DM, high-density lipoprotein and TGs | Not specified | Mean arterial pressure Men/Women Former drinker: 90.4/87.5 Stable Nondrinker: 88.7/87.6 Stable Moderate drinker: 90.7/86.7 Stable Heavy drinker: 91.4/89 Unstable Moderate drinker: 90.4/86.7 Unstable Heavy drinker: 90.5/85.8 |
Uemura H, 2015 Japan [36] | Means of baPWV (cm/s) ± SE Current alcohol intake No: 1489 ± 26 Yes: 1502 ± 32 | Ba-PWV (cm/s) Alcohol consumption (g ethanol/day) means ± SE 0: 1440 ± 16 0.1–22.9: 1404 ± 14 23.0–45.9: 1454 ± 20 ≥46.0: 1468 ± 16 p = 0.021 | Age | 301/647 (46.5) | SBP/DBP Overall population: 135 ± 16.4/84.5 ± 11.2 |
Kim MK, 2014 South Korea [37] | Not specified | g/day and ba-PWV (cm/s) mean Men Abstainers: 1506; Former drinkers: 1560; >0.0 to <15.0: 1556; ≥15.0 to <30.0: 1591; ≥30.0 to <90.0: 1672; ≥90.0: 1693; p for difference < 0.0001; p for trend < 0.0001; Women Abstainers: 1489; Former drinkers: 1525; >0.0 to <15.0: 1497; ≥15.0 to <30.0: 1516; ≥30.0: 1549 p for difference = 0.2894: p for trend = 0.0581 | Age | Not specified | SBP/DBP, Men and Women Abstainers: 121.7/77.0; 121.9/76.0 Former-drinkers: 122.4/76.8; 122.7/77.4 >0.0 to <15.0 g/day: 125.4/79.2; 122.7/76.8 ≥15.0 to <30.0 g/day: 125.9/80.4; 124.9/78.5 ≥30.0 to <90.0 g/day: 128.0/80.1; 124.9/78.1 ≥90.0 g/day: 128.6/80.5 |
Sasaki S, 2013 Japan [38] | Ba-PWV (cm/s), mean ± sd Alcohol consumption (g/day): Men Nondrinkers: 1329 ± 179; <20: 1320 ± 168; 20–39: 1345 ± 178; 40–59: 1380 ± 193; ≥60: 1405 ± 215; (p < 0.0001); Women Nondrinkers: 1243 ± 178; <10: 1212 ± 163; 10–19: 1220 ± 164; 20–29: 1271 ± 196; ≥30: 1276 ± 181; (p = 0.022); | Ba-PWV (cm/s) Alcohol consumption (g/day), β: Model 1/Model 2/Model 3, Women: Nondrinkers: 24.24/26.63/26.49; <10: Refs. [9,10,11,12,13,14,17,18,30,31]: 11.22/6.28/4.78; 20–29: 18.09/14.58/11.09; ≥30: 23.56/17.61/13.99; p = 0.129/0.058/0.056; Men: Nondrinkers: 13.71/15.72/15.38; <20: 13.52/13.85/15.45; 20–39: Refs. [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]: 15.65/11.24/11.34 ≥60: 23.11/17.65/17.69; p = 0.042/0.030/0.036 | Model 1: age, SBP, heart ratio; Model 2: Model 1 + adjusted for menopause, medication for diabetes, medication for hyperlipidemia, BMI, total cholesterol, log Triglyceride, HDL cholesterol, fasting blood sugar; Model 3: Model 2 + lifestyle factors (education, exercise, smoking) | Not specified | SBP/DBP, mean ± sd Men Nondrinkers: 117.9 ± 13.5/74.1 ± 9.6 <20: 118.3 ± 13.3/74.6 ± 10.0 20–39: 122.5 ± 14.0/77.9 ± 10.2 40–59: 124.8 ± 14.7/79.4 ± 10.2 >60: 126.2 ± 14.8/80.5± 10.8 Women Nondrinkers: 112.4 ± 14.8/67.5 ± 9.2 <10: 112.7 ± 14.4/68.4 ± 10.7 10–19: 112.1 ± 14.2/67.7 ± 9.1 20–29: 118.1 ± 17.7/71.0 ±12.2 ≥30: 118.7 ± 14.9/73.3 ± 10.0 |
Karatzi K, 2013 Greece [39] | Cf-PWV (m/s), mean (95% CI) Fasting (0 h) Beer 5.7 (5.3, 6.0) Dealc beer 5.8 (5.4, 6.1) Vodka 5.7 (5.3, 6.1) | Cf-PWV (m/s), Δ (1 h–0 h); Δ (2 h–0 h), difference Beer −0.4 (−0.6, −0.3); −0.5 (−0.7, −0.4) Dealc beer −0.2 (−0.4, −0.1); −0.3 (−0.4, −0.1) Vodka −0.4 (−0.6, −0.2); −0.5 (−0.7, −0.3) p < 0.001 | MAP | 0 | SBP/DBP: 115.4 ± 6.2/68.5 ± 5.4 MAP Beer/Vodka Fasting (0 h) 83.2 (79.8, 86.7)/83.9 (80.6, 87.2) Δ (2 h–0 h) 79.9 (73.4, 86.4)/78.9 (72.6, 85.1) |
Mitani S, 2012 Japan [40] | Ba-PWV (cm/s), mean ± sd Current drinker: 1308 ± 11 Non drinker/past-drinker: 1304 ± 13, p = 0.82 | Ba-PWV and Alcohol β: −33.30; p-value < 0.01 | Age, sex | 162/528 (31) | Overall population SBP/DBP: 120 ± 16/74 ± 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Giorno, R.; Maddalena, A.; Bassetti, S.; Gabutti, L. Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review. Nutrients 2022, 14, 1207. https://doi.org/10.3390/nu14061207
Del Giorno R, Maddalena A, Bassetti S, Gabutti L. Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review. Nutrients. 2022; 14(6):1207. https://doi.org/10.3390/nu14061207
Chicago/Turabian StyleDel Giorno, Rosaria, Ania Maddalena, Stefano Bassetti, and Luca Gabutti. 2022. "Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review" Nutrients 14, no. 6: 1207. https://doi.org/10.3390/nu14061207
APA StyleDel Giorno, R., Maddalena, A., Bassetti, S., & Gabutti, L. (2022). Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review. Nutrients, 14(6), 1207. https://doi.org/10.3390/nu14061207