Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects
Abstract
:1. Introduction
2. Inositols
2.1. Inositol Supplementation and Gestational Diabetes
2.1.1. Inositol Supplementation and GDM Prevention
2.1.2. Inositol Supplementation and GDM Treatment
3. Probiotics
3.1. Probiotics and Pregnancy
3.2. Probiotics and Gestational Diabetes
3.2.1. Probiotics Supplementation and GDM Prevention
3.2.2. Probiotics Supplementation and GDM Treatment
4. Epigenetic Effects of Supplements in Pregnancy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Visen, A.; Visen, S.; Sharma, A.; Visen, P.K. Nutraceuticals as a natural alternative for preventive and proactive health care. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 603–618. [Google Scholar]
- Fraticelli, F.; Celentano, C.; Zecca, I.A.L.; Di Vieste, G.; Pintaudi, B.; Franzago, M.; Di Nicola, M.; Vitacolonna, E. Effect of inositol stereoisomers at different dosages in gestational diabetes: An open-label, parallel, randomized controlled trial. Acta Diabetol. 2018, 55, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Pintaudi, B.; Di Vieste, G.; Corrado, F.; Lucisano, G.; Giunta, L.; D’Anna, R.; Di Benedetto, A. Effects of myo-inositol on glucose variability in women with gestational diabetes. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6567–6572. [Google Scholar] [PubMed]
- Celentano, C.; Matarrelli, B.; Pavone, G.; Vitacolonna, E.; Mattei, P.A.; Berghella, V.; Liberati, M. The influence of different inositol stereoisomers supplementation in pregnancy on maternal gestational diabetes mellitus and fetal outcomes in high-risk patients: A randomized controlled trial. J. Matern Fetal. Neonatal Med. 2020, 33, 743–751. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45 (Suppl. 1), S17–S38. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1. Diagnosis and Classification of Diabetes Mellitus; Report of a WHO Consultation; WHO: Geneva, Switzerland, 1999.
- HAPO Study Cooperative Research Group; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Franzago, M.; Fraticelli, F.; Nicolucci, A.; Celentano, C.; Liberati, M.; Stuppia, L.; Vitacolonna, E. Molecular analysis of a genetic variants panel related to nutrients and metabolism: Association with susceptibility to gestational diabetes and cardiometabolic risk in affected women. J. Diabetes Res. 2017, 2017, 4612623. [Google Scholar] [CrossRef] [Green Version]
- Franzago, M.; Fraticelli, F.; Stuppia, L.; Vitacolonna, E. Nutrigenetics, epigenetics and gestational diabetes: Consequences in mother and child. Epigenetics 2019, 14, 215–235. [Google Scholar] [CrossRef] [Green Version]
- Pak, Y.; Huang, L.C.; Lilley, K.J.; Larner, J. In vivo conversion of [3H] myoinositol to [3H] chiroinositol in rat tissues. J. Biol. Chem. 1992, 267, 16904–16910. [Google Scholar] [CrossRef]
- Clements, R.S., Jr.; Darnell, B. Myo-inositol content of common foods: Development of a high-myo-inositol diet. Am. J. Clin. Nutr. 1980, 33, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Kiani, A.K.; Paolacci, S.; Calogero, A.E.; Cannarella, R.; Di Renzo, G.C.; Gerli, S.; Della Morte, C.; Busetto, G.M.; De Berardinis, E.; Del Giudice, F.; et al. From Myo-inositol to D-chiro-inositol molecular pathways. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Bona, E.; Leone, I.; Samà, M.T.; Nuzzo, A.; Ferrero, A.; Prodam, F. Inositols and metabolic disorders: From farm to bedside. J. Trad. Compl. Med. 2020, 10, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Croze, M.L.; Soulage, C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013, 95, 1811–1827. [Google Scholar] [CrossRef]
- Gambioli, R.; Forte, G.; Buzzaccarini, G.; Unfer, V.; Laganà, A.S. Myo-Inositol as a Key Supporter of Fertility and Physiological Gestation. Pharmaceuticals 2021, 14, 504. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Bizzarri, M.; Benvenga, S.; D’Anna, R.; Lanzone, A.; Soulage, C.; Di Renzo, G.C.; Hod, M. Results from the International Consensus Conference on Myo-Inositol and D-Chiro-Inositol in Obstetrics and Gynecology: The link between metabolic syndrome and PCOS. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 195, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Asplin, I.; Galasko, G.; Larner, J. chiro-inositol deficiency and insulin resistance: A comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proc. Natl. Acad. Sci. USA 1993, 90, 5924–5928. [Google Scholar] [CrossRef] [Green Version]
- Montt-Guevara, M.M.; Finiguerra, M.; Marzi, I.; Fidecicchi, T.; Ferrari, A.; Genazzani, A.D.; Simoncini, T. D-Chiro-Inositol Regulates Insulin Signaling in Human Adipocytes. Front Endocrinol. 2021, 12, 660815. [Google Scholar] [CrossRef]
- Scioscia, M.; Kunjara, S.; Gumaa, K.; McLean, P.; Rodeck, C.H.; Rademacher, T.W. Urinary excretion of inositol phosphoglycan P-type in Gestational Diabetes. Diabet Med. 2007, 24, 1300–1304. [Google Scholar] [CrossRef]
- Murphy, A.; Shamshirsaz, A.; Markovic, D.; Ostlund, R.; Koos, B. Urinary excretion of myo-inositol and d-chiro- inositol in early pregnancy is enhanced in gravida with gestational diabetes mellitus. Reprod. Sci. 2016, 23, 365–371. [Google Scholar] [CrossRef]
- Pillai, R.A.; Islam, M.O.; Selvam, P.; Sharma, N.; Chu, A.H.Y.; Watkins, O.C.; Godfrey, K.M. Placental Inositol Reduced in Gestational Diabetes as Glucose Alters Inositol Transporters and IMPA1 Enzyme Expression. J. Clin. Endocrinol. Metab. 2021, 106, e875–e890. [Google Scholar] [CrossRef]
- Crawford, T.J.; Crowther, C.A.; Alsweiler, J.; Brown, J. Antenatal dietary supplementation with myoinositol in women during pregnancy for preventing gestational diabetes. Cochrane Database Syst. Rev. 2015, 12, CD011507. [Google Scholar]
- D’Anna, R.; Scilipoti, A.; Giordano, D.; Caruso, C.; Cannata, M.L.; Interdonato, M.L.; Corrado, F.; Di Benedetto, A. Myo-Inositol supplementation and onset of gestational diabetes mellitus in pregnant women with a family history of type 2 diabetes: A prospective, randomized, placebocontrolled study. Diabetes Care 2013, 36, 854–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matarrelli, B.; Vitacolonna, E.; D’Angelo, M.; Pavone, G.; Mattei, P.A.; Liberati, M.; Celentano, C. Effect of dietary myo-inositol supplementation in pregnancy on the incidence of maternal gestational diabetes mellitus and fetal outcomes: A randomized controlled trial. J. Matern. Fetal. Neonatal. Med. 2013, 26, 967–972. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, R.; Di Benedetto, A.; Scilipoti, A.; Santamaria, A.; Interdonato, M.L.; Petrella, E.; Neri, I.; Pintaudi, B.; Corrado, F.; Facchinetti, F. Myo-inositol Supplementation for Prevention of Gestational Diabetes in Obese Pregnant Women: A Randomized Controlled Trial. Obstet. Gynecol. 2015, 126, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, A.; Di Benedetto, A.; Petrella, E.; Pintaudi, B.; Corrado, F.; D’Anna, R.; Neri, I.; Facchinetti, F. Myo-inositol may prevent gestational diabetes onset in overweight women: A randomized, controlled trial. J. Matern. Fetal. Neonatal. Med. 2016, 29, 3234–3237. [Google Scholar] [CrossRef]
- Santamaria, A.; Alibrandi, A.; Di Benedetto, A.; Pintaudi, B.; Corrado, F.; Facchinetti, F.; D’Anna, R. Clinical and metabolic outcomes in pregnant women at risk for gestational diabetes mellitus supplemented with myo-inositol: A secondary analysis from 3 RCTs. Am. J. Obstet. Gynecol. 2018, 219, 300.e1–300.e6. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, Y.; Li, Z.; Sun, L.; Guo, W. The efficacy of myo-inositol supplementation to prevent gestational diabetes onset: A meta-analysis of randomized controlled trials. J. Matern. Fetal. Neonatal. Med. 2019, 32, 2249–2255. [Google Scholar] [CrossRef]
- Guo, X.; Guo, S.; Miao, Z.; Li, Z.; Zhang, H. Myo-inositol lowers the risk of developing gestational diabetic mellitus in pregnancies: A systematic review and meta-analysis of randomized controlled trials with trial sequential analysis. J. Diabetes Complicat. 2018, 32, 342–348. [Google Scholar] [CrossRef]
- Chan, K.Y.; Wong, M.M.H.; Pang, S.S.H.; Lo, K.K.H. Dietary supplementation for gestational diabetes prevention and management: A meta-analysis of randomized controlled trials. Arch. Gynecol. Obstet. 2021, 303, 1381–1391. [Google Scholar] [CrossRef]
- Farren, M.; Daly, N.; McKeating, A.; Kinsley, B.; Turner, M.J.; Daly, S. The Prevention of Gestational Diabetes Mellitus with Antenatal Oral Inositol Supplementation: A Randomized Controlled Trial. Diabetes Care 2017, 40, 759–763. [Google Scholar] [CrossRef] [Green Version]
- Pintaudi, B.; Di Vieste, G. Response to Comment on Farren et al., The Prevention of Gestational Diabetes Mellitus with Antenatal Oral Inositol Supplementation: A Randomized Controlled Trial. Diabetes Care 2017, 40, e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitagliano, A.; Saccone, G.; Cosmi, E.; Visentin, S.; Dessole, F.; Ambrosini, G.; Berghella, V. Inositol for the prevention of gestational diabetes: A systematic review and meta-analysis of randomized controlled trials. Arch. Gynecol. Obstet. 2019, 299, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Sobota-Grzeszyk, A.; Kuźmicki, M.; Szamatowicz, J. Myoinositol in the Prevention of Gestational Diabetes Mellitus: Is It Sensible? J. Diabetes Res. 2019, 2019, 3915253. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.M.; Barton, S.J.; El-Heis, S.; Kenealy, T.; Nield, H.; Baker, P.N.; Chong, Y.S.; Cutfield, W.; Chan, S.Y.; NiPPeR Study Group. Myo-Inositol, Probiotics, and Micronutrient Supplementation From Preconception for Glycemia in Pregnancy: NiPPeR International Multicenter Double-Blind Randomized Controlled Trial. Diabetes Care 2021, 44, 1091–1099. [Google Scholar] [CrossRef]
- Corrado, F.; D’Anna, R.; Di Vieste, G.; Giordano, D.; Pintaudi, B.; Santamaria, A.; Di Benedetto, A. The effect of myoinositol supplementation on insulin resistance in patients with gestational diabetes. Diabetes Med. 2011, 28, 972–975. [Google Scholar] [CrossRef]
- Di Biase, N.D.; Martinelli, M.; Florio, V.; Meldolesi, C.; Bonito, M. The Effectiveness of D-Chiro Inositol Treatment in Gestational Diabetes. Diabetes Case Rep. 2017, 2, 131. [Google Scholar] [CrossRef] [Green Version]
- Costabile, L.; Unfer, V. Treatment of gestational diabetes mellitus with myo-inositol: Analyzing the cutting edge starting from a peculiar case. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 73–76. [Google Scholar]
- Kulshrestha, V.; Balani, S.; Kachhawa, G.; Vanamail, P.; Kumari, R.; Sharma, J.B.; Bhatla, N. Efficacy of myoinositol in treatment of gestational diabetes mellitus in Asian Indian women: A pilot randomized clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 42–47. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, 30 April–1 May 2002; FAO: London, UK, 2002. [Google Scholar]
- Fuller, R. What is a probiotic? Biologist 2004, 51, 232. [Google Scholar]
- Gallo, A.; Passaro, G.; Gasbarrini, A.; Landolfi, R.; Montalto, M. Modulation of microbi-ota as treatment for intestinal inflammatory disorders: An uptodate. World J. Gastroenterol. 2016, 22, 7186–7202. [Google Scholar] [CrossRef]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Ley, R.E. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, K.; Underwood, M.A. Prenatal and postnatal administration of prebiotics and probiotics. Semin. Fetal. Neonatal. Med. 2017, 22, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Dugoua, J.J.; Machado, M.; Zhu, X.; Chen, X.; Koren, G.; Einarson, T.R. Probiotic safety in pregnancy: A systematic review and meta-analysis of randomized controlled trials of Lactobacillus, Bifidobacterium, and Saccharomyces spp. J. Obstet. Gynaecol. 2009, 31, 542–552. [Google Scholar] [CrossRef]
- Hill, C.; Guarne, F.; Reid, G.; Gibson, G.R.; Merenstei, D.J.; Pot, B.; Sanders, M.E. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, S.; Xiao, J.Z.; Satoh, T.; Odamaki, T.; Takahashi, S.; Sugahara, H.; Yaeshima, T.; Iwatsuki, K.; Kamei, A.; Abe, K. Antiobesity e_ects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci. Biotechnol. Biochem. 2010, 74, 1656–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Hua, J.; Li, Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J. Hepatol. 2008, 49, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Wickens, K.L.; Barthow, C.A.; Murphy, R.; Abels, P.R.; Maude, R.M.; Stone, P.R.; Crane, J. Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial. Br. J. Nutr. 2017, 117, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Dolatkhah, N.; Hajifaraji, M.; Abbasalizadeh, F.; Aghamohammadzadeh, N.; Mehrabi, Y.; Abbasi, M.M. Is there a value for probiotic supplements in gestational diabetes mellitus? A randomized clinical trial. J. Health Popul. Nutr. 2015, 33, 25. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, K.; Poussa, T.; Isolauri, E. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: A randomised controlled trial. Br. J. Nutr. 2009, 101, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Jamilian, M.; Bahmani, F.; Vahedpoor, Z.; Salmani, A.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Effects of probiotic supplementation on metabolic status in pregnant women: A randomized, double-blind. Placebo-Controlled Trial Arch. Iran. Med. 2016, 19, 687–692. [Google Scholar]
- Lindsay, K.L.; Brennan, L.; Kennelly, M.A.; Maguire, O.C.; Smith, T.; Curran, S.; McAuliffe, F.M. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: A randomized controlled trial. Am. J. Obstet. Gynecol. 2015, 212, 496.e1–496.e11. [Google Scholar] [PubMed]
- Callaway, L.K.; McIntyre, H.D.; Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Dekker Nitert, M. Probiotics for the prevention of gestational diabetes mellitus in overweight and obese women: Findings from the SPRING double-blind randomized controlled trial. Diabet Care 2019, 42, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okesene-Gafa, K.A.M.; Li, M.; McKinlay, C.J.D.; Taylor, R.S.; Rush, E.C.; Wall, C.R.; McCowan, L.M. Effect of antenatal dietary interventions in maternal obesity on pregnancy weight-gain and birthweight: Healthy Mums and Babies (HUMBA) randomized trial. Am. J. Obstet. Gynecol. 2019, 221, 152.e1–152.e13. [Google Scholar] [CrossRef]
- Griffith, R.J.; Alsweiler, J.; Moore, A.E.; Brown, S.; Middleton, P.; Shepherd, E.; Crowther, C.A. Interventions to prevent women from developing gestational diabetes mellitus: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2020, 6, CD012394. [Google Scholar] [CrossRef] [PubMed]
- Masulli, M.; Vitacolonna, E.; Fraticelli, F.; Della Pepa, G.; Mannucci, E.; Monami, M. Effects of probiotic supplementation during pregnancy on metabolic outcomes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2020, 162, 108111. [Google Scholar] [CrossRef]
- Davidson, S.J.; Barrett, H.L.; Price, S.A.; Callaway, L.K.; Dekker Nitert, M. Probiotics for preventing gestational diabetes. Cochrane Database Syst. Rev. 2021, 4, CD009951. [Google Scholar]
- Taylor, B.L.; Woodfall, G.E.; Sheedy, K.E.; O’Riley, M.L.; Rainbow, K.A.; Bramwell, E.L.; Kellow, N.J. Effect of Probiotics on Metabolic Outcomes in Pregnant Women with Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2017, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Feng, Q.; Zheng, S.; Xiao, X. The effects of probiotics supplementation on metabolic health in pregnant women: An evidence based meta-analysis. PLoS ONE 2018, 13, e0197771. [Google Scholar] [CrossRef]
- Kijmanawat, A.; Panburana, P.; Reutrakul, S.; Tangshewinsirikul, C. Effects of probiotic supplements on insulin resistance in gestational diabetes mellitus: A double-blind randomized controlled trial. J. Diabetes Investig. 2019, 10, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Okesene-Gafa, K.A.M.; Moore, A.E.; Jordan, V.; McCowan, L.; Crowther, C.A. Probiotic treatment for women with gestational diabetes to improve maternal and infant health and well-being. Cochrane Database Syst. Rev. 2020, 6, CD012970. [Google Scholar] [CrossRef]
- Franzago, M.; Rovere, M.L.; Franchi, P.G.; Vitacolonna, E.; Stuppia, L. Epigenetics and human reproduction: The primary prevention of the noncommunicable diseases. Epigenomics 2019, 11, 1441–1460. [Google Scholar] [CrossRef] [PubMed]
- La Rovere, M.; Franzago, M.; Stuppia, L. Epigenetics and neurological disorders in ART. Int. J. Mol. Sci. 2019, 20, 4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzago, M.; Fraticelli, F.; Marchioni, M.; Di Nicola, M.; Di Sebastiano, F.; Liberati, M.; Vitacolonna, E. Fat mass and obesity-associated (FTO) gene epigenetic modifications in gestational diabetes: New insights and possible pathophysiological connections. Acta Diabetol. 2021, 58, 997–1007. [Google Scholar] [CrossRef]
- Franzago, M.; Santurbano, D.; Vitacolonna, E.; Stuppia, L. Genes and diet in the prevention of chronic diseases in future generations. Int. J. Mol. Sci. 2020, 21, 2633. [Google Scholar] [CrossRef] [PubMed]
- Cortese, R.; Lu, L.; Yu, Y.; Ruden, D.; Claud, E.C. Epigenome-microbiome crosstalk: A potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 2016, 11, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vähämiko, S.; Laiho, A.; Lund, R.; Isolauri, E.; Salminen, S.; Laitinen, K. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur. J. Nutr. 2019, 58, 367–377. [Google Scholar] [CrossRef]
- Franzago, M.; Di Nicola, M.; Fraticelli, F.; Marchioni, M.; Stuppia, L.; Vitacolonna, E. Nutrigenetic variants and response to diet/lifestyle intervention in obese subjects: A pilot study. Acta Diabetol. 2021, 59, 69–81. [Google Scholar] [CrossRef]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 11, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Cerdó, T.; Ruiz, A.; Jáuregui, R.; Azaryah, H.; Torres-Espínola, F.J.; García-Valdés, L.; Campoy, C. Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. J. Physiol. Biochem. 2017, 74, 159–169. [Google Scholar] [CrossRef]
- Woo, V.; Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microb. 2022, 14, 2022407. [Google Scholar] [CrossRef]
- Campoy, C.; Escudero-Marín, M.; Diéguez, E.; Cerdó, T. Perinatal nutritional intervention: Current and future perspectives. Mol. Nutr. Mother Infant 2021, 179–203. [Google Scholar] [CrossRef]
- Morovic, W.; Budinoff, C.R. Epigenetics: A new frontier in probiotic research. Trends Microbiol. 2021, 29, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Cavalli, P.; Copp, A.J.; D’Anna, R.; Kandaraki, E.; Greene, N.D.E. Unfer V for The Experts Group on Inositol in Basic and Clinical Research. An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert. Opin. Drug Metab. Toxicol. 2020, 16, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Luoto, R.; Kalliomäki, M.; Laitinen, K.; Isolauri, E. The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. Int. J. Obes. 2010, 34, 1531–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front. Genet. 2018, 9, 342. [Google Scholar] [CrossRef]
- Indrio, F.; Martini, S.; Francavilla, R.; Corvaglia, L.; Cristofori, F.; Mastrolia, S.A.; Loverro, G. Epigenetic matters: The link between early nutrition, microbiome, and long-term health development. Front. Pediatr. 2017, 5, 178. [Google Scholar] [CrossRef]
- Patel, R.; DuPont, H.L. New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis. 2015, 60, S108–S121. [Google Scholar] [CrossRef]
- Mahdizade, A.; Teymouri, M.; Fazlalian, S.; Asadollahi, T.; Afifirad, P.; Afifirad, R.; Sabaghan, M.; Darbandi, A.A. The effect of probiotics on gestational diabetes and its complications in pregnant mother and newborn: A systematic review and meta-analysis during 2010–2020. J. Clin. Lab. Anal. 2022, 2022, e24326. [Google Scholar] [CrossRef]
- Baldassarre, M.P.A.; Di Tomo, P.; Centorame, G.; Pandolfi, A.; Di Pietro, N.; Consoli, A.; Formoso, G. Myoinositol Reduces Inflammation and Oxidative Stress in Human Endothelial Cells Exposed In Vivo to Chronic Hyperglycemia. Nutrients 2021, 13, 2210. [Google Scholar] [CrossRef]
Ref. | Study Design | Time to Supplementation | Type of Supplementation | Participants | Main Results |
---|---|---|---|---|---|
D’Anna et al. 2013 [24] | RCT | From the 12th week of gestation | n = 110 2000 mg MI + 200 μg folic acid twice a day n = 110 200 μg folic acid twice a day | 220 Caucasian pregnant women with family history of DM2 | Lower incidence of GDM in MI group (p = 0.04) Risk decreased by 65% (OR. 0.35) Lower incidence of macrosomia in MI group |
Matarrelli et al. 2013 [25] | RCT | From the 12th week of gestation | n = 36 2000 mg MI + 200 μg folic acid twice a day n = 39 200 μg folic acid twice a day | 75 women with high fasting glucose in the first trimester | Lower incidence of GDM in MI group (p = 0.001) with RR = 0.127 Later delivery in MI group Lower birth weight and abdominal circumference in MI group |
D’Anna et al. 2015 [26] | RCT | From the 12th week of gestation | n = 110 2000 mg MI + 200 μg folic acid twice a day n = 110 200 μg folic acid twice a day | 220 pregnant obese women | Lower incidence of GDM in MI group (p = 0.001; OR = 0.34, 95% CI 0.17–0.68) Reduction in HOMA-IR in MI group (p = 0.048) |
Santamaria et al. 2016 [27] | RCT | From the 12th week of gestation | n = 110 2000 mg MI + 200 μg folic acid twice a day n = 110 200 μg folic acid twice a day | 220 women with pre-pregnancy BMI 25–30 kg/m2 | Lower incidence of GDM in MI group (p = 0.004) (OR 0.33; 95% CI 0.15–0.70) |
Godfrey et al. 2021 [36] | RCT | Preconception and during pregnancy | n = 870 Nutritional formulation with MI (4 g/day), probiotics and multiple micronutrients n = 859 Standard micronutrients supplement | 1.729 New Zealand women planning conception | No effect on glucose, incidence of GDM or fetal outcomes Lower preterm deliveries in MI group (aRR 0.43 [0.22–0.82]) Lower postpartum hemorrhage in MI group (aRR 0.44 [95% CI 0.20–0.94]) |
Farren et al. 2017 [32] | RCT | From the 10th week of gestation | n = 120 1100 mg MI + 27.6 mg DCI, 400 μg folic acid n = 120 200 μg folic acid twice a day | 240 pregnant women with family history of DM2 | The combination MI + DCI does not reduce the incidence of GDM as compared to placebo |
Celentano et al. 2020 [4] | RCT | At the first visit in pregnancy | n = 39 2000 mg MI + 200 μg folic acid twice a day n = 32 500 mg DCI + 400 μg folic acid n = 34 1100 mg MI + DCI 27.6 g + 400 μg folic acid n = 52 400 μg folic acid | 157 pregnant non-obese women | Lower incidence of GDM in MI group (5.1% versus 61.5% in control group, 34.4% in DCI, and 38.2% in MI/DCI; p < 0.001) Lower abdominal circumference and birth weight in MI group |
Ref. | Study Design | Time to Supplementation | Type of Supplementation | Participants | Main Results |
---|---|---|---|---|---|
Corrado et al. 2011 [37] | RCT | From GDM diagnosis | n = 24 2000 mg di MI + 200 mcg folic acid twice a day n = 45 400 mcg folic acid | 69 women with GDM | Lower HOMA-IR in MI group (p < 0.001) Higher adiponectin in MI group (p = 0.009) |
Di Biase et al. 2017 [38] | RCT | From GDM diagnosis | n = 67 DCI 500 mg twice a day n = 70 placebo | 137 women with GDM | Lower post-prandial glucose (p < 0.005), insulin dose (p = 0.026), and weight gain (p = 0.015) in DCI group Lower abdominal circumference in DCI group (p < 0.001) |
Fraticelli et al. 2018 [2] | RCT | From GDM diagnosis | n = 20 2000 mg MI + 200 mcg folic acid twice a day n = 20 500 mg DCI + 400 mcg folic acid n = 20 1100 mg MI + 27.6 g DCI + 400 mcg folic acid n = 20 400 mcg folic acid | 80 Caucasian women with GDM | Lower HOMA-IR (p < 0.001) and weight gain (p < 0.005) in MI group Lower need of insulin therapy in MI group Lower insulin dose in MI group Lower birth weight in MI, DCI, and MI/DCI groups (p = 0.032) |
Pintaudi et al. 2018 [3] | Case-control study | From the 30th week of gestation | n = 6 4000 mg/day MI + 400 mcg folic acid n = 6 400 mcg folic acid | 12 Caucasian women with GDM | Lower glycemic variability in MI group (p < 0.001) No significant differences on neonatal outcomes |
Kulshrestha et al. 2021 [40] | RCT | From GDM diagnosis | n = 50 1000 mg MI twice a day n = 50 control group | 100 Asian Indian women with singleton pregnancy and GDM | Lower plasma glucose in MI group (p = 0.008) Lower need of insulin treatment in MI group (6.1% vs. 22.0%, p = 0.02) Lower birth weight in MI group (p = 0.018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitacolonna, E.; Masulli, M.; Palmisano, L.; Stuppia, L.; Franzago, M. Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects. Nutrients 2022, 14, 1543. https://doi.org/10.3390/nu14081543
Vitacolonna E, Masulli M, Palmisano L, Stuppia L, Franzago M. Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects. Nutrients. 2022; 14(8):1543. https://doi.org/10.3390/nu14081543
Chicago/Turabian StyleVitacolonna, Ester, Maria Masulli, Luisa Palmisano, Liborio Stuppia, and Marica Franzago. 2022. "Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects" Nutrients 14, no. 8: 1543. https://doi.org/10.3390/nu14081543
APA StyleVitacolonna, E., Masulli, M., Palmisano, L., Stuppia, L., & Franzago, M. (2022). Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects. Nutrients, 14(8), 1543. https://doi.org/10.3390/nu14081543