Baseline Objective Malnutritional Indices as Immune-Nutritional Predictors of Long-Term Recurrence in Patients with Acute Ischemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics Statement
2.3. Demographic and Clinical Data
2.4. Malnutrition Screening Tools
2.5. Clinical Outcomes
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics and Prevalence of Malnutrition
3.2. Malnutrition Scores and Adverse Clinical Outcomes
3.3. Incremental Prognostic Value of Malnutritional Index for RIS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abejie, A.N.; et al. Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N. Engl. J. Med. 2018, 379, 2429–2437. [Google Scholar] [CrossRef]
- Hankey, G.J. Secondary stroke prevention. Lancet Neurol. 2014, 13, 178–194. [Google Scholar] [CrossRef]
- Xiang, W.; Chen, X.; Ye, W.; Li, J.; Zhang, X.; Xie, D. Prognostic Nutritional Index for Predicting 3-Month Outcomes in Ischemic Stroke Patients Undergoing Thrombolysis. Front. Neurol. 2020, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Aliasghari, F.; Izadi, A.; Khalili, M.; Farhoudi, M.; Ahmadiyan, S.; Deljavan, R. Impact of Premorbid Malnutrition and Dysphagia on Ischemic Stroke Outcome in Elderly Patients: A Community-Based Study. J. Am. Coll. Nutr. 2019, 38, 318–326. [Google Scholar] [CrossRef] [PubMed]
- FOOD Trial Collaboration. Poor nutritional status on admission predicts poor outcomes after stroke: Observational data from the FOOD trial. Stroke 2003, 34, 1450–1456. [Google Scholar] [CrossRef] [Green Version]
- Nezu, T.; Hosomi, N.; Yoshimura, K.; Kuzume, D.; Naito, H.; Aoki, S.; Morimoto, Y.; Kinboshi, M.; Yoshida, T.; Shiga, Y.; et al. Predictors of Stroke Outcome Extracted from Multivariate Linear Discriminant Analysis or Neural Network Analysis. J. Atheroscler. Thromb. 2022, 29, 99–110. [Google Scholar] [CrossRef]
- Zhang, M.; Ye, S.; Huang, X.; Sun, L.; Liu, Z.; Liao, C.; Feng, R.; Chen, H.; Wu, Y.; Cai, Z.; et al. Comparing the prognostic significance of nutritional screening tools and ESPEN-DCM on 3-month and 12-month outcomes in stroke patients. Clin. Nutr. 2021, 40, 3346–3353. [Google Scholar] [CrossRef]
- Iseki, Y.; Shibutani, M.; Maeda, K.; Nagahara, H.; Ohtani, H.; Sugano, K.; Ikeya, T.; Muguruma, K.; Tanaka, H.; Toyokawa, T.; et al. Impact of the Preoperative Controlling Nutritional Status (CONUT) Score on the Survival after Curative Surgery for Colorectal Cancer. PLoS ONE 2015, 10, e0132488. [Google Scholar] [CrossRef] [Green Version]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Raposeiras Roubín, S.; Abu Assi, E.; Cespón Fernandez, M.; Barreiro Pardal, C.; Lizancos Castro, A.; Parada, J.A.; Pérez, D.D.; Blanco Prieto, S.; Rossello, X.; Ibanez, B.; et al. Prevalence and Prognostic Significance of Malnutrition in Patients with Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 76, 828–840. [Google Scholar] [CrossRef]
- Yuan, K.; Zhu, S.; Wang, H.; Chen, J.; Zhang, X.; Xu, P.; Xie, Y.; Zhu, X.; Zhu, W.; Sun, W.; et al. Association between malnutrition and long-term mortality in older adults with ischemic stroke. Clin. Nutr. 2021, 40, 2535–2542. [Google Scholar] [CrossRef] [PubMed]
- López Espuela, F.; Roncero-Martín, R.; Zamorano, J.D.P.; Rey-Sanchez, P.; Aliaga-Vera, I.; Portilla Cuenca, J.C.; Naranjo, I.C.; Morán-García, J.M.; Lavado-García, J.M. Controlling Nutritional Status (CONUT) Score as a Predictor of All-Cause Mortality at 3 Months in Stroke Patients. Biol. Res. Nurs. 2019, 21, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Naito, H.; Nezu, T.; Hosomi, N.; Aoki, S.; Kinoshita, N.; Kuga, J.; Shimomura, R.; Araki, M.; Ueno, H.; Ochi, K.; et al. Controlling nutritional status score for predicting 3-mo functional outcome in acute ischemic stroke. Nutrition 2018, 55–56, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, H.P.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Liu, S.; Feng, N.; Wang, Y.; Gao, Y.; Wu, J. Association between neurological deterioration and outcomes in patients with stroke. Ann. Transl. Med. 2020, 8, 4. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Pencina, M.J.; D’Agostino, R.B.; D’Agostino, R.B.; Vasan, R.S. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat. Med. 2008, 27, 157–172. [Google Scholar] [CrossRef]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Durrleman, S.; Simon, R. Flexible regression models with cubic splines. Stat. Med. 1989, 8, 551–561. [Google Scholar] [CrossRef]
- Govindarajulu, U.S.; Spiegelman, D.; Thurston, S.W.; Ganguli, B.; Eisen, E.A. Comparing smoothing techniques in Cox models for exposure-response relationships. Stat. Med. 2007, 26, 3735–3752. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Lo, C.-I.; Lin, C.-F.; Sung, K.-T.; Tsai, J.-P.; Huang, W.-H.; Yun, C.-H.; Hung, T.-C.; Lin, J.-L.; Liu, C.-Y.; et al. Malnutrition in acute heart failure with preserved ejection fraction: Clinical correlates and prognostic implications. ESC Heart Fail. 2019, 6, 953–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sze, S.; Pellicori, P.; Kazmi, S.; Rigby, A.; Cleland, J.G.F.; Wong, K.; Clark, A.L. Prevalence and Prognostic Significance of Malnutrition Using 3 Scoring Systems Among Outpatients with Heart Failure: A Comparison with Body Mass Index. JACC Heart Fail. 2018, 6, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.M.; Wu, Y.Z.; Chen, H.M.; Feng, R.Q.; Liao, C.W.; Ye, S.L.; Liu, Z.P.; Zhang, M.M.; Zhu, B.L. Being at risk of malnutrition predicts poor outcomes at 3 months in acute ischemic stroke patients. Eur. J. Clin. Nutr. 2020, 74, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Naito, H.; Hosomi, N.; Nezu, T.; Kuzume, D.; Aoki, S.; Morimoto, Y.; Yoshida, T.; Shiga, Y.; Kinoshita, N.; Ueno, H.; et al. Prognostic role of the controlling nutritional status score in acute ischemic stroke among stroke subtypes. J. Neurol. Sci. 2020, 416, 116984. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Özbek, M. Impact of nutritional assessment on long-term outcomes in patients with carotid artery stenting. Int. J. Clin. Pract. 2021, 75, e14637. [Google Scholar] [CrossRef]
- Reinhart, W.H.; Nagy, C. Albumin affects erythrocyte aggregation and sedimentation. Eur. J. Clin. Investig. 1995, 25, 523–528. [Google Scholar] [CrossRef]
- Halliwell, B. Albumin—An important extracellular antioxidant? Biochem. Pharmacol. 1988, 37, 569–571. [Google Scholar] [CrossRef]
- Babu, M.S.; Kaul, S.; Dadheech, S.; Rajeshwar, K.; Jyothy, A.; Munshi, A. Serum albumin levels in ischemic stroke and its subtypes: Correlation with clinical outcome. Nutrition 2013, 29, 872–875. [Google Scholar] [CrossRef]
- Dziedzic, T.; Slowik, A.; Szczudlik, A. Serum albumin level as a predictor of ischemic stroke outcome. Stroke 2004, 35, e156–e158. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, Á.; Meisel, A.; Planas, A.M.; Urra, X.; van de Beek, D.; Veltkamp, R. The immunology of acute stroke. Nat. Rev. Neurol. 2012, 8, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Macrez, R.; Ali, C.; Toutirais, O.; Le Mauff, B.; Defer, G.; Dirnagl, U.; Vivien, D. Stroke and the immune system: From pathophysiology to new therapeutic strategies. Lancet Neurol. 2011, 10, 471–480. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kawabori, M.; Yenari, M.A. Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets. Curr. Med. Chem. 2014, 21, 2076–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, K.; Wang, A.; Zhang, X.; Meng, X.; Chen, P.; Li, H.; Wang, Y. Neutrophil to lymphocyte ratio and adverse clinical outcomes in patients with ischemic stroke. Ann. Transl. Med. 2021, 9, 1047. [Google Scholar] [CrossRef] [PubMed]
- Liesz, A.; Suri-Payer, E.; Veltkamp, C.; Doerr, H.; Sommer, C.; Rivest, S.; Giese, T.; Veltkamp, R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 2009, 15, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Liesz, A.; Zhou, W.; Na, S.-Y.; Hämmerling, G.J.; Garbi, N.; Karcher, S.; Mracsko, E.; Backs, J.; Rivest, S.; Veltkamp, R. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J. Neurosci. 2013, 33, 17350–17362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Quan, K.; Tian, X.; Zuo, Y.; Meng, X.; Chen, P.; Li, H.; Wang, Y. Leukocyte subtypes and adverse clinical outcomes in patients with acute ischemic cerebrovascular events. Ann. Transl. Med. 2021, 9, 748. [Google Scholar] [CrossRef]
- Yi, S.-W.; Shin, D.-H.; Kim, H.; Yi, J.-J.; Ohrr, H. Total cholesterol and stroke mortality in middle-aged and elderly adults: A prospective cohort study. Atherosclerosis 2018, 270, 211–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Tuomilehto, J.; Jousilahti, P.; Wang, Y.; Antikainen, R.; Hu, G. Total and high-density lipoprotein cholesterol and stroke risk. Stroke 2012, 43, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; An, Z.; Zhao, W.; Hong, Y.; Xin, H.; Ning, X.; Wang, J. Sex differences in outcomes after stroke among patients with low total cholesterol levels: A large hospital-based prospective study. Biol. Sex Differ. 2016, 7, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brostow, D.P.; Hirsch, A.T.; Collins, T.C.; Kurzer, M.S. The role of nutrition and body composition in peripheral arterial disease. Nat. Rev. Cardiol. 2012, 9, 634–643. [Google Scholar] [CrossRef]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, X.; Chen, J.; Zha, M.; Yuan, K.; Huang, K.; Xie, Y.; Xue, J.; Liu, X. A Score of Low-Grade Inflammation for Predicting Stroke Recurrence in Patients with Ischemic Stroke. J. Inflamm. Res. 2021, 14, 4605–4614. [Google Scholar] [CrossRef]
Nutritional Scores | Risk of Malnutrition | |||
---|---|---|---|---|
Absent | Mild | Moderate | Severe | |
CONUT, points | 0–1 | 2–4 | 5–8 | 9–12 |
Albumin, g/L | ≥35 | 30–34.9 | 25–29.9 | <25 |
Score | 0 | 2 | 4 | 6 |
Total cholesterol, mg/dL | ≥180 | 140–179 | 100–139 | <100 |
Score | 0 | 1 | 2 | 3 |
Lymphocyte count, ×109/L | ≥1.60 | 1.20–1.59 | 0.80–1.19 | <0.80 |
Score | 0 | 1 | 2 | 3 |
PNI, points | >38 | 35–38 | <35 | |
Formula: 5 × lymphocyte count (109/L) + serum albumin concentration (g/L) |
Variables | Total (n = 991) | Non-RIS (n = 788) | RIS (n = 203) | p |
---|---|---|---|---|
Age, Median (IQR) | 66 (58, 74) | 65 (56, 73) | 70 (62.5, 76) | <0.001 * |
Sex, Male n (%) | 699 (71) | 550 (70) | 149 (73) | 0.359 |
DM, n (%) | 185 (19) | 152 (19) | 33 (16) | 0.375 |
HTN, n (%) | 526 (53) | 403 (51) | 123 (61) | 0.02 * |
IS, n (%) | 229 (23) | 169 (21) | 60 (30) | 0.019 * |
ICH, n (%) | 20 (2) | 13 (2) | 7 (3) | 0.155 |
SBP, Median (IQR), mmHg | 148 (135, 163) | 149 (135, 164) | 146 (132.5, 160) | 0.059 |
DBP, Median (IQR), mmHg | 85 (76, 93) | 85 (76, 94) | 83 (75, 92) | 0.163 |
WBC, Median (IQR), ×109/L | 7.97 (6.47, 9.98) | 8 (6.58, 10) | 7.82 (6.04, 9.8) | 0.218 |
RBC, Median (IQR), ×1012/L | 4.58 (4.23, 4.97) | 4.59 (4.25, 5) | 4.48 (4.2, 4.86) | 0.022 * |
LYM, Median (IQR), ×109/l | 1.68 (1.29, 2.18) | 1.72 (1.33, 2.23) | 1.5 (1.19, 2.04) | <0.001 * |
ALT, Median (IQR), μ/L | 16 (12, 23) | 16 (12, 22) | 17 (12, 24) | 0.344 |
ALB, Median (IQR), g/L | 38.1 (35.6, 40.5) | 38.45 (36, 40.7) | 36.4 (33.9, 39.5) | <0.001 * |
Scr, Median (IQR), μmol/L | 76 (58.1, 93.2) | 75 (57.85, 92.23) | 79.8 (59.8, 100.5) | 0.025 * |
FBS, Median (IQR), mmol/L | 5 (5, 6) | 5 (5, 6) | 5 (5, 6) | 0.257 |
TC, Median (IQR), mg/dL | 182.09 (154.64, 213.4) | 183.25 (155.03, 214.56) | 178.22 (151.55, 207.6) | 0.319 |
TOAST, n (%) | 0.024 * | |||
LAA | 454 (46) | 380 (48) | 74 (36) | |
CE | 138 (14) | 101 (13) | 37 (18) | |
SAA | 336 (34) | 256 (32) | 80 (39) | |
SOE | 25 (3) | 19 (2) | 6 (3) | |
SUE | 38 (4) | 32 (4) | 6 (3) | |
NIHSS at admission, Median (IQR) | 3 (2, 5) | 3 (2, 5) | 3 (2, 5) | 0.748 |
Premorbid mRS, Median (IQR) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0.076 |
ND, n (%) | 123 (12) | 111 (14) | 12 (6) | 0.002 * |
CONUT, Median (IQR) | 2 (0, 3) | 1 (0, 3) | 2 (1, 3) | <0.001 * |
CONUT scoring system, n (%) | <0.001 * | |||
absent | 485 (49) | 407 (52) | 78 (38) | |
mild | 445 (45) | 350 (44) | 95 (47) | |
moderate | 56 (6) | 29 (4) | 27 (13) | |
severe | 5 (1) | 2 (0) | 3 (1) | |
PNI, Median (IQR) | 46.3(43.55, 50.15) | 46.65 (44.45, 50.35) | 43.7 (40.48, 49.1) | <0.001 * |
PNI scoring system, n (%) | <0.001 * | |||
absent | 952 (96) | 767 (97) | 185 (91) | |
moderate | 26 (3) | 14 (2) | 12 (6) | |
severe | 13 (1) | 7 (1) | 6 (3) |
Model 1 † | Model 2 ‡ | Model 3 § | ||||
---|---|---|---|---|---|---|
Index | AdjustedHR (95%CI) | p | AdjustedHR (95%CI) | p | AdjustedHR(95%CI) | p |
PNI categories | ||||||
Tertile 1 (≤44.75) | 1.0 [Reference] | 1.0 [Reference] | 1.0 [Reference] | |||
Tertile 2 (44.76–48.9) | 0.293 (0.201–0.427) | <0.001 | 0.290 (0.199–0.423) | <0.001 | 0.295 (0.202–0.430) | <0.001 |
Tertile 3 (>48.9) | 0.446 (0.314–0.633) | <0.001 | 0.439 (0.307–0.629) | <0.001 | 0.445 (0.308–0.632) | <0.001 |
PNI as bivariate (≤44.75) | 2.627 (1.610–4.289) | <0.001 | 2.733 (1.547–4.536) | <0.001 | 2.782 (2.073–3.730) | <0.001 |
PNI per 1-point increase | 0.927 (0.901–0.952) | <0.001 | 0.920 (0.895–0.949) | <0.001 | 0.922 (0.8963–0.948) | <0.001 |
CONUT categories | ||||||
Normal | 1.0 [Reference] | 1.0 [Reference] | 1.0 [Reference] | |||
Mild | 1.246 (0.916–1.694) | 0.161 | 1.234 (0.904–1.685) | 0.183 | 1.224 (0.898–1.668) | 0.200 |
Moderate-severe | 3.551 (2.304–5.470) | <0.001 | 3.563 (2.276–5.576) | <0.001 | 3.472 (2.223–5.423) | <0.001 |
CONUT as bivariate (>1) | 1.456 (1.088–1.949) | 0.012 | 1.432 (1.066–1.925) | 0.017 | 1.443 (1.081–1.943) | 0.012 |
CONUT per 1-point increase | 1.195 (1.112–1.284) | <0.001 | 1.200 (1.112–1.296) | <0.001 | 1.206 (1.117–1.301) | <0.001 |
Model | C-Index | cNRI | p-Value | IDI | p-Value |
---|---|---|---|---|---|
RIS | |||||
Model 3 † | 0.633 | Reference | Reference | ||
Model 3 + PNI | 0.673 | 0.219 (0.119–0.315) | 0.002 | 0.028 (0.009–0.059) | <0.001 |
Model 3 + CONUT | 0.661 | 0.164 (0.071–0.244) | <0.001 | 0.019 (0.003–0.045) | 0.004 |
MACEs | |||||
Model 3 | 0.638 | Reference | Reference | ||
Model 3 + PNI | 0.673 | 0.208 (0.120–0.295) | <0.001 | 0.032 (0.012–0.059) | <0.001 |
Model 3 + CONUT | 0.666 | 0.183 (0.098–0.246) | <0.001 | 0.024 (0.007–0.050) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Cai, J.; Li, Y.; Rong, X.; Li, Y.; He, L.; Li, H.; Liang, Y.; Huang, H.; Xu, Y.; et al. Baseline Objective Malnutritional Indices as Immune-Nutritional Predictors of Long-Term Recurrence in Patients with Acute Ischemic Stroke. Nutrients 2022, 14, 1337. https://doi.org/10.3390/nu14071337
Han X, Cai J, Li Y, Rong X, Li Y, He L, Li H, Liang Y, Huang H, Xu Y, et al. Baseline Objective Malnutritional Indices as Immune-Nutritional Predictors of Long-Term Recurrence in Patients with Acute Ischemic Stroke. Nutrients. 2022; 14(7):1337. https://doi.org/10.3390/nu14071337
Chicago/Turabian StyleHan, Xiaoyan, Jinhua Cai, Youjia Li, Xiaoming Rong, Yi Li, Lei He, Honghong Li, Yuchan Liang, Huiqin Huang, Yongteng Xu, and et al. 2022. "Baseline Objective Malnutritional Indices as Immune-Nutritional Predictors of Long-Term Recurrence in Patients with Acute Ischemic Stroke" Nutrients 14, no. 7: 1337. https://doi.org/10.3390/nu14071337
APA StyleHan, X., Cai, J., Li, Y., Rong, X., Li, Y., He, L., Li, H., Liang, Y., Huang, H., Xu, Y., Shen, Q., & Tang, Y. (2022). Baseline Objective Malnutritional Indices as Immune-Nutritional Predictors of Long-Term Recurrence in Patients with Acute Ischemic Stroke. Nutrients, 14(7), 1337. https://doi.org/10.3390/nu14071337