Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Allocation
2.4. Interventions
2.5. Safety
2.6. Screening and Baseline Measurements
2.7. Study Outcomes
2.8. Statistical Analysis
2.9. Sample Size Estimation
3. Results
4. Outcomes
4.1. Primary Outcome
4.2. Secondary Outcomes
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- TEAM Study Investigators. Early mobilization and recovery in mechanically ventilated patients in the ICU: A bi-national, multi-center, prospective cohort study. Crit. Care 2015, 19, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinglas, V.D.; Friedman, L.A.; Colantuoni, E.; Mendez-Tellez, P.A.; Shanholtz, C.B.; Ciesla, N.D.; Pronovost, P.J.; Needham, D.M. Muscle Weakness and 5-Year Survival in Acute Respiratory Distress Syndrome Survivors. Crit. Care Med. 2017, 45, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieske, L.; Dettling-Ihnenfeldt, D.S.; Verhamme, C.; Nollet, F.; van Schaik, I.N.; Schultz, M.J.; Horn, J.; van der Schaa, M. Impact of ICU-acquired weakness on post-ICU physical functioning: A follow-up study. Crit. Care 2015, 19, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipping, C.J.; Harrold, M.; Holland, A.; Romero, L.; Nisbet, T.; Hodgson, C.L. The effects of active mobilization and rehabilitation in ICU on mortality and function: A systematic review. Intensive Care Med. 2017, 43, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Thomsen, G.E.; Spuhler, V.J.; Blair, R.; Jewkes, J.; Bezdjian, L.; Veale, K.; Rodriquez, L.; Hopkins, R.O. Early activity is feasible and safe in respiratory failure patients. Crit. Care Med. 2007, 35, 139–145. [Google Scholar] [CrossRef]
- Nydahl, P.; Sricharoenchai, T.; Chandra, S.; Kundt, F.S.; Huang, M.; Fischill, M.; Needham, D.M. Safety of patient mobilization and rehabilitation in the intensive care unit. Systematic review with meta-analysis. Ann. Am. Thorac. Soc. 2017, 14, 766–777. [Google Scholar] [CrossRef]
- Needham, D.M.; Truong, A.D.; Fan, E. Technology to enhance physical rehabilitation of critically ill patients. Crit. Care Med. 2009, 37 (Suppl. 10), S436–S441. [Google Scholar] [CrossRef]
- Parry, S.M.; Berney, S.; Warrillow, S.; El-Ansary, D.; Bryant, A.L.; Nicholas Hart, N.; Puthucheary, Z.; Koopman, R.; Denehy, L. Functional electrical stimulation with cycling in the critically ill: A pilot case-matched control study. J. Crit. Care 2014, 29, 695.e1–695.e7. [Google Scholar] [CrossRef]
- Biolo, G.; Tipton, K.D.; Klein, S.; Wolfe, R.R. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am. J. Physiol. 1997, 273 Pt 1, E122–E129. [Google Scholar] [CrossRef]
- Weirs, J. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Faisy, C.; Guerot, E.; Diehl, J.L.; Labrousse, J.; Fagon, J.Y. Assessment of resting energy expenditure in mechanically ventilated patients. Am. J. Clin. Nutr. 2003, 78, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Cahill, N.E.; Dhaliwal, R.; Wang, M.; Day, A.G.; Ahmed Alenzi, A.; Aris, F.; Muscedere, J.; Drover, J.W.; McClave, S.A. Enhanced protein-energy yia the enteral route in critically ill patients: A single center feasibility trial of the PEP uP protocol. Crit. Care 2010, 14, R78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, S.J.; Braunschweig, C.A. Prevalence of Sarcopenia and Associated Outcomes in the Critical Setting. Nutr. Clin. Pract. 2016, 31, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.Y.; Oh, S.Y.; Lee, H.; Ryu, H.G. Evaluation of the association between decreased skeletal muscle mass and extubation failure after long-term mechanical ventilation. Clin. Nutr. 2020, 39, 2764–2770. [Google Scholar] [CrossRef]
- Weijs, P.J.M.; Mogensen, K.M.; Rawn, J.D.; Christopher, K.B. Protein Intake, Nutritional Status and Outcomes in ICU Survivors: A Single Center Cohort Study. J. Clin. Med. 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Bendavid, I.; Zusman, O.; Kagan, I.; Theilla, M.; Cohen, J.; Singer, P. Early Administration of Protein in Critically Ill Patients: A Retrospective Cohort Study. Nutrients 2019, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Casear, M.P.; Wilmer, A.; Hermans, G.; Pieter, J.; Wouters, P.J.; Dieter Mesotten, D.; Greet Van den Berghe, G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: A post hoc analysis. Am. J. Resp. Crit. Care Med. 2013, 187, 247–255. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- Rooyackers, O.; Kouchek-Zadeh, R.; Tjäder, I.; Norberg, A.; Klaude, M.; Wernerman, J. Whole body protein turnover in critically ill patients with multiple organ failure. Clin. Nutr. 2015, 34, 95–100. [Google Scholar] [CrossRef]
- Gosselink, R.; Bott, J.; Johnson, M.; Nava, S.; Norrenberg, M.; Schönhofer, B.; Stiller, K.; van de Leur, H.; Vincent, J.L. Physiotherapy for adult patients with critical illness: Recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008, 34, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Burtin, C.; Clerckx, B.; Robbeets, C.; Ferdinande, P.; Langer, D.; Troosters, T.; Hermans, G.; Decramer, M.; Gosselink, R. Early Exercise in Critically Ill Patients Enhances Short-Term Functional Recovery. Crit. Care Med. 2009, 37, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Schaller, S.J.; Anstey, M.; Blobner, M.; Edrich, T.; Grabitz, S.D.; Gradwohl-Matis, I.; Heim, M.; Houle, T.; Kurth, T.; Latronico, N.; et al. International Early SOMS-guided Mobilization Research Initiative. Early, Goal-Directed Mobilisation in the Surgical Intensive Care Unit: A Randomised Controlled Trial. Lancet 2016, 388, 1377–1388. [Google Scholar] [CrossRef]
- Wollersheim, T.; Grunow, J.J.; Carbon, N.M.; Haas, K.; Malleike, J.; Ramme, S.F.; Schneider, J.; Spies, C.D.; Märdian, S.; Mai, K.; et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: An explorative trial. J. Cachexia Sarcopenia Muscle 2019, 10, 734–747. [Google Scholar] [CrossRef] [Green Version]
- Fossat, G.; Baudin, F.; Courtes, L.; Bobet, S.; Dupont, A.; Bretagnol, A.; Benzekri-Lefèvre, D.; Kamel, T.; Muller, G.; Bercault, N.; et al. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically Ill Adults: A Randomized Clinical Trial. JAMA 2018, 320, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Finger, D.; Goltz, F.R.; Umpierre, D.; Meyer, E.; Rosa, L.H.; Schneider, C.D. Effect of protein supplementation in older adults undergoing resistance training: A systematic review and meta-analysis. Sports Med. 2015, 45, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Nakano, H.; Naraba, H.; Mochizuki, M.; Takahashi, Y.; Sonoo, T.; Hashimoto, H.; Morimura, N. High protein versus medium protein delivery under equal total energy delivery in critical care: A randomized controlled trial. Clin. Nutr. 2020, 40, 796–803. [Google Scholar] [CrossRef]
- Viana, M.V.; Becce, F.; Pantet, O.; Schmidt, S.; Bagnoud, G.; Thaden, J.J.; Ten Have, G.A.M.; Engelen, M.P.K.J.; Voidey, A.; Deutz, N.E.P.; et al. Impact of β−hydroxy-β−methylbutyrate (HMB) on muscle loss and protein metabolism in critically ill patients: A RCT. Clin. Nutr. 2021, 40, 4878–4887. [Google Scholar] [CrossRef]
- Nakamura, K.; Kihata, A.; Naraba, H.; Kanda, N.; Takahashi, Y.; Sonoo, T.; Hashimoto, H.; Morimura, N. β-Hydroxy-β-methylbutyrate, Arginine, and Glutamine Complex on Muscle Volume Loss in Critically Ill Patients: A Randomized Control Trial. JPEN J. Parenter. Enter. Nutr. 2020, 44, 205–212. [Google Scholar] [CrossRef]
- Blanc-Bisson, C.; Dechamps, A.; Gouspillou, G.; Dehail, P.; Bourdel-Marchasson, I. A randomized controlled trial on early physiotherapy intervention versus usual care in acute care unit for elderly: Potential benefits in light of dietary intakes. J. Nutr. Health Aging 2008, 12, 395–399. [Google Scholar] [CrossRef]
- de Azevedo, J.R.A.; Lima, H.C.M.; Frota, P.H.D.B.; Nogueira, I.R.O.M.; de Souza, S.C.; Fernandes, E.A.A.; Cruz, A.M. High-protein intake and early exercise in adult intensive care patients: A prospective, randomized controlled trial to evaluate the impact on functional outcomes. BMC Anesth. 2021, 21, 283. [Google Scholar] [CrossRef] [PubMed]
Parameters | ITT Group (62) | Per-Protocol Group (41) | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 (N = 22) | Group 2 (N = 21) | Group 3 (N = 19) | p | Group 1 (N = 13) | Group 2 (N = 14) | Group 3 (N = 14) | p | |
Age | 64 ± 13 | 63 ± 18 | 61 ± 16 | NS | 66 ± 14 | 57 ± 19 | 58 ± 15 | NS |
Male% | 63.6 | 57.1 | 73.7 | NS | 61.5 | 57.1 | 71.4 | NS |
APACHE II | 21 ± 6 | 20 ± 6 | 22 ± 8 | NS | 21 ± 6 | 21 ± 6 | 21 ± 8 | NS |
SOFA (admission) | 6 ± 3 | 5 ± 2 | 7 ± 4 | NS | 5 ± 2 | 5 ± 2 | 7 ± 4 | NS |
BMI | 29 ± 8 | 29 ± 5 | 30 ± 7 | NS | 32 ± 7 | 29 ± 6 | 30 ± 7 | NS |
Pre study LOV (days) | 5 ± 4 | 8 ± 6 | 7 ± 5 | NS | 5 ± 4 | 8 ± 7 | 7 ± 4 | NS |
Mean REE (IC) | 1836 ± 552 | 1876 ± 618 | 1820 ± 220 | NS | 1867 ± 509 | 1994 ± 728 | 1813 ± 251 | NS |
Diagnosis in admission | NS | NS | ||||||
Pneumonia | 6 | 7 | 4 | 4 | 4 | 4 | ||
Sepsis | 6 | 3 | 4 | 5 | 3 | 3 | ||
COPD | 0 | 3 | 0 | 0 | 2 | 0 | ||
CHF | 3 | 2 | 6 | 2 | 1 | 4 | ||
Trauma | 5 | 4 | 4 | 2 | 3 | 2 | ||
ARDS | 2 | 0 | 1 | 0 | 1 | 1 | ||
Airway protection | 0 | 2 | 0 | 0 | 0 | 0 | ||
Mean Fagon | 2070 ± 277 | 1974 ± 230 | 2022 ± 273 | NS | 2088 ± 313 | 1997 ± 534 | 1998 ± 261 | NS |
Pre study albumin | 2.7 ± 0.4 | 2.4 ± 0.4 | 2.7 ± 0.5 | NS | 2.4 ± 0.3 | 2.4 ± 0.5 | 2.5 ± 0.5 | NS |
Mode of ventilation | NS | NS | ||||||
A/C | 2 | 2 | 1 | 1 | 2 | 1 | ||
SIMV | 15 | 11 | 13 | 8 | 6 | 9 | ||
PSV | 5 | 5 | 5 | 4 | 4 | 4 | ||
ASV | 0 | 3 | 0 | 0 | 2 | 0 |
Characteristics and Nutrient Data | Study Formula (Promote) | Control Formula (Jevity) |
---|---|---|
Nutrient density, Cal/mL | 1.0 | 1.06 |
Protein,% Cal | 25 | 16.7 |
Carbohydrate, % Cal | 50 | 54.3 |
Fat, % Cal | 25 | 29.0 |
MCT/LCT | 19:81 | 19:81 |
Protein, g | 14.8 | 10.4 |
Carbohydrate, g | 32.8 | 36.5 |
Dietary Fiber, g | 3.4 | 3.4 |
Fat, g | 6.7 | 8.2 |
Water g/mL | 197 | 197 |
Energy, Cal | 237 | 250 |
Parameters | ITT Group (62) | Per-Protocol Group (41) | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 (N = 22) | Group 2 (N = 21) | Group 3 (N = 19) | p | Group 1 (N = 13) | Group 2 (N = 14) | Group 3 (N = 14) | p | |
LOV in ICU | 10.2 ± 9.5 | 12.0 ± 7.8 | 11.7 ± 9.7 | NS | 14.2 ± 9.6 | 15.8 ± 7.1 | 14.9 ± 9.4 | NS |
ICU LOS | 17.2 ± 9.6 | 16.3 ± 7.7 | 18.8 ± 10.5 | NS | 19.9 ± 10.1 | 19.3 ± 7.2 | 20.8 ± 10.1 | NS |
Hospital LOS | 33.1 ± 22.6 | 26.5 ± 17,0 | 35.2 ± 25.7 | NS | 40.8 ± 23.4 | 30.7 ± 17.9 | 36.2 ± 27.4 | NS |
Weaning | 10 (45%) | 7 (33.3%) | 9 (47.4%) | NS | 4 (30.8%) | 4 (28.6%) | 6 (42.9%) | NS |
ICU mortality | 1 (4.5%) | 3 (14.3%) | 3 (14.3%) | NS | 1 (7.7%) | 3 (21.4%) | 3 (21.4%) | NS |
In hospital mortality | 4 (18.2%) | 5 (23.8%) | 5 (23.8%) | NS | 4 (30.8%) | 4 ((28.6) | 5 (35.7%) | NS |
Daily caloric intake | 1557.6 ± 309.5 | 1648.2 ± 375.8 | 1372.7 ± 530.8 | NS | 1547.8 ± 239.2 | 1710.2 ± 324.9 | 1532.1 ± 323.9 | NS |
Daily protein intake | 63.6 ± 13.6 | 67.2 ± 20.2 | 83.7 ± 31.9 | 0.02 | 61.6 ± 10.5 | 70.9 ± 22.7 | 83.5 ± 24.7 | 0.03 |
Fluid balance | 2364 ± 9045 | 2013 ± 9289 | 3233 ± 10673 | NS | 4026 ± 11022 | 2898 ± 11074 | 3036 ± 12188 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagan, I.; Cohen, J.; Bendavid, I.; Kramer, S.; Mesilati-Stahy, R.; Glass, Y.; Theilla, M.; Singer, P. Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study. Nutrients 2022, 14, 1589. https://doi.org/10.3390/nu14081589
Kagan I, Cohen J, Bendavid I, Kramer S, Mesilati-Stahy R, Glass Y, Theilla M, Singer P. Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study. Nutrients. 2022; 14(8):1589. https://doi.org/10.3390/nu14081589
Chicago/Turabian StyleKagan, Ilya, Jonathan Cohen, Itai Bendavid, Sandy Kramer, Ronit Mesilati-Stahy, Yehuda Glass, Miriam Theilla, and Pierre Singer. 2022. "Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study" Nutrients 14, no. 8: 1589. https://doi.org/10.3390/nu14081589
APA StyleKagan, I., Cohen, J., Bendavid, I., Kramer, S., Mesilati-Stahy, R., Glass, Y., Theilla, M., & Singer, P. (2022). Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study. Nutrients, 14(8), 1589. https://doi.org/10.3390/nu14081589