Mediterranean Diet: A Tool to Break the Relationship of Atrial Fibrillation with the Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Atrial Fibrillation, MetS, and NAFLD
Study Design | Total Cohort | Prevalence (%) | Diagnostic Criteria | |
---|---|---|---|---|
NAFLD | ||||
Long [21] | CS | 62 | 27.4 | Computed tomography |
Pastori [22] | P | 1735 | 42.2 | Fatty liver index (FLI) score ≥ 60 |
Zhang [26] | CS | 39 | 46.2 | Ultrasonography |
Karajamaki [27] | P | 36 | 50.0 | Ultrasonography |
Targher [23] | R | 85 | 88.2 | Ultrasonography |
Metabolic syndrome | ||||
Umetani [28] | P | 592 | 21.8 | ATP-III criteria |
Xia [29] | P | 137 | 32.1 | The Chinese Medical Association Diabetes Branch (CMADB) and the National Cholesterol Education Program Third Adult Treatment Panel (NCEP-ATPIII) criteria |
Vural [30] | R | 161 | 46.0 | Metabolic syndrome Working Group of The Society of Endocrinology and Metabolism of Turkey |
Pastori [15] | P | 1735 | 49.0 | Modified ATP-III criteria |
Mohanty [31] | P | 1496 | 67.6 | Diabetes plus any 2 other risk factors is sufficient for the diagnosis according to the World Health Organization |
Ionin [32] | P | 248 | 70.9 | International Diabetes Federation (IDF) criteria |
Decker [33] | P | 1172 | 71.0 | ATP III criteria |
Liver fibrosis/Cirrhosis | ||||
Karajamaki [27] | CC | 36 | - | Ultrasound elastography |
Kang [24] | CS | 59 | 6.8 | NAFLD fibrosis score (NFS) and Fibrosis-4 (Fib-4) Index |
Pastori [25] | P | 2330 | 5.5 | Fibrosis-4 (Fib-4) Index |
Kuo [34] | R | 289.559 | 3.6 | International Classification of Diseases, 9th Revision (ICD-9) |
3. Oxidative Stress: A Common Milieu for AF and NAFLD
4. Mediterranean Diet for the Prevention of AF
Antioxidant Foods/Nutrients Intake and Risk of AF
Food/Nutrient | Author, Year | Population (n) | Study Design | Follow-Up (Years) | Main Findings |
---|---|---|---|---|---|
Fish and omega-3 PUFA | |||||
Tuna or broiled/baked fish | Mozaffarian et al., 2004 [61] | 4815 adults ≥ 65 years old | P | 12 | Consumption of tuna or other broiled or baked fish was inversely associated with incidence of AF: with an intake of 1 to 4 times per week (HR 0.72, 95%CI 0.58–0.91; p = 0.005) and intake 5 times per week (HR 0.69, 95%CI 0.52–0.91, p = 0.008), compared with 1 time per month (p trend 0.004). Fried fish/fish sandwich consumption was not associated with AF. |
Omega-3 PUFAs | Brouwer et al., 2006 [77] | 5184 adults | P | 6.4 | Intake of EPA and DHA in the third tertile compared with first was not associated with risk of AF (RR 1.18, 95%CI 0.88–1.57). No association was observed with intake of >20 g/day fish compared with no fish intake (RR 1.17, 95%CI 0.87–1.57). |
Omega-3 PUFAs | Shen et al., 2011 [78] | 4526 adults | P | 4 | No significant association between n-3 (omega-3) PUFAs and AF risk: Q4 1.11 (95%CI 0.81, 1.54); Q3 0.92 (95%CI 0.65, 1.29); Q2 1.18 (95%CI 0.85, 1.64); p for trend 0.57, Q1 as reference group. |
Fish and omega-3 PUFAs | Rix et al., 2014 [60] | 57,053 adults aged 50–64 years old | P | 13.6 | Q1 as reference group: Q2 HR 0.92 (95%CI 0.82–1.03); Q3 HR 0.87 (95%CI 0.78–0.98); Q4 HR 0.96 (95%CI 0.86–1.08); Q5 HR 1.05 (95%CI 0.93–1.18) Intake of total fish, fatty fish, and the individual n-3 PUFA EPA, DHA, DPA also showed U-shaped associations with incident AF. |
Fish and omega-3 PUFAs | Larsson and Wolk. 2017 [79] | 72,984 adults aged 45–83 years old | P | 12 | Intake of total fish, fatty fish (herring/mackerel and salmon/whitefish/char), and omega-3 PUFAs not associated with AF incidence after adjustment for risk factors. High consumption of lean fish (cod/saithe/fish fingers) associated with a lower risk: HR 0.79, 95%CI 0.65–0.95). |
Extra virgin olive oil | |||||
Extra virgin Olive Oil | Martínez-González, 2014 [62] | 6705 adults | RCT | 4.7 | Participants assigned to Mediterranean diet supplemented with extravirgin olive oil had a lower risk of AF development (HR 0.62; 95%CI 0.45–0.8) after adjusting for propensity scores. |
Nuts | |||||
Nuts | Khawaja et al., 2012 [64] | 21,054 males | P | 20 | Multivariable adjusted HR for incident AF were 1.00 (95%CI 0.90–1.11), 1.09 (95%CI 0.97–1.21), 1.07 (95%CI 0.95–1.21), and 0.91 (95%CI 0.70–1.17) for nut consumption from the lowest to the highest category of nut consumption (p for trend 0.26). |
Nuts | Larsson et al., 2018 [80] | 61,364 adults | P | 17 | Nut consumption ≥ 3 times/week inversely associated with AF in the age-adjusted and sex-adjusted analysis (HR 0.87, 95%CI 0.67–0.89, p linear trend 0.002). Compared with no consumption of nuts, the multivariable HRs of AF across categories of nut consumption were not significant different 0.97 (95%CI 0.93–1.02) for 1–3 times/month, 0.88 (95%CI 0.79–0.99) for 1–2 times/week and 0.82 (95%CI 0.68–0.99) for ≥ 3 times/week. |
Coffee | |||||
Coffee | Conen et al., 2010 [65] | 33,638 women > 45 years old | P | 14.4 | Median caffeine intake across increasing quintiles of caffeine intake were 22, 135, 285, 402, and 656 mg/d, respectively. In Cox proportional hazards models, the adjusted HR were 0.88 (95%CI 0.72–1.06) for Q2, 0.78 (95%CI 0.64–0.95) for Q3, 0.96 (0.79–1.16) for Q4, and 0.89 (0.73–1.09) for Q5 (p for linear trend 0.45). None of the individual components of caffeine intake (coffee, tea, cola, and chocolate) were significantly associated with incident AF. |
Coffee | Mostofsky et al., 2016 [68] | 57,053 adults 50–64 years old | P | 13.5 | Coffee consumption inversely associated with AF incidence with multivariable-adjusted HR of 0.93 (95%CI 0.74–1.15) for more than none to <1 cup/day, 0.88 (95%CI 0.71–1.10) for 1 cup/day, 0.86 (95%CI 0.71–1.04) for 2–3 cups/day, 0.84 (95%CI 0.69–1.02) for 4–5 cups/day, 0.79 (95%CI 0.64–0.98) for 6–7 cups/day and 0.79 (95%CI 0.63–1.00) for >7 cups/day (p-linear trend 0.02). |
Coffee | Bodar et al., 2019 [66] | 18,960 adults | P | 9 | HR (95%CI) of AF were 0.85 (95%CI 0.71–1.02) for ≤1 cup/week, 1.07 (95%CI 0.88–1.30) for 2–4 cups/week, 0.93 (95%CI 0.74–1.17) for 5–6 cups/week, 0.85 (95%CI 0.74–0.98) for 1 cup/day, 0.86 (95%CI 0.76–0.97) 2–3 cups/day, and 0.96 (95%CI 0.80–1.14) for 4+ cups/day, reference group was coffee consumption of rarely/never (p for nonlinear trend 0.01). In a secondary analysis the multivariable adjusted HR of AF per standard deviation (149 mg) change in caffeine intake was 0.97 (95%CI 0.92–1.02). |
Coffee | Bazal et al., 2021 [67] | 18,983 adults from SUN and 6479 from PREDIMED cohorts | P | 10.3 SUN and 4.4 PREDIMED | An intermediate level of coffee consumption (1–7 cups/week) was inversely associated with the risk of AF in the PREDIMED study, compared with participants drinking < 3 cups/month (47% RR reduction, 95%CI 21–64%). In the SUN cohort no statistically significant association was found. The meta-analysis of both studies showed a 40% RR reduction (95%CI 18–56%) of coffee consumption and AF risk compared with participants drinking < 3 cups/month. In the meta-analysis of both PREDIMED and SUN studies, the HR for intermediate consumption of coffee was 0.60 (95%CI 0.44–0.82). |
Chocolate | |||||
Chocolate | Khawaja et al., 2015 [69] | 18,819 male physicians | P | 9 | Using <1/month of chocolate consumption as the reference group, multivariable adjusted HR for AF were 1.04 (0.93–1.18) for chocolate intake of 1–3/month, 1.10 (0.96–1.25) for 1/week, 1.14 (0.99–1.31) for 2–4/week, and 1.05 (0.89–1.25) for ≥5/week (p for trend 0.25), with no intake as reference group. |
Chocolate | Mostofsky et al., 2018 [70] | 55,502 adults | P | 13.5 | Rate of AF was lower for people consuming 1–3 servings/month (HR = 0.90, 95%CI 0.82–0.98), 1 serving/week (HR = 0.83, 95%CI 0.74–0.92), 2–6 servings/week (HR = 0.80, 95%CI 0.71–0.91) and 1 servings/day (HR = 0.84, 95%CI 0.65–1.09; p linear trend <0.0001), with chocolate intake less than once per month as reference group. |
Chocolate | Larsson et al., 2017 [71] | 9978 adults | P | 14.6 | Compared with non-consumers, the multivariable HR of AF for those in the highest category of chocolate consumption (≥3–4 servings/week) was 0.96 (95%CI 0.88–1.04). |
Alcohol | |||||
Alcohol | Frost and Vestergaard 2004 [81] | 47,949 adults | P | 5.7 | Adjusted HR in men were 1.04, 1.44, 1.25, and 1.46 for quintiles Q2, Q3, Q4, and Q5 (p for trend 0.04), with Q1 as reference group. In women, there did not seem to be any association between consumption of alcohol and risk of AF. |
Alcohol | Conen et al., 2008 [82] | 34,715 women | RCT | 12.4 | Compared with nondrinking women, women consuming 2 or more drinks per day had an absolute risk increase of 0.66 events/1000 person years. The multivariate-adjusted HRs for incident AF were 1.05 (95%CI 0.88–1.25) for more than 0 and less than 1 per day, 0.84 (95%CI 0.58–1.22) for 1 or more and less than 2, and 1.60 (95%CI 1.13–2.25) 2 or more drinks per day. The increased hazard in the small group of women consuming 2 or more drinks per day persisted when alcohol intake was updated at 48 months (HR 1.49; 95%CI 1.05–2.11) or when women were censored at their first cardiovascular event (HR 1.68; 95%CI 1.18–2.39). |
Alcohol | Liang et al., 2018 [83] | 30,433 adults 55 years or older | RCT | 4.5 | Compared with participants who had a low level of consumption, those with higher levels had an increased risk of incident AF (adjusted HR 1.14, 95%CI 1.04–1.26, for moderate consumption; 1.32, 95%CI 0.97–1.80, for high consumption). Results were similar after we excluded binge drinkers. Among those with moderate alcohol consumption, binge drinkers had an increased risk of atrial fibrillation compared with non-binge drinkers (adjusted HR 1.29, 95%CI 1.02–1.62). |
Alcohol | Larsson et al., 2014 [72] | 79,019 adults | P | 12 | The association between alcohol consumption and AF did not differ by sex (p for interaction 0.74). Compared with current drinkers of <1 drink/week (12 g alcohol/drink), the multivariable RRs of AF were 1.01 (95%CI 0.94–1.09) for 1 to 6 drinks/week, 1.07 (95%CI 0.98–1.17) for 7 to 14 drinks/week, 1.14 (95%CI 1.01–1.28) for 15 to 21 drinks/week, and 1.39 (95%CI 1.22–1.58) for >21 drinks/week. Results were similar after excluding binge drinkers. In a meta-analysis of 7 prospective studies the RRs were 1.08 (95%CI 1.06–1.10) for 1 drink/day, 1.17 (95%CI 1.13–1.21) for 2 drinks/day, 1.26 (95%CI 1.19–1.33) for 3 drinks/day, 1.36 (95%CI 1.27–1.46) for 4 drinks/day, and 1.47 (95%CI 1.34–1.61) for 5 drinks/day, compared with non-drinkers. |
Carbohydrate | |||||
Carbohydrate | Zhang et al., 2019 [76] | 13,385 adults | P | 22.4 | The HR for incident AF associated with a 1-SD (9.4%) increase in carbohydrate intake as a percentage of energy intake was 0.82 (95%CI 0.72–0.94), after adjustment for traditional AF risk factors and other diets factors. In the final model, the HR for incident AF comparing the second, third, and fourth quartiles of carbohydrate intake as a percentage of energy with the first quartile were 0.79 (95%CI 0.68–0.92), 0.77 (95%CI 0.64–0.93), and 0.64 (95%CI 0.49–0.84) separately. |
Fried foods and salt intake | |||||
Fried foods | Khawaja et al., 2020 [74] | 18,941 males | P | 9.0 | Multivariable adjusted HR for AF were 1.07 (95%CI 0.97–1.18) for fried food consumption of 1–3/week and 1.03 (95%CI 0.91–1.17) for ≥4/week (p linear trend 0.4) (<1/week as reference group). |
Salt | Wuopio et al., 2021 [75] | 473,080 adults | P | 10 | Adjusted model showed significant associations amongst men in the lowest and highest quintiles of sodium excretion (HR Q1 1.20, 95%CI 1.08–1.32, p < 0.001 and HR Q5 1.15, 95%CI 1.03–1.27, p = 0.011). |
5. Effects of Med-Diet on MetS Components and NAFLD
6. Med-Diet, Oxidative Stress and Cardiovascular Events in AF
7. Conclusions and Open Issues
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2020, 42, 373–498. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Wolf, P.A.; D’Agostino, R.B.; Silbershatz, H.; Kannel, W.B.; Levy, D. Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation 1998, 98, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Soliman, E.Z.; Safford, M.M.; Muntner, P.; Khodneva, Y.; Dawood, F.Z.; Zakai, N.A.; Thacker, E.L.; Judd, S.; Howard, V.J.; Howard, G.; et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern. Med. 2014, 174, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Pignatelli, P.; Angelico, F.; Farcomeni, A.; Del Ben, M.; Vicario, T.; Bucci, T.; Raparelli, V.; Cangemi, R.; Tanzilli, G.; et al. Incidence of myocardial infarction and vascular death in elderly patients with atrial fibrillation taking anticoagulants: Relation to atherosclerotic risk factors. Chest 2015, 147, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Rohla, M.; Weiss, T.W.; Pecen, L.; Patti, G.; Siller-Matula, J.M.; Schnabel, R.B.; Schilling, R.; Kotecha, D.; Lucerna, M.; Huber, K.; et al. Risk factors for thromboembolic and bleeding events in anticoagulated patients with atrial fibrillation: The prospective, multicentre observational PREvention oF thromboembolic events—European Registry in Atrial Fibrillation (PREFER in AF). BMJ Open 2019, 9, e022478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastori, D.; Pignatelli, P.; Saliola, M.; Carnevale, R.; Vicario, T.; Del Ben, M.; Cangemi, R.; Barilla, F.; Lip, G.Y.; Violi, F. Inadequate anticoagulation by Vitamin K antagonists is associated with major adverse cardiovascular events in patients with atrial fibrillation. Int. J. Cardiol. 2015, 201, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Menichelli, D.; Del Sole, F.; Pignatelli, P.; Violi, F.; ATHERO-AF Study Group. Long-term risk of major adverse cardiac events in atrial fibrillation patients on direct oral anticoagulants. Mayo Clin. Proc. 2021, 96, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Menichelli, D.; Violi, F.; Pignatelli, P.; YH Lip, G.; ATHERO-AF study group. The Atrial fibrillation Better Care (ABC) pathway and cardiac complications in atrial fibrillation: A potential sex-based difference. The ATHERO-AF study. Eur. J. Intern. Med. 2021, 85, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Pastori, D.; Pignatelli, P.; Carnevale, R. Nutrition, thrombosis, and cardiovascular disease. Circ. Res. 2020, 126, 1415–1442. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pastori, D.; Guo, Y.; Wang, Y.; Lip, G.Y.H. Risk factors for new-onset atrial fibrillation: A focus on Asian populations. Int. J. Cardiol. 2018, 261, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, S.R.; Choi, E.K.; Kwon, S.; Yang, S.; Park, J.; Choi, Y.J.; Lee, H.J.; Moon, I.; Lee, E.; et al. Association between change in metabolic syndrome status and risk of incident atrial fibrillation: A nationwide population-based study. J. Am. Heart Assoc. 2021, 10, e020901. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Tanabe, N.; Yagihara, N.; Watanabe, T.; Aizawa, Y.; Kodama, M. Association between lipid profile and risk of atrial fibrillation. Circ. J. Off. J. Jpn. Circ. Soc. 2011, 75, 2767–2774. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.; Yin, X.; Roetker, N.S.; Magnani, J.W.; Kronmal, R.A.; Ellinor, P.T.; Chen, L.Y.; Lubitz, S.A.; McClelland, R.L.; McManus, D.D.; et al. Blood lipids and the incidence of atrial fibrillation: The multi-ethnic study of atherosclerosis and the framingham heart study. J. Am. Heart Assoc. 2014, 3, e001211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastori, D.; Sciacqua, A.; Marcucci, R.; Del Ben, M.; Baratta, F.; Violi, F.; Pignatelli, P.; ATHERO-AF Study Group. Non-alcoholic fatty liver disease (NAFLD), metabolic syndrome and cardiovascular events in atrial fibrillation. A prospective multicenter cohort study. Intern. Emerg. Med. 2021, 16, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Farcomeni, A.; Poli, D.; Antonucci, E.; Angelico, F.; Del Ben, M.; Cangemi, R.; Tanzilli, G.; Lip, G.Y.; Pignatelli, P.; et al. Cardiovascular risk stratification in patients with non-valvular atrial fibrillation: The 2MACE score. Intern. Emerg. Med. 2016, 11, 199–204. [Google Scholar] [CrossRef]
- Chan, Y.H.; Chang, G.J.; Lai, Y.J.; Chen, W.J.; Chang, S.H.; Hung, L.M.; Kuo, C.T.; Yeh, Y.H. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance. Cardiovasc. Diabetol. 2019, 18, 125. [Google Scholar] [CrossRef] [Green Version]
- Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 2004, 40, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Karajamaki, A.J.; Hukkanen, J.; Ukkola, O. The association of non-alcoholic fatty liver disease and atrial fibrillation: A review. Ann. Med. 2018, 50, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, J.; Zhou, F.; Li, H.; Zhang, X.J.; She, Z.G.; Lu, Z.; Cai, J.; Li, H. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Cardiac Arrhythmia. Circ. Res. 2021, 128, 1747–1765. [Google Scholar] [CrossRef] [PubMed]
- Long, M.T.; Yin, X.; Larson, M.G.; Ellinor, P.T.; Lubitz, S.A.; McManus, D.D.; Magnani, J.W.; Staerk, L.; Ko, D.; Helm, R.H.; et al. Relations of liver fat with prevalent and incident atrial fibrillation in the framingham heart study. J. Am. Heart Assoc. 2017, 6, e005227. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Sciacqua, A.; Marcucci, R.; Farcomeni, A.; Perticone, F.; Del Ben, M.; Angelico, F.; Baratta, F.; Pignatelli, P.; Violi, F.; et al. Prevalence and impact of nonalcoholic fatty liver disease in atrial fibrillation. Mayo Clin. Proc. 2020, 95, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Mantovani, A.; Pichiri, I.; Rigolon, R.; Dauriz, M.; Zoppini, G.; Morani, G.; Vassanelli, C.; Bonora, E. Non-alcoholic fatty liver disease is associated with an increased prevalence of atrial fibrillation in hospitalized patients with type 2 diabetes. Clin. Sci. 2013, 125, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.K.; Park, J.G.; Kim, M.C. Association between atrial fibrillation and advanced liver fibrosis in patients with non-alcoholic fatty liver disease. Yonsei Med. J. 2020, 61, 860–867. [Google Scholar] [CrossRef]
- Pastori, D.; Lip, G.Y.H.; Farcomeni, A.; Del Sole, F.; Sciacqua, A.; Perticone, F.; Marcucci, R.; Grifoni, E.; Pignatelli, P.; Violi, F.; et al. Incidence of bleeding in patients with atrial fibrillation and advanced liver fibrosis on treatment with vitamin K or non-vitamin K antagonist oral anticoagulants. Int. J. Cardiol. 2018, 264, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, P.; Miao, M.; Liu, Y.; Pan, Y.; Xu, L.; Zhu, Z.; Xu, C.; Xu, L. Nonalcoholic fatty liver disease is associated with increased atrial fibrillation risk in an elderly chinese population: A cross-sectional study. Biomed Res. Int. 2018, 2018, 5628749. [Google Scholar] [CrossRef]
- Karajamaki, A.J.; Kettunen, O.; Lepojarvi, S.; Koivurova, O.P.; Kesaniemi, Y.A.; Huikuri, H.; Ukkola, O. Presence of atrial fibrillation is associated with liver stiffness in an elderly Finnish population. PLoS ONE 2017, 12, e0173855. [Google Scholar] [CrossRef] [PubMed]
- Umetani, K.; Kodama, Y.; Nakamura, T.; Mende, A.; Kitta, Y.; Kawabata, K.; Obata, J.E.; Takano, H.; Kugiyama, K. High prevalence of paroxysmal atrial fibrillation and/or atrial flutter in metabolic syndrome. Circ. J. 2007, 71, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Li, X.F.; Liu, J.; Yu, M.; Fang, P.H.; Zhang, S. The influence of metabolic syndrome on atrial fibrillation recurrence: Five-year outcomes after a single cryoballoon ablation procedure. J. Geriatr. Cardiol. 2021, 18, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Vural, U.; Aglar, A.A. What is the role of metabolic syndrome and obesity for postoperative atrial fibrillation after coronary bypass grafting? BMC Cardiovasc. Disord. 2019, 19, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, S.; Mohanty, P.; Di Biase, L.; Bai, R.; Pump, A.; Santangeli, P.; Burkhardt, D.; Gallinghouse, J.G.; Horton, R.; Sanchez, J.E.; et al. Impact of metabolic syndrome on procedural outcomes in patients with atrial fibrillation undergoing catheter ablation. J. Am. Coll. Cardiol. 2012, 59, 1295–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ionin, V.A.; Baranova, E.I.; Zaslavskaya, E.L.; Petrishcheva, E.Y.; Morozov, A.N.; Shlyakhto, E.V. Galectin-3, N-terminal propeptides of type I and III procollagen in patients with atrial fibrillation and metabolic syndrome. Int. J. Mol. Sci. 2020, 21, 5689. [Google Scholar] [CrossRef] [PubMed]
- Decker, J.J.; Norby, F.L.; Rooney, M.R.; Soliman, E.Z.; Lutsey, P.L.; Pankow, J.S.; Alonso, A.; Chen, L.Y. Metabolic syndrome and risk of ischemic stroke in atrial fibrillation: ARIC study. Stroke 2019, 50, 3045–3050. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.; Chao, T.F.; Liu, C.J.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Hu, Y.F.; Tuan, T.C.; Liao, J.N.; Chung, F.P.; et al. Liver cirrhosis in patients with atrial fibrillation: Would oral anticoagulation have a net clinical benefit for stroke prevention? J. Am. Heart Assoc. 2017, 6, e005307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violi, F.; Loffredo, L.; Carnevale, R.; Pignatelli, P.; Pastori, D. Atherothrombosis and oxidative stress: Mechanisms and management in elderly. Antioxid. Redox Signal. 2017, 27, 1083–1124. [Google Scholar] [CrossRef]
- Li, J.; Solus, J.; Chen, Q.; Rho, Y.H.; Milne, G.; Stein, C.M.; Darbar, D. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 2010, 7, 438–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. CB 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Babusikova, E.; Kaplan, P.; Lehotsky, J.; Jesenak, M.; Dobrota, D. Oxidative modification of rat cardiac mitochondrial membranes and myofibrils by hydroxyl radicals. Gen. Physiol. Biophys. 2004, 23, 327–335. [Google Scholar] [PubMed]
- Violi, F.; Pastori, D.; Pignatelli, P.; Loffredo, L. Antioxidants for prevention of atrial fibrillation: A potentially useful future therapeutic approach? A review of the literature and meta-analysis. Europace 2014, 16, 1107–1116. [Google Scholar] [CrossRef]
- Cammisotto, V.; Nocella, C.; Bartimoccia, S.; Sanguigni, V.; Francomano, D.; Sciarretta, S.; Pastori, D.; Peruzzi, M.; Cavarretta, E.; D’Amico, A.; et al. The role of antioxidants supplementation in clinical practice: Focus on cardiovascular risk factors. Antioxidants 2021, 10, 146. [Google Scholar] [CrossRef]
- Pastori, D.; Carnevale, R.; Pignatelli, P. Is there a clinical role for oxidative stress biomarkers in atherosclerotic diseases? Intern. Emerg. Med. 2014, 9, 123–131. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, T.H. Antioxidant enzymes as redox-based biomarkers: A brief review. BMB Rep. 2015, 48, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Samman Tahhan, A.; Sandesara, P.B.; Hayek, S.S.; Alkhoder, A.; Chivukula, K.; Hammadah, M.; Mohamed-Kelli, H.; O’Neal, W.T.; Topel, M.; Ghasemzadeh, N.; et al. Association between oxidative stress and atrial fibrillation. Heart Rhythm. 2017, 14, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Pignatelli, P.; Farcomeni, A.; Menichelli, D.; Nocella, C.; Carnevale, R.; Violi, F. Aging-related decline of glutathione peroxidase 3 and risk of cardiovascular events in patients with atrial fibrillation. J. Am. Heart Assoc. 2016, 5, e003682. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Guzik, T.J.; Zhang, Y.H.; Zhang, M.H.; Kattach, H.; Ratnatunga, C.; Pillai, R.; Channon, K.M.; Casadei, B. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ. Res. 2005, 97, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cangemi, R.; Celestini, A.; Calvieri, C.; Carnevale, R.; Pastori, D.; Nocella, C.; Vicario, T.; Pignatelli, P.; Violi, F. Different behaviour of NOX2 activation in patients with paroxysmal/persistent or permanent atrial fibrillation. Heart 2012, 98, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Pastori, D.; Carnevale, R.; Farcomeni, A.; Cangemi, R.; Nocella, C.; Bartimoccia, S.; Vicario, T.; Saliola, M.; Lip, G.Y.; et al. Serum NOX2 and urinary isoprostanes predict vascular events in patients with atrial fibrillation. Thromb. Haemost. 2015, 113, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Angelico, F.; Ferro, D.; Baratta, F. Is the mediterranean diet the best approach to NAFLD treatment today? Nutrients 2021, 13, 739. [Google Scholar] [CrossRef]
- Saavedra, Y.; Mena, V.; Priken, K. Effect of the Mediterranean diet on histological indicators and imaging tests in non-alcoholic fatty liver disease. Gastroenterol. Hepatol. 2021. [Google Scholar] [CrossRef]
- Carpino, G.; Pastori, D.; Baratta, F.; Overi, D.; Labbadia, G.; Polimeni, L.; Di Costanzo, A.; Pannitteri, G.; Carnevale, R.; Del Ben, M.; et al. PNPLA3 variant and portal/periportal histological pattern in patients with biopsy-proven non-alcoholic fatty liver disease: A possible role for oxidative stress. Sci. Rep. 2017, 7, 15756. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Baratta, F.; Carnevale, R.; Cangemi, R.; Del Ben, M.; Bucci, T.; Polimeni, L.; Labbadia, G.; Nocella, C.; Scardella, L.; et al. Similar reduction of cholesterol-adjusted vitamin E serum levels in simple steatosis and non-alcoholic steatohepatitis. Clin. Transl. Gastroenterol. 2015, 6, e113. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; He, S.; Zeng, J.; Li, P.; Ma, C.; Ping, F.; Zhang, H.; Xu, L.; Li, W.; et al. Negative association between antioxidant vitamin intake and non-alcoholic fatty liver disease in Chinese non-diabetic adults: Mediation models involving superoxide dismutase. Free. Radic. Res. 2020, 54, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Miloro, C.; Pennella, S.; Pedrazzi, P.; Farinetti, A. Adherence to Mediterranean diet and intake of antioxidants influence spontaneous conversion of atrial fibrillation. Nutr. Metab. Cardiovasc. Dis. NMCD 2013, 23, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ninio, D.M.; Murphy, K.J.; Howe, P.R.; Saint, D.A. Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J. Cardiovasc. Electrophysiol. 2005, 16, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Lemaitre, R.N.; King, I.B.; Song, X.; Sacks, F.M.; Rimm, E.B.; Heckbert, S.R.; Siscovick, D.S.; Mozaffarian, D. Association of plasma phospholipid long-chain omega-3 fatty acids with incident atrial fibrillation in older adults: The cardiovascular health study. Circulation 2012, 125, 1084–1093. [Google Scholar] [CrossRef]
- Khawaja, O.; Gaziano, J.M.; Djoussé, L. A meta-analysis of omega-3 fatty acids and incidence of atrial fibrillation. J. Am. Coll. Nutr. 2012, 31, 4–13. [Google Scholar] [CrossRef]
- Mariani, J.; Doval, H.C.; Nul, D.; Varini, S.; Grancelli, H.; Ferrante, D.; Tognoni, G.; Macchia, A. N-3 polyunsaturated fatty acids to prevent atrial fibrillation: Updated systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2013, 2, e005033. [Google Scholar] [CrossRef] [Green Version]
- Li, F.R.; Chen, G.C.; Qin, J.; Wu, X. Dietaryfish and long-chain n-3 polyunsaturated fatty acids intake and risk of atrial fibrillation: A meta-analysis. Nutrients 2017, 9, 955. [Google Scholar] [CrossRef] [Green Version]
- Rix, T.A.; Joensen, A.M.; Riahi, S.; Lundbye-Christensen, S.; Tjønneland, A.; Schmidt, E.B.; Overvad, K. A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial flutter-a Danish cohort study. Europace. 2014, 16, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Psaty, B.M.; Rimm, E.B.; Lemaitre, R.N.; Burke, G.L.; Lyles, M.F.; Lefkowitz, D.; Siscovick, D.S. Fish intake and risk of incident atrial fibrillation. Circulation 2004, 110, 368–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.; Toledo, E.; Arós, F.; Fiol, M.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fernández-Crehuet, J.; Lapetra, J.; et al. Extravirgin olive oil consumption reduces risk of atrial fibrillation: The PREDIMED (Prevención con Dieta Mediterránea) trial. Circulation 2014, 130, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Drca, N.; Björck, M.; Bäck, M.; Wolk, A. Nut consumption and incidence of seven cardiovascular diseases. Heart (Br. Card. Soc.) 2018, 104, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, O.; Gaziano, J.M.; Djousse, L. Nut consumption and risk of atrial fibrillation in the physicians’ health study. Nutr. J. 2012, 11, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conen, D.; Chiuve, S.E.; Everett, B.M.; Zhang, S.M.; Buring, J.E.; Albert, C.M. Caffeine consumption and incident atrial fibrillation in women. Am. J. Clin. Nutr. 2010, 92, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Bodar, V.; Chen, J.; Gaziano, J.M.; Albert, C.; Djoussé, L. Coffee consumption and risk of atrial fibrillation in the physicians’ health study. J. Am. Heart Assoc. 2019, 8, e011346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazal, P.; Gea, A.; Navarro, A.M.; Salas-Salvadó, J.; Corella, D.; Alonso-Gómez, A.; Fitó, M.; Muñoz-Bravo, C.; Estruch, R.; Fiol, M.; et al. Caffeinated coffee consumption and risk of atrial fibrillation in two Spanish cohorts. Eur. J. Prev. Cardiol. 2021, 28, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, E.; Johansen, M.B.; Lundbye-Christensen, S.; Tjønneland, A.; Mittleman, M.A.; Overvad, K. Risk of atrial fibrillation associated with coffee intake: Findings from the danish diet, cancer, and health study. Eur. J. Prev. Cardiol. 2016, 23, 922–930. [Google Scholar] [CrossRef]
- Khawaja, O.; Petrone, A.B.; Kanjwal, Y.; Gaziano, J.M.; Djoussé, L. Chocolate consumption and risk of atrial fibrillation (from the physicians’ health study). Am. J. Cardiol. 2015, 116, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Mostofsky, E.; Berg Johansen, M.; Tjønneland, A.; Chahal, H.S.; Mittleman, M.A.; Overvad, K. Chocolate intake and risk of clinically apparent atrial fibrillation: The Danish diet, cancer, and health study. Heart (Br. Card. Soc.) 2017, 103, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Virtamo, J.; Wolk, A. Chocolate consumption and risk of stroke in women. J. Am. Coll. Cardiol. 2011, 58, 1828–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Drca, N.; Wolk, A. Alcohol consumption and risk of atrial fibrillation: A prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 2014, 64, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Voskoboinik, A.; Wong, G.; Lee, G.; Nalliah, C.; Hawson, J.; Prabhu, S.; Sugumar, H.; Ling, L.H.; McLellan, A.; Morton, J.; et al. Moderate alcohol consumption is associated with atrial electrical and structural changes: Insights from high-density left atrial electroanatomic mapping. Heart Rhythm. 2019, 16, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, O.; Sesso, H.D.; Chen, J.; Yamasaki, H.; Hassan, S.A.; Gaziano, J.M.; Djoussé, L. Consumption of fried foods and risk of atrial fibrillation in the physicians’ health study. Eur. J. Nutr. 2020, 59, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Wuopio, J.; Orho-Melander, M.; Ärnlöv, J.; Nowak, C. Estimated salt intake and risk of atrial fibrillation in a prospective community-based cohort. J. Intern. Med. 2021, 289, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhuang, X.; Lin, X.; Zhong, X.; Zhou, H.; Sun, X.; Xiong, Z.; Huang, Y.; Fan, Y.; Guo, Y.; et al. Low-carbohydrate diets and risk of incident atrial fibrillation: A prospective cohort study. J. Am. Heart Assoc. 2019, 8, e011955. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, I.A.; Heeringa, J.; Geleijnse, J.M.; Zock, P.L.; Witteman, J.C. Intake of very long-chain n-3 fatty acids from fish and incidence of atrial fibrillation. The Rotterdam Study. Am. Heart J. 2006, 151, 857–862. [Google Scholar] [CrossRef]
- Shen, J.; Johnson, V.M.; Sullivan, L.M.; Jacques, P.F.; Magnani, J.W.; Lubitz, S.A.; Pandey, S.; Levy, D.; Vasan, R.S.; Quatromoni, P.A.; et al. Dietary factors and incident atrial fibrillation: The framingham heart study. Am. J. Clin. Nutr. 2011, 93, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Wolk, A. Fish, long-chain omega-3 polyunsaturated fatty acid intake and incidence of atrial fibrillation: A pooled analysis of two prospective studies. Clin. Nutr. 2017, 36, 537–541. [Google Scholar] [CrossRef]
- Larsson, S.C.; Drca, N.; Jensen-Urstad, M.; Wolk, A. Chocolate consumption and risk of atrial fibrillation: Two cohort studies and a meta-analysis. Am. Heart J. 2018, 195, 86–90. [Google Scholar] [CrossRef]
- Frost, L.; Vestergaard, P. Alcohol and risk of atrial fibrillation or flutter: A cohort study. Arch. Intern. Med. 2004, 164, 1993–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conen, D.; Tedrow, U.B.; Cook, N.R.; Moorthy, M.V.; Buring, J.E.; Albert, C.M. Alcohol consumption and risk of incident atrial fibrillation in women. JAMA 2008, 300, 2489–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Mente, A.; Yusuf, S.; Gao, P.; Sleight, P.; Zhu, J.; Fagard, R.; Lonn, E.; Teo, K.K.; Ontarget and Transcend Investigators. Alcohol consumption and the risk of incident atrial fibrillation among people with cardiovascular disease. CMAJ 2012, 184, E857–E866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Gonzalez, M.A.; Salas-Salvado, J.; Estruch, R.; Corella, D.; Fito, M.; Ros, E.; Predimed, I. Benefits of the Mediterranean diet: Insights from the PREDIMED study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, N.; Plaz Torres, M.C.; Petta, S.; Valenti, L.; Giannini, E.G.; Aghemo, A. Is there an ‘ideal’ diet for patients with NAFLD? Eur. J. Clin. Investig. 2022, 52, e13659. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Bogensberger, B.; Bencic, A.; Knuppel, S.; Boeing, H.; Hoffmann, G. Effects of oils and solid fats on blood lipids: A systematic review and network meta-analysis. J. Lipid Res. 2018, 59, 1771–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Manson, J.E.; Stampfer, M.J.; Holmes, M.D.; Hu, F.B.; Hankinson, S.E.; Willett, W.C. Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacylglycerols in postmenopausal women. Am. J. Clin. Nutr. 2001, 73, 560–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Natale, C.; Annuzzi, G.; Bozzetto, L.; Mazzarella, R.; Costabile, G.; Ciano, O.; Riccardi, G.; Rivellese, A.A. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care 2009, 32, 2168–2173. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Domenech, M.; Roman, P.; Lapetra, J.; Garcia de la Corte, F.J.; Sala-Vila, A.; de la Torre, R.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Lamuela-Raventos, R.M.; et al. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: One-year randomized, clinical trial. Hypertension 2014, 64, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Filippou, C.; Tatakis, F.; Polyzos, D.; Manta, E.; Thomopoulos, C.; Nihoyannopoulos, P.; Tousoulis, D.; Tsioufis, K. Overview of salt restriction in the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet for blood pressure reduction. Rev. Cardiovasc. Med. 2022, 23, 36. [Google Scholar] [CrossRef] [PubMed]
- Van Name, M.A.; Savoye, M.; Chick, J.M.; Galuppo, B.T.; Feldstein, A.E.; Pierpont, B.; Johnson, C.; Shabanova, V.; Ekong, U.; Valentino, P.L.; et al. A Low omega-6 to omega-3 PUFA Ratio (n-6:n-3 PUFA) diet to treat fatty liver disease in obese youth. J. Nutr. 2020, 150, 2314–2321. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Lampignano, L.; Donghia, R.; Sila, A.; Bortone, I.; Tatoli, R.; De Nucci, S.; Castellana, F.; Zupo, R.; Tirelli, S.; Giannoccaro, V.; et al. Mediterranean diet and fatty liver risk in a population of overweight older Italians: A propensity score-matched case-cohort study. Nutrients 2022, 14, 258. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Greco, M.; Milic, N.; Accattato, F.; Foti, D.; Gulletta, E.; Luzza, F. Effect of Mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study. Nutrients 2017, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Yurtdas, G.; Akbulut, G.; Baran, M.; Yilmaz, C. The effects of Mediterranean diet on hepatic steatosis, oxidative stress, and inflammation in adolescents with non-alcoholic fatty liver disease: A randomized controlled trial. Pediatr. Obes. 2021, e12872. [Google Scholar] [CrossRef] [PubMed]
- Baratta, F.; Pastori, D.; Bartimoccia, S.; Cammisotto, V.; Cocomello, N.; Colantoni, A.; Nocella, C.; Carnevale, R.; Ferro, D.; Angelico, F.; et al. Poor adherence to Mediterranean diet and serum lipopolysaccharide are associated with oxidative stress in patients with non-alcoholic fatty liver disease. Nutrients 2020, 12, 1732. [Google Scholar] [CrossRef] [PubMed]
- Carpino, G.; Del Ben, M.; Pastori, D.; Carnevale, R.; Baratta, F.; Overi, D.; Francis, H.; Cardinale, V.; Onori, P.; Safarikia, S.; et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology 2020, 72, 470–485. [Google Scholar] [CrossRef]
- Pastori, D.; Carnevale, R.; Nocella, C.; Novo, M.; Santulli, M.; Cammisotto, V.; Menichelli, D.; Pignatelli, P.; Violi, F. Gut-derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: Effect of Adherence to Mediterranean diet. J. Am. Heart Assoc. 2017, 6, e005784. [Google Scholar] [CrossRef]
- Violi, F.; Lip, G.Y.; Pignatelli, P.; Pastori, D. Interaction between dietary vitamin K intake and anticoagulation by vitamin K antagonists: Is it really true?: A systematic review. Medicine 2016, 95, e2895. [Google Scholar] [CrossRef]
- Pignatelli, P.; Pastori, D.; Vicario, T.; Bucci, T.; Del Ben, M.; Russo, R.; Tanzilli, A.; Nardoni, M.L.; Bartimoccia, S.; Nocella, C.; et al. Relationship between Mediterranean diet and time in therapeutic range in atrial fibrillation patients taking vitamin K antagonists. Europace. 2015, 17, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; Fernandez-Jarne, E.; Serrano-Martinez, M.; Wright, M.; Gomez-Gracia, E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur. J. Clin. Nutr. 2004, 58, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastori, D.; Carnevale, R.; Bartimoccia, S.; Nocella, C.; Tanzilli, G.; Cangemi, R.; Vicario, T.; Catena, M.; Violi, F.; Pignatelli, P. Does Mediterranean diet reduce cardiovascular events and oxidative stress in atrial fibrillation? Antioxid. Redox Signal. 2015, 23, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Martinez, I.; Mancha, F.; Vega-Salvatierra, A.; Ayuso, M.I.; Ocete, R.F.; Algaba, P.; Lopez-Rueda, A.; Pinero, P.; Fajardo, E.; Fernandez-Engo, J.R.; et al. Mediterranean diet and physical activity protect from silent brain infarcts in a cohort of patients with atrial fibrillation. J. Stroke 2019, 21, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Pastori, D.; Carnevale, R.; Menichelli, D.; Nocella, C.; Bartimoccia, S.; Novo, M.; Leo, I.; Violi, F.; Pignatelli, P. Is there an interplay between adherence to Mediterranean diet, antioxidant status, and vascular disease in atrial fibrillation patients? Antioxid. Redox Signal. 2016, 25, 751–755. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biccirè, F.G.; Bucci, T.; Menichelli, D.; Cammisotto, V.; Pignatelli, P.; Carnevale, R.; Pastori, D. Mediterranean Diet: A Tool to Break the Relationship of Atrial Fibrillation with the Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Nutrients 2022, 14, 1260. https://doi.org/10.3390/nu14061260
Biccirè FG, Bucci T, Menichelli D, Cammisotto V, Pignatelli P, Carnevale R, Pastori D. Mediterranean Diet: A Tool to Break the Relationship of Atrial Fibrillation with the Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Nutrients. 2022; 14(6):1260. https://doi.org/10.3390/nu14061260
Chicago/Turabian StyleBiccirè, Flavio Giuseppe, Tommaso Bucci, Danilo Menichelli, Vittoria Cammisotto, Pasquale Pignatelli, Roberto Carnevale, and Daniele Pastori. 2022. "Mediterranean Diet: A Tool to Break the Relationship of Atrial Fibrillation with the Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease" Nutrients 14, no. 6: 1260. https://doi.org/10.3390/nu14061260
APA StyleBiccirè, F. G., Bucci, T., Menichelli, D., Cammisotto, V., Pignatelli, P., Carnevale, R., & Pastori, D. (2022). Mediterranean Diet: A Tool to Break the Relationship of Atrial Fibrillation with the Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Nutrients, 14(6), 1260. https://doi.org/10.3390/nu14061260