Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant’s Enrollment
2.2. Exposure and Covariates
2.3. Outcome Measures
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Interpretation in Light of Other Studies
4.2. Possible Explanations
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandall, J.; Tribe, R.M.; Avery, L.; Mola, G.; Visser, G.H.; Homer, C.S.; Gibbons, D.; Kelly, N.M.; Kennedy, H.P.; Kidanto, H.; et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet 2018, 392, 1349–1357. [Google Scholar] [CrossRef]
- Boerma, T.; Ronsmans, C.; Melesse, D.Y.; Barros, A.J.; Barros, F.C.; Juan, L.; Moller, A.B.; Say, L.; Hosseinpoor, A.R.; Yi, M.; et al. Global epidemiology of use of and disparities in caesarean sections. Lancet 2018, 392, 1341–1348. [Google Scholar] [CrossRef]
- Betrán, A.P.; Ye, J.; Moller, A.B.; Zhang, J.; Gülmezoglu, A.M.; Torloni, M.R. The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990–2014. PLoS ONE 2016, 11, e0148343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K.; Driscoll, A.K.; Drake, P. Births: Final Data for 2016. Nat. Vital Stat. Rep. 2018, 67, 1–55. [Google Scholar]
- Li, H.T.; Luo, S.; Trasande, L.; Hellerstein, S.; Kang, C.; Li, J.X.; Zhang, Y.; Liu, J.M.; Blustein, J. Geographic Variations and Temporal Trends in Cesarean Delivery Rates in China, 2008–2014. JAMA 2017, 317, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Robson, S.J.; Vally, H.; Abdel-Latif, M.E.; Yu, M.; Westrupp, E. Childhood Health and Developmental Outcomes After Cesarean Birth in an Australian Cohort. Pediatrics 2015, 136, e1285–e1293. [Google Scholar] [CrossRef] [Green Version]
- Keag, O.E.; Norman, J.E.; Stock, S.J. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: Systematic review and meta-analysis. PLoS Med. 2018, 15, e1002494. [Google Scholar] [CrossRef] [Green Version]
- United Nations Children’s Fund (UNICEF); World Health Organization; International Bank for Reconstruction and Development; The World Bank. Levels and Trends in Child Malnutrition: Key Findings of the 2021 Edition of the Joint Child Malnutrition Estimates; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Kuhle, S.; Tong, O.S.; Woolcott, C.G. Association between caesarean section and childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 295–303. [Google Scholar] [CrossRef]
- Jakobsson, H.E.; Abrahamsson, T.R.; Jenmalm, M.C.; Harris, K.; Quince, C.; Jernberg, C.; Björkstén, B.; Engstrand, L.; Andersson, A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014, 63, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Hyde, M.J.; Mostyn, A.; Modi, N.; Kemp, P.R. The health implications of birth by Caesarean section. Biol. Rev. Camb. Philos. Soc. 2012, 87, 229–243. [Google Scholar] [CrossRef]
- Cakmak, H.; Kuguoglu, S. Comparison of the breastfeeding patterns of mothers who delivered their babies per vagina and via cesarean section: An observational study using the LATCH breastfeeding charting system. Int. J. Nurs. Stud. 2007, 44, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.; Santos, L.P.; Wehrmeister, F.; dos Santos Motta, J.V.; Matijasevich, A.; Santos, I.S.; Menezes, A.M.; Gonçalves, H.; Assunção, M.C.; Horta, B.L.; et al. Caesarean section and adiposity at 6, 18 and 30 years of age: Results from three Pelotas (Brazil) birth cohorts. BMC Public Health 2017, 17, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Wang, J.; Liao, Z.; Zong, X.N.; Zhang, T.; Xie, X.; Liu, G. Body composition in preschool children and the association with prepregnancy weight and gestational weight gain: An ambispective cohort study. Front. Nutr. 2022. [CrossRef]
- Chen, F.; Liu, J.; Yan, Y.; Mi, J. China Child and Adolescent Cardiovascular Health (CCACH) Study Group. Abnormal Metabolic Phenotypes Among Urban Chinese Children: Epidemiology and the Impact of DXA-Measured Body Composition. Obesity 2019, 27, 837–844. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Child Growth Standards SAS Igrowup Package, WHO Anthro (version 322, January 2011) and macros; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76–85. [Google Scholar]
- de Onis, M.; Lobstein, T. Defining obesity risk status in the general childhood population: Which cut-offs should we use? Int. J. Pediatr. Obes. 2010, 5, 458–460. [Google Scholar] [CrossRef]
- Zheng, M.; Cameron, A.J.; Birken, C.S.; Keown-Stoneman, C.; Laws, R.; Wen, L.M.; Campbell, K.J. Early Infant Feeding and BMI Trajectories in the First 5 Years of Life. Obesity 2020, 28, 339–346. [Google Scholar] [CrossRef]
- Howe, L.D.; Tilling, K.; Matijasevich, A.; Petherick, E.S.; Santos, A.C.; Fairley, L.; Wright, J.; Santos, I.S.; Barros, A.J.; Martin, R.M.; et al. Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts. Stat. Methods Med. Res. 2016, 25, 1854–1874. [Google Scholar] [CrossRef] [Green Version]
- Eny, K.M.; Chen, S.; Anderson, L.N.; Chen, Y.; Lebovic, G.; Pullenayegum, E.; Parkin, P.C.; Maguire, J.L.; Birken, C.S.; TARGet Kids! Collaboration. Breastfeeding duration, maternal body mass index, and birth weight are associated with differences in body mass index growth trajectories in early childhood. Am. J. Clin. Nutr. 2018, 107, 584–592. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Li, H.T.; Zhou, Y.B.; Liu, J.M. The impact of cesarean section on offspring overweight and obesity: A systematic review and meta-analysis. Int. J. Obes. 2013, 37, 893–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masukume, G.; McCarthy, F.P.; Baker, P.N.; Kenny, L.C.; Morton, S.M.; Murray, D.M.; Hourihane, J.O.; Khashan, A.S. Association between caesarean section delivery and obesity in childhood: A longitudinal cohort study in Ireland. BMJ Open 2019, 9, e025051. [Google Scholar] [CrossRef] [PubMed]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.B.; Konya, T.; Maughan, H.; Guttman, D.S.; Field, C.J.; Chari, R.S.; Sears, M.R.; Becker, A.B.; Scott, J.A.; Kozyrskyj, A.L. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013, 185, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Yoshimitsu, N.; Douchi, T.; Kamio, M.; Nagata, Y. Differences in umbilical venous and arterial leptin levels by mode of delivery. Obstet. Gynecol. 2000, 96, 342–345. [Google Scholar]
- Goldani, H.A.; Bettiol, H.; Barbieri, M.A.; Silva, A.A.; Agranonik, M.; Morais, M.B.; Goldani, M.Z. Cesarean delivery is associated with an increased risk of obesity in adulthood in a Brazilian birth cohort study. Am. J. Clin. Nutr. 2011, 93, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Svensson, E.; Hyde, M.; Modi, N.; Ehrenstein, V. Caesarean section and body mass index among Danish men. Obesity 2013, 21, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Headen, I.; Cohen, A.K.; Mujahid, M.; Abrams, B. The accuracy of self-reported pregnancy-related weight: A systematic review. Obes. Rev. 2017, 18, 350–369. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, J.; Ma, Y.; Li, Y.; Gao, D.; Chen, L.; Ma, T.; Dong, Y.; Ma, J. Association between Body Fat and Elevated Blood Pressure among Children and Adolescents Aged 7–17 Years: Using Dual-Energy X-ray Absorptiometry (DEXA) and Bioelectrical Impedance Analysis (BIA) from a Cross-Sectional Study in China. Int. J. Environ. Res. Public Health 2021, 18, 9254. [Google Scholar] [CrossRef]
- Tompuri, T.T.; Lakka, T.A.; Hakulinen, M.; Lindi, V.; Laaksonen, D.E.; Kilpeläinen, T.O.; Jääskeläinen, J.; Lakka, H.M.; Laitinen, T. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: The Physical Activity and Nutrition in Children study. Clin. Physiol. Funct. Imaging 2015, 35, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gonzalez, D.; Wells JC, K.; Clark, P. Body Composition Assessment in Mexican Children and Adolescents. Part 2: Cross-Validation of Three Bio-Electrical Impedance Methods against Dual X-ray Absorptiometry for Total-Body and Regional Body Composition. Nutrients 2022, 14, 965. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, G.; Wu, Y.; Shan, X.; Cheng, H.; Mi, J. Validation of bioelectrical impedance analysis in measuring body composition of children aged from 3 to 6. Chin. J. Appl. Clin. Pediatr. 2021, 36, 104–108. (In Chinese) [Google Scholar]
- Fujii, K.; Ishizaki, A.; Ogawa, A.; Asami, T.; Kwon, H.; Tanaka, A.; Sekiya, N.; Hironaka, S. Validity of using multi-frequency bioelectrical impedance analysis to measure skeletal muscle mass in preschool children. J. Phys. Ther. Sci. 2017, 29, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ye, R.; Pei, L.; Ren, A.; Zheng, X.; Liu, J. Caesarean delivery, caesarean delivery on maternal request and childhood overweight: A Chinese birth cohort study of 181,380 children. Pediatr. Obes. 2014, 9, 10–16. [Google Scholar] [CrossRef]
- Huh, S.Y.; Rifas-Shiman, S.L.; Zera, C.A.; Edwards, J.W.; Oken, E.; Weiss, S.T.; Gillman, M.W. Delivery by caesarean section and risk of obesity in preschool age children: A prospective cohort study. Arch. Dis. Child 2012, 97, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Gu, G.; Zhao, L.; He, S.; Xiong, F.; Chai, Y.; Quan, L.; Hou, H.; Dai, Y. Longitudinal study of breastfeeding and growth in 0–6 month infants. Asia Pac. J. Clin. Nutr. 2018, 27, 1294–1301. [Google Scholar]
Overall (n = 3570) | Vaginal Delivery (n = 1578) | Cesarean Delivery (n = 1992) | p | |
---|---|---|---|---|
Maternal age at delivery (year), mean ± SD | 29 ± 3.4 | 28.5 ± 3 | 29.4 ± 3.6 | <0.001 |
Maternal age at delivery (year), n (%) | ||||
<35 | 3301 (93.2) | 1508 (96.4) | 1793 (90.6) | <0.001 |
≥35 | 242 (6.8) | 56 (3.6) | 186 (9.4) | |
Maternal education, n (%) | ||||
Above college | 378 (10.6) | 188 (12.0) | 188 (9.5) | 0.034 |
College | 2757 (77.6) | 1205 (77.0) | 1545 (78.1) | |
High School or less | 420 (11.8) | 172 (11.0) | 245 (12.4) | |
Annual family income (RMB), n (%) | ||||
<10,000 | 796 (23) | 322 (21.1) | 474 (24.5) | 0.055 |
10,000–20,000 | 1651 (47.7) | 747 (48.8) | 904 (46.7) | |
≥20,000 | 1017 (29.4) | 461 (30.1) | 556 (28.8) | |
Prepregnancy BMI (kg/m2), mean ± SD | 22.4 ± 3.5 | 21.7 ± 3.1 | 22.9 ± 3.7 | <0.001 |
Prepregnancy BMI (kg/m2), n (%) | ||||
<18.5 | 354 (10.5) | 184 (12.4) | 170 (9) | <0.001 |
18~23 | 1772 (52.6) | 865 (58.2) | 907 (48.2) | |
23~27.5 | 943 (28) | 355 (23.9) | 588 (31.2) | |
≥27.5 | 300 (8.9) | 82 (5.5) | 218 (11.6) | |
Gestational weight gain, n (%) | ||||
Inadequate | 1156 (34.3) | 575 (38.7) | 581 (30.9) | <0.001 |
Appropriate | 1341 (39.8) | 597 (40.2) | 744 (39.5) | |
Excessive | 872 (25.9) | 314 (21.1) | 558 (29.6) | |
Gravidity, n (%) | ||||
1 | 2174 (64.5) | 1065 (67.5) | 1130 (56.7) | <0.001 |
≥2 | 1199 (35.6) | 513 (32.5) | 862 (43.3) | |
Parity, n (%) | ||||
1 | 2653 (74.3) | 1203 (76.2) | 1450 (72.8) | 0.019 |
≥2 | 917 (25.7) | 375 (23.8) | 542 (27.2) | |
Gestational age (weeks), mean ± SD | 39 ± 1.4 | 39.1 ± 1.5 | 38.9 ± 1.3 | 0.002 |
Gestational age, n (%) | ||||
Preterm | 133 (3.7) | 68 (4.3) | 65 (3.3) | 0.109 |
Full-term | 3437 (96.3) | 1510 (95.7) | 1927 (96.7) | |
Child sex, n (%) | ||||
Male | 1853 (51.9) | 804 (51) | 1049 (52.7) | 0.302 |
Female | 1716 (48.1) | 774 (49.1) | 942 (47.3) | |
Birthweight (g), mean ± SD | 3380.7 ± 457.4 | 3306.1 ± 420 | 3439.7 ± 476.8 | <0.001 |
Birthweight (g), n (%) | ||||
<2500 | 86 (2.4) | 46 (2.9) | 40 (2) | <0.001 |
2500~3999 | 3165 (88.7) | 1464 (92.8) | 1701 (85.4) | |
≥4000 | 319 (8.9) | 68 (4.3) | 251 (12.6) | |
Breastfeeding duration (month), n (%) | ||||
<6 | 1269 (36.1) | 487 (31.4) | 782 (39.9) | <0.001 |
≥6 | 2246 (63.9) | 1066 (68.6) | 1180 (60.1) |
Growth Period | Adjusted Mean Differences (95%CI) b | p | Unadjusted Mean Differences (95%CI) | p |
---|---|---|---|---|
0~6, month | −0.003 (−0.024, 0.017) | 0.758 | −0.003 (−0.024, 0.017) | 0.755 |
6~36, month | 0.001 (−0.001, 0.004) | 0.260 | 0.001 (−0.001, 0.004) | 0.272 |
>36, month | 0.003 (0.001, 0.005) | 0.014 | 0.003 (0.0004, 0.005) | 0.018 |
β Coefficient | SE | 95%CI | p | |
---|---|---|---|---|
FMI, kg/m2 | ||||
Crude | 0.194 | 0.039 | (0.119, 0.270) | <0.001 |
Adjusted b | 0.097 | 0.036 | (0.026, 0.168) | 0.008 |
FFMI, kg/m2 | ||||
Crude | 0.094 | 0.024 | (0.048, 0.141) | <0.001 |
Adjusted b | 0.022 | 0.023 | (−0.022, 0.066) | 0.325 |
FM% | ||||
Crude | 0.821 | 0.184 | (0.461, 1.181) | <0.001 |
Adjusted b | 0.402 | 0.175 | (0.058, 0.745) | 0.022 |
zBMI | ||||
Crude | 0.189 | 0.034 | (0.123, 0.255) | <0.001 |
Adjusted b | 0.073 | 0.031 | (0.012, 0.133) | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Wang, J.; Chen, F.; Chen, Y.; Zhang, T.; Liu, G.; Xie, X.; Tai, J. Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children. Nutrients 2022, 14, 1806. https://doi.org/10.3390/nu14091806
Liao Z, Wang J, Chen F, Chen Y, Zhang T, Liu G, Xie X, Tai J. Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children. Nutrients. 2022; 14(9):1806. https://doi.org/10.3390/nu14091806
Chicago/Turabian StyleLiao, Zijun, Jing Wang, Fangfang Chen, Yiren Chen, Ting Zhang, Gongshu Liu, Xianghui Xie, and Jun Tai. 2022. "Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children" Nutrients 14, no. 9: 1806. https://doi.org/10.3390/nu14091806
APA StyleLiao, Z., Wang, J., Chen, F., Chen, Y., Zhang, T., Liu, G., Xie, X., & Tai, J. (2022). Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children. Nutrients, 14(9), 1806. https://doi.org/10.3390/nu14091806