Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Subjects
2.3. Intervention Groups
2.4. Lifestyle Recommendations
2.5. Physical Activity and Functional Fitness Assessment
2.6. Other Health Outcomes
2.7. Statistics
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Consent to Participate (Ethics)
Consent to Publish (Ethics)
Plant Reproducibility
Clinical Trials Registration
Abbreviations
References
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Than, N.N.; Newsome, P.N. Non-alcoholic fatty liver disease: When to intervene and with what. Clin. Med. 2015, 15, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherif, Z.A. The Rise in the Prevalence of Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma. In Nonalcoholic Fatty Liver Disease—An Update; Gad, E.H., Ed.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/68253 (accessed on 1 April 2022).
- Mascaró, C.; Bouzas, C.; Tur, J. Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients 2021, 14, 49. [Google Scholar] [CrossRef]
- Abd El-Kader, S.M.; El-Den Ashmawy, E.M.S. Non-alcoholic fatty liver disease: The diagnosis and management. World J. Hepatol. 2015, 7, 846. [Google Scholar] [CrossRef] [PubMed]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010, 51, 679–689. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef]
- Kneeman, J.M.; Misdraji, J.; Corey, K.E. Secondary causes of nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol. 2012, 5, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Issa, D.; Patel, V.; Sanyal, A.J. Future therapy for non-alcoholic fatty liver disease. Liver Int. 2018, 38 (Suppl. 1), 56–63. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Abenavoli, L.; Greco, M.; Milic, N.; Accattato, F.; Foti, D.; Gulletta, E.; Luzza, F. Effect of mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study. Nutrients 2017, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Chang, Y.; Jung, H.S.; Yun, K.E.; Kwon, M.J.; Choi, Y.; Kim, C.W.; Cho, J.; Suh, B.S.; Cho, Y.K.; et al. Relationship of sitting time and physical activity with non-alcoholic fatty liver disease. J. Hepatol. 2015, 63, 1229–1237. [Google Scholar] [CrossRef]
- Sargeant, J.A.; Gray, L.J.; Bodicoat, D.H.; Willis, S.A.; Stensel, D.J.; Nimmo, M.A.; Aithal, G.P.; King, J.A. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: A systematic review and meta-analysis. Obes. Rev. 2018, 19, 1446–1459. [Google Scholar] [CrossRef]
- Wu, T.; Gao, X.; Chen, M.; Van Dam, R.M. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: A meta-analysis. Obes. Rev. 2009, 10, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.; De Nunzio, V.; Caruso, M.G.; Bonfiglio, C.; Franco, I.; Mirizzi, A.; De Leonardis, G.; Cozzolongo, R.; Giannuzzi, V.; Giannelli, G.; et al. Aerobic Physical Activity and a Low Glycemic Diet Reduce the AA/EPA Ratio in Red Blood Cell Membranes of Patients with NAFLD. Nutrients 2018, 10, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NNCT04442620. Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN) [Internet]. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 20 March 2022).
- Abbate, M.; Mascaró, C.M.; Montemayor, S.; Barbería-Latasa, M.; Casares, M.; Gómez, C.; Angullo-Martinez, E.; Tejada, S.; Abete, I.; Zulet, M.A.; et al. Energy expenditure improved risk factors associated with renal function loss in nafld and mets patients. Nutrients 2021, 13, 629. [Google Scholar] [CrossRef]
- The International Diabetic Federation (IDF). The IDF Consensus Worldwide Definition of Definition of the Metabolic Syndrome. Available online: http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf (accessed on 20 March 2022).
- Saghaei, M.; Saghaei, S.; Saghaei, M.; Saghaei, S. Implementation of an open-source customizable minimization program for allocation of patients to parallel groups in clinical trials. J. Biomed. Sci. Eng. 2011, 4, 734–739. [Google Scholar] [CrossRef] [Green Version]
- De La Iglesia, R.; Lopez-Legarrea, P.; Abete, I.; Bondia-Pons, I.; Navas-Carretero, S.; Forga, L.; Martinez, J.A.; Zulet, M.A. A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: The MEtabolic Syndrome REduction in NAvarra (RESMENA) project. Br. J. Nutr. 2014, 111, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.I.; Marrugat, J. Validation of the Minnesota Leisure Time Physical Activity Questionnaire In Spanish Women. Investigators of the MARATDON Group. Med Sci.Sports Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota leisure time physical activity questionnaire in Spanish men. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Suni, J.; Husu, P.; Rinne, M. Fitness for Health: The ALPHA-FIT Test Battery for Adults Aged 18-69—Tester’s Manual. UUK Inst. 2009. Available online: http://www.ukkinstituutti.fi/en/alpha (accessed on 1 April 2022).
- Bennett, H.; Parfitt, G.; Davison, K.; Eston, R. Validity of Submaximal Step Tests to Estimate Maximal Oxygen Uptake in Healthy Adults. Sport. Med. 2016, 46, 737–750. [Google Scholar] [CrossRef]
- Sykes, K.; Cartwrightfitness Health and Fitness Measurement. Chester Step Test Kit (Official). 2016. Available online: https://www.cartwrightfitness.co.uk/product/chester-step-test-kit/ (accessed on 1 April 2022).
- Cho, J.; Lee, I.; Park, D.H.; Kwak, H.B.; Min, K. Relationships between socioeconomic status, handgrip strength, and non-alcoholic fatty liver disease in middle-aged adults. Int. J. Environ. Res. Public Health 2021, 18, 1892. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Kasagi, F.; Yamada, M.; Fujita, S. Grip Strength Predicts Cause-Specific Mortality in Middle-Aged and Elderly Persons. Am. J. Med. 2007, 120, 337–342. [Google Scholar] [CrossRef]
- Takahashi, A.; Abe, K.; Usami, K.; Imaizumi, H.; Hayashi, M.; Okai, K.; Kanno, Y.; Tanji, N.; Watanabe, H.; Ohira, H. Simple Resistance Exercise helps Patients with Non-alcoholic Fatty Liver Disease. Int. J. Sports Med. 2015, 36, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Sousa, N.; Mendes, R.; Abrantes, C.; Sampaio, J.; Oliveira, J. Effectiveness of combined exercise training to improve functional fitness in older adults: A randomized controlled trial. Geriatr. Gerontol. Int. 2014, 14, 892–898. [Google Scholar] [CrossRef]
- Morris, M.; Deery, E.; Sykes, K. Chester treadmill police tests as alternatives to 15-m shuttle running. Occup. Med. 2019, 69, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Füzéki, E.; Engeroff, T.; Banzer, W. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES). Sport. Med. 2017, 47, 1769–1793. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.T.; Leon, A.S.; Jacobs, D.R.; Ainsworth, B.E.; Serfass, R. Comprehensive evaluation of the Minnesota leisure time physical activity questionnaire. J. Clin. Epidemiol. 1994, 47, 271–281. [Google Scholar] [CrossRef]
- Skender, S.; Ose, J.; Chang-Claude, J.; Paskow, M.; Brühmann, B.; Siegel, E.M.; Steindorf, K.; Ulrich, C.M. Accelerometry and physical activity questionnaires—A systematic review. BMC Public Health 2016, 16, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeznach-Steinhagen, A.; Ostrowska, J.; Czerwonogrodzka-Senczyna, A.; Boniecka, I.; Shahnazaryan, U.; Kuryłowicz, A. Dietary and pharmacological treatment of nonalcoholic fatty liver disease. Medicina 2019, 55, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CD (n = 51) | MD-HMF (n = 52) | MD-PA (n = 52) | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | p | ||
Age (years) # | 53.2 (8.6) | 51.9 (7.6) | 52.1 (6.1) | 0.295 | |
Education (years) # | 16.3 (6.6) | 15.4 (4.9) | 17.0 (7.4) | 0.034 | |
n (%) | n (%) | n (%) | |||
Gender | 0.586 | ||||
Male | 30 (58.8) | 33 (63.5) | 31 (59.6) | ||
Female | 21 (41.2) | 19 (36.5) | 21 (40.4) | ||
Marital status | 0.404 | ||||
Single | 5 (9.8) | 4 (7.7) | 5 (9.6) | ||
Married | 39 (76.5) | 40 (76.9) | 38 (73.1) | ||
Divorced | 6 (11.8) | 8 (15.4) | 8 (15.4) | ||
Widow | 1 (2.0) | 0 (0.0) | 1 (1.9) | ||
Socioeconomic status | 0.097 | ||||
Low | 16 (64.0) | 20 (76.9) | 19 (73.1) | ||
Medium | 8 (32.0) | 5 (19.2) | 5 (19.2) | ||
High | 1 (4.0) | 1 (3.8) | 2 (7.7) | ||
Smoking habit | 0.078 | ||||
No | 43 (87.8) | 39 (81.2) | 46 (88.5) | ||
≥1 cigarette/day | 6 (12.2) | 9 (18.8) | 6 (11.5) | ||
Alcohol consumption | <0.001 | ||||
No | 20 (39.2) | 12 (23.1) | 10 (19.2) | ||
Yes, <7 drinks/week | 23 (45.1) | 32 (61.5) | 32 (61.5) | ||
≥7 drinks/week | 8 (15.7) | 8 (15.4) | 10 (19.2) |
CD (n = 41) | MD-HMF (n = 44) | MD-PA (n = 47) | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Time * Group | ||
Motor fitness tests | |||||
One-leg balance (s) | Baseline | 42.7 (21.6) | 39.4 (20.2) | 43.0 (22.2) | 0.570 |
6 months | 48.3 (18.1) | 41.6 (20.8) | 49.6 (17.0) | ||
Δ | 5.6 (15.0) * | 2.2 (16.4) | 6.5 (19.0) * | ||
Standing hand grip (kg) | Baseline | 37.7 (15.2) | 38.8 (11.9) | 37.2 (10.9) | 0.049 |
6 months | 38.7 (14.1) | 38.6 (11.9) | 38.5 (13.3) | ||
Δ | 1.1 (3.6) *,a | −0.2 (6.0) a | 1.3 (5.7) * | ||
Jump-and-reach (cm) | Baseline | 22.9 (8.5) | 21.5 (8.5) | 26.6 (12.7) | 0.052 |
6 months | 23.0 (10.1) | 21.5 (9.1) | 24.9 (8.4) | ||
Δ | 0.1 (9.6) | 0.0 (6.5) | −1.7 (9.4) | ||
Modified push-up (reps) | Baseline | 7.9 (5.6) | 6.8 (4.2) | 7.2 (3.3) | 0.008 |
6 months | 8.0 (4.6) | 8.6 (4.2) | 8.0 (4.6) | ||
Δ | 0.1 (4.3) b | 1.8 (4.0) * | 0.8 (3.6) *,b | ||
Fitness score tests | Baseline | 1.9 (1.4) | 1.9 (1.3) | 2.3 (1.5) | 0.029 |
6 months | 1.3 (1.2) | 1.5 (0.9) | 1.5 (1.1) | ||
Δ | −0.6 (0.9) *,b | −0.4 (1.0) * | −0.8 (0.9) *,b | ||
Sitting hand grip (kg) | Baseline | 36.0 (14.2) | 39.5 (11.4) | 35.9 (12.4) | <0.001 |
6 months | 37.4 (14.0) | 39.1 (12.4) | 37.8 (13.0) | ||
Δ | 1.4 (4.5) *,a | −0.4 (5.7) a,c | 1.9 (5.3) *,c | ||
Chester-step (mL O2/kg/min) | Baseline | 32.5 (8.3) | 35.2 (9.2) | 35.8 (7.0) | <0.001 |
6 months | 32.2 (9.8) | 33.2 (7.2) | 38.5 (7.8) | ||
Δ | −0.2 (9.1) a | −1.9 (5.4) *,a,c | 2.7 (8.3) *,c |
CD (n = 41) | MD-HMF (n = 44) | MD-PA (n = 47) | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Time * Group | ||
Intensity PA (accelerometer) | |||||
Sedentary (min/day) | Baseline | 641.8 (116.8) | 639.7 (91.7) | 803.5 (191.8) | 0.301 |
6 months | 629.4 (116.0) | 648.4 (114.5) | 803.3 (195.9) | ||
Δ | −12.4 (89.0) | 8.7 (88.9) | −0.3 (73.4) | ||
Light (min/day) | Baseline | 508.5 (106.3) | 512.4 (83.2) | 478.9 (114.9) | <0.001 |
6 months | 533.6 (93.8) | 519.6 (85.7) | 459.6 (116.5) | ||
Δ | 25.1 (64.2) *,b | 7.3 (47.6)c | −19.3 (55.2) *,b,c | ||
Moderate (min/day) | Baseline | 242.5 (122.1) | 198.5 (71.7) | 90.1 (113.2) | 0.004 |
6 months | 221.9 (94.8) | 189.2 (47.8) | 97.5 (118.0) | ||
Δ | −20.5 (88.3) b | −9.3 (73.9) c | 7.5 (42.9) *,b,c | ||
Sleep efficiency (%) | Baseline | 91.2 (4.2) | 92.5 (3.4) | 92.3 (3.5) | 0.781 |
6 months | 92.0 (3.1) | 92.9 (2.2) | 92.7 (3.0) | ||
Δ | 0.7 (3.0) * | 0.5 (2.1) | 0.4 (3.8) | ||
Accelerometer fitness score | Baseline | 2.1 (0.6) | 2.1 (0.7) | 1.9 (0.8) | 0.855 |
6 months | 2.2 (0.8) | 2.3 (0.8) | 1.9 (0.7) | ||
Δ | 0.1 (0.8) | 0.3 (1.0) * | 0.0 (0.7) | ||
Steps (steps/day) | Baseline | 14,789.5 (5262.0) | 14,258.5 (2883.8) | 12,954.7 (3322.4) | 0.462 |
6 months | 15,267.9 (3649.6) | 22,419.4 (32,989.6) | 13,305.7 (2874.5) | ||
Δ | 478.4 (4501.7) | 8160.8 (32,273.9) | 350.9 (2644.9) | ||
Energy expenditure | |||||
BMI (kg/m2) | Baseline | 33.5 (3.5) | 34.2 (4.1) | 33.7 (3.1) | <0.001 |
6 months | 31.4 (3.9) | 31.2 (3.6) | 31.8 (3.4) | ||
Δ | −2.2 (2.4) *,a | −3.0 (2.9) *,a,c | −2.0 (2.0) *,c | ||
Measured accelerometer (MET/day) | Baseline | 2.0 (0.3) | 1.9 (0.3) | 2.0 (0.3) | 0.160 |
6 months | 2.0 (0.3) | 1.8 (0.2) | 2.3 (1.9) | ||
Δ | 0.0 (0.3) | 0.0 (0.3) | 0.3 (1.9) | ||
Reported Minnesota (MET/day) | Baseline | 0.4 (0.3) | 0.5 (0.4) | 0.5 (0.6) | 0.024 |
6 months | 0.5 (0.4) | 0.5 (0.3) | 0.5 (0.5) | ||
Δ | 0.1 (0.4) *,a | 0.0 (0.4) a | 0.0 (0.4) | ||
Measured-Reported (MET/day) | Baseline | 1.6 (0.5) | 1.4 (0.6) | 1.5 (0.6) | 0.492 |
6 months | 1.4 (0.4) | 1.3 (0.4) | 1.7 (2.2) | ||
Δ | −0.2 (0.5) * | −0.1 (0.7) | 0.3 (2.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascaró, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Llompart, I.; Ugarriza, L.; Borràs, P.-A.; Martínez, J.A.; Tur, J.A. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 1813. https://doi.org/10.3390/nu14091813
Mascaró CM, Bouzas C, Montemayor S, Casares M, Llompart I, Ugarriza L, Borràs P-A, Martínez JA, Tur JA. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients. 2022; 14(9):1813. https://doi.org/10.3390/nu14091813
Chicago/Turabian StyleMascaró, Catalina M., Cristina Bouzas, Sofia Montemayor, Miguel Casares, Isabel Llompart, Lucía Ugarriza, Pere-Antoni Borràs, J. Alfredo Martínez, and Josep A. Tur. 2022. "Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome" Nutrients 14, no. 9: 1813. https://doi.org/10.3390/nu14091813
APA StyleMascaró, C. M., Bouzas, C., Montemayor, S., Casares, M., Llompart, I., Ugarriza, L., Borràs, P. -A., Martínez, J. A., & Tur, J. A. (2022). Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients, 14(9), 1813. https://doi.org/10.3390/nu14091813