The Effects of Omega-3 Supplementation on Depression in Adults with Cardiometabolic Disease: A Systematic Review of Randomised Control Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Search Strategy
2.3. Electronic Searches
2.4. Assessment of Risk of Bias
2.5. Data Extraction, Management and Synthesis
3. Results
3.1. Characteristics of Included Studies
3.2. Depression Outcomes
3.3. Attrition, Adherence and Adverse Events
3.4. Subgroup Analyses
3.5. Risk of Bias
4. Discussion
4.1. Strengths and Limitations of Included Trials
4.2. Strengths and Limitations of the Review Process
4.3. Quality of the Evidence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sattar, N.; Gill, J.M.R.; Alazawi, W. Improving prevention strategies for cardiometabolic disease. Nat. Med. 2020, 26, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b (accessed on 5 February 2022).
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. World Health Organization. Report No.: WHO/MSD/MER/2017.2. 2017. Available online: https://apps.who.int/iris/handle/10665/254610 (accessed on 5 February 2022).
- Kessler, R.C.; Borges, G.; Walters, E.E. Prevalence of and Risk Factors for Lifetime Suicide Attempts in the National Comorbidity Survey. Arch. Gen. Psychiatry 1999, 56, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.K.; Barton, D.A. Depression and the Link with Cardiovascular Disease. Front. Psychiatry 2016, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Liu, S.; Li, G.; Lu, Y.; Wu, Y.; Ding, Y.; Ke, C. Role of depressive symptoms in cardiometabolic diseases and subsequent transitions to all-cause mortality: An application of multistate models in a prospective cohort study. Stroke Vasc. Neurol. 2021, 6, 511–518. [Google Scholar] [CrossRef]
- Farooqi, A.; Khunti, K.; Abner, S.; Gillies, C.; Morriss, R.; Seidu, S. Comorbid depression and risk of cardiac events and cardiac mortality in people with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2019, 156, 107816. [Google Scholar] [CrossRef]
- Hare, D.L.; Toukhsati, S.R.; Johansson, P.; Jaarsma, T. Depression and cardiovascular disease: A clinical review. Eur. Heart J. 2014, 35, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, A.; Kuper, H.; Hemingway, H. Depression as an aetiologic and prognostic factor in coronary heart disease: A meta-analysis of 6362 events among 146,538 participants in 54 observational studies. Eur. Heart J. 2006, 27, 2763–2774. [Google Scholar] [CrossRef] [Green Version]
- Thombs, B.D.; Bass, E.B.; Ford, D.E.; Stewart, K.J.; Tsilidis, K.K.; Patel, U.; Fauerbach, J.A.; Bush, D.E.; Ziegelstein, R.C. Prevalence of depression in survivors of acute myocardial infarction. J. Gen. Intern. Med. 2006, 21, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Mommersteeg, P.M.C.; Herr, R.; Pouwer, F.; Holt, R.I.G.; Loerbroks, A. The association between diabetes and an episode of depressive symptoms in the 2002 World Health Survey: An analysis of 231,797 individuals from 47 countries. Diabet. Med. 2013, 30, e208–e214. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.; Gillies, C.; Sathanapally, H.; Abner, S.; Seidu, S.; Davies, M.J.; Polonsky, W.H.; Khunti, K. A systematic review and meta-analysis to compare the prevalence of depression between people with and without Type 1 and Type 2 diabetes. Prim. Care Diabetes 2021, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zullo, M.D.; Gathright, E.C.; Dolansky, M.A.; Josephson, R.A.; Cheruvu, V.K.; Hughes, J.W. The Influence of Depression on Utilization of Cardiac Rehabilitation Post-Myocardial Infarction: A Study of 158,991 Medicare Beneficiaries. J. Cardiopulm. Rehabil. Prev. 2017, 37, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Grenard, J.L.; Munjas, B.A.; Adams, J.L.; Suttorp, M.; Maglione, M.; McGlynn, E.A.; Gellad, W.F. Depression and Medication Adherence in the Treatment of Chronic Diseases in the United States: A Meta-Analysis. J. Gen. Intern. Med. 2011, 26, 1175–1182. [Google Scholar] [CrossRef] [Green Version]
- McGrady, A.; McGinnis, R.; Badenhop, D.; Bentle, M.; Rajput, M. Effects of depression and anxiety on adherence to cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2009, 29, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Gafoor, R.; Booth, H.P.; Gulliford, M.C. Antidepressant utilisation and incidence of weight gain during 10 years’ follow-up: Population based cohort study. BMJ 2018, 361, k1951. [Google Scholar] [CrossRef] [Green Version]
- Biffi, A.; Scotti, L.; Corrao, G. Use of antidepressants and the risk of cardiovascular and cerebrovascular disease: A meta-analysis of observational studies. Eur. J. Clin. Pharmacol. 2017, 73, 487–497. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann. Neurol. 2013, 74, 580–591. [Google Scholar] [CrossRef]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Middleton, K.R.; Anton, S.D.; Perri, M.G. Long-Term Adherence to Health Behavior Change. Am. J. Lifestyle Med. 2013, 7, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Mechanisms of Action of (n-3) Fatty Acids. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skulas-Ray, A.C.; Wilson, P.W.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.; Koenig, W.; McGuire, D.K.; et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef]
- The ASCEND Study Collaborative Group. Effects of n−3 Fatty Acid Supplements in Diabetes Mellitus. N. Engl. J. Med. 2018, 379, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- ORIGIN Trial Investigators. n–3 Fatty Acids and Cardiovascular Outcomes in Patients with Dysglycemia. N. Engl. J. Med. 2012, 367, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; d’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Gharekhani, A.; Khatami, M.-R.; Dashti-Khavidaki, S.; Razeghi, E.; Noorbala, A.-A.; Nazari, S.S.H.; Mansournia, M.A. The effect of omega-3 fatty acids on depressive symptoms and inflammatory markers in maintenance hemodialysis patients: A randomized, placebo-controlled clinical trial. Eur. J. Clin. Pharmacol. 2014, 70, 655–665. [Google Scholar] [CrossRef]
- Ravi, S.; Khalili, H.; Abbasian, L.; Arbabi, M.; Ghaeli, P. Effect of Omega-3 Fatty Acids on Depressive Symptoms in HIV-Positive Individuals: A Randomized, Placebo-Controlled Clinical Trial. Ann. Pharmacother. 2016, 50, 797–807. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Yassini-Ardakani, M.; Karamati, M.; Shariati-Bafghi, S.-E. Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: A randomized, double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2013, 23, 636–644. [Google Scholar] [CrossRef]
- Su, K.P.; Huang, S.Y.; Chiu, T.H.; Huang, K.C.; Huang, C.L.; Chang, H.C.; Pariante, C.M. Omega-3 fatty acids for major depressive disorder during pregnancy: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 2008, 69, 644–651. [Google Scholar] [CrossRef]
- Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramanieapillai, M.; Fan, B.; Lu, C.; McIntyre, R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry 2019, 9, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Version 6.2 (updated February, 2021); Cochrane: London, UK, 2021; Available online: www.training.cochrane.org/handbook (accessed on 5 February 2022).
- Mocking, R.J.; Assies, J.; Bot, M.; Jansen, E.H.; Schene, A.H.; Pouwer, F. Biological Effects of Add-On Eicosapentaenoic Acid Supplementation in Diabetes Mellitus and Co-Morbid Depression: A Randomized Controlled Trial. PLoS ONE 2012, 7, e49431. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.M.; Walker, C.G.; Mander, A.P.; West, A.L.; Madden, J.; Gambell, J.M.; Young, S.; Wang, L.; Jebb, S.A.; Calder, P.C. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am. J. Clin. Nutr. 2012, 96, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Browning, L.M.; Walker, C.G.; Mander, A.P.; West, A.L.; Gambell, J.; Madden, J.; Calder, P.C.; Jebb, S.A. Compared with Daily, Weekly n–3 PUFA Intake Affects the Incorporation of Eicosapentaenoic Acid and Docosahexaenoic Acid into Platelets and Mononuclear Cells in Humans. J. Nutr. 2014, 144, 667–672. [Google Scholar] [CrossRef] [Green Version]
- The Cochrane Collaboration: Developmental, Psychosocial and Learning Problems. Data Collection for Intervention Reviews for RCTs Only—Template. Available online: https://dplp.cochrane.org/data-extraction-forms (accessed on 5 February 2022).
- Bot, M.; Pouwer, F.; Assies, J.; Jansen, E.; Diamant, M.; Snoek, F.; Beekman, A.; de Jonge, P. Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus: A randomized, double-blind placebo-controlled study. J. Affect. Disord. 2010, 126, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Carney, R.M.; Freedland, K.E.; Rubin, E.H.; Rich, M.W.; Steinmeyer, B.C.; Harris, W.S. Omega-3 augmentation of sertraline in treatment of depression in patients with coronary heart disease: A randomized controlled trial. JAMA 2009, 302, 1651–1657. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.P.C.; Chang, S.S.; Yang, H.T.; Chen, H.T.; Chien, Y.C.; Yang, B.; Su, H.; Su, K.P. Omega-3 polyunsaturated fatty acids in cardiovascular diseases comorbid major depressive disorder—Results from a randomized controlled trial. Brain Behav. Immun. 2020, 85, 14–20. [Google Scholar] [CrossRef]
- Jiang, W.; Whellan, D.J.; Adams, K.F.; Babyak, M.A.; Boyle, S.H.; Wilson, J.L.; Patel, C.B.; Rogers, J.G.; Harris, W.S.; O’Connor, C.M. Long-Chain Omega-3 Fatty Acid Supplements in Depressed Heart Failure Patients: Results of the OCEAN Trial. JACC Heart Fail. 2018, 6, 833–843. [Google Scholar] [CrossRef]
- Mazaherioun, M.; Saedisomeolia, A.; Javanbakht, M.H.; Koohdani, F.; Zarei, M.; Ansari, S.; Bazargani, F.K.; Djalali, M. Long Chain n-3 Fatty Acids Improve Depression Syndrome in Type 2 Diabetes Mellitus. Iran. J. Public Health 2018, 47, 575–583. [Google Scholar]
- Mazereeuw, G.; Herrmann, N.; Oh, P.I.; Ma, D.W.; Wang, C.T.; Kiss, A.; Lanctôt, K.L. Omega-3 Fatty Acids, Depressive Symptoms, and Cognitive Performance in Patients with Coronary Artery Disease. J. Clin. Psychopharmacol. 2016, 36, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, R.; Riemer, T.; Rauch, B.; Schneider, S.; Schiele, R.; Gohlke, H.; Diller, F.; Steinbeck, G.; Katus, H.; Senges, J.; et al. Effects of 1-year treatment with highly purified omega-3 fatty acids on depression after myocardial infarction: Results from the OMEGA trial. J. Clin. Psychiatry 2013, 74, e1037–e1045. [Google Scholar] [CrossRef]
- Appleton, K.M.; Sallis, H.M.; Perry, R.; Ness, A.R.; Churchill, R. ω-3 Fatty acids for major depressive disorder in adults: An abridged Cochrane review. BMJ Open 2016, 6, e010172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frasure-Smith, N.; Lespérance, F.; Julien, P. Major depression is associated with lower omega-3 fatty acid levels in patients with recent acute coronary syndromes. Biol. Psychiatry 2004, 55, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Zhong, W.F.; Liu, S.; Kraus, V.B.; Zhang, Y.J.; Gao, X.; Lv, Y.B.; Shen, D.; Zhang, X.R.; Zhang, P.D. Associations of habitual fish oil supplementation with cardiovascular outcomes and all cause mortality: Evidence from a large population based cohort study. BMJ 2020, 368, m456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.; Sibbritt, D.; Lui, C.-W.; Broom, A.; Wardle, J. Ω-3 fatty acid supplement use in the 45 and Up Study Cohort. BMJ Open 2013, 3, e002292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Gobbo, L.C.; Imamura, F.; Aslibekyan, S.; Marklund, M.; Virtanen, J.K.; Wennberg, M.; Yakoob, M.Y.; Chiuve, S.E.; dela Cruz, L.; Frazier-Wood, A.C.; et al. ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. JAMA Intern. Med. 2016, 176, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Guu, T.W.; Mischoulon, D.; Sarris, J.; Hibbeln, J.; McNamara, R.K.; Hamazaki, K.; Freeman, M.P.; Maes, M.; Matsuoka, Y.J.; Belmaker, R.H.; et al. International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychother. Psychosom. 2019, 88, 263–273. [Google Scholar] [CrossRef]
- Foshati, S.; Ghanizadeh, A.; Akhlaghi, M. Extra-Virgin Olive Oil Improves Depression Symptoms without Affecting Salivary Cortisol and Brain-Derived Neurotrophic Factor in Patients with Major Depression: A Double-Blind Randomized Controlled Trial. J. Acad. Nutr. Diet. 2022, 122, 284–297. [Google Scholar] [CrossRef]
- De Sousa Canheta, A.B.; de Souza, J.D.; Silveira, E.A. Traditional Brazilian diet and extra virgin olive oil reduce symptoms of anxiety and depression in individuals with severe obesity: Randomized clinical trial. Clin. Nutr. 2021, 40, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Natto, Z.S.; Yaghmoor, W.; Alshaeri, H.; van Dyke, T.E. Omega-3 Fatty Acids Effects on Inflammatory Biomarkers and Lipid Profiles among Diabetic and Cardiovascular Disease Patients: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 18867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front. Psychiatry 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Nozue, T.; Michishita, I. Statin treatment alters serum n-3 to n-6 polyunsaturated fatty acids ratio in patients with dyslipidemia. Lipids Health Dis. 2015, 14, 67. [Google Scholar] [CrossRef] [Green Version]
Trial, Start & End Date, Country | Intervention/ Placebo | Sample Size Analysed (Male) | Drop-Out Rates (n) | Age in Years (Mean) | Cardiometabolic Conditions | Omega-3 Formulation & Dosage (mg) | Treatment Duration (Weeks) | Circulating Omega-3 Levels Change (Mean) | Depression Outcome Scale | Conclusion |
---|---|---|---|---|---|---|---|---|---|---|
[41] April 2006–July 2007 Netherlands | Intervention | 13 (5) | 1 | 53.1 ± 13.8 | T1D = 5 T2D = 8 + MDD | 1000 mg E-EPA + Antidepressant therapy~ | 12 | Baseline erythrocyte membrane EPA: 0.53% ± 0.17 Week 12: 1.69% ± 0.56 | MADRS score at baseline and 12-week follow-up at two-weekly intervals | No improvement versus placebo |
Placebo | 12 (7) | 2 * | 55 ± 8.6 | T1D = 5 T2D = 7 + MDD | 1000 mg (rapeseed oil + MCT) + Antidepressant therapy~ | Baseline erythrocyte membrane EPA: 0.66% ± 0.2 Week 12: 0.61% ± 0.19 | ||||
[42] May 2005–December 2008 United States | Intervention | 62 (41) | 3 | 58.1 ± 9.4 | CHD + MDD | 2000 mg (930 mg EPA, 750mg DHA) + 50 mg Sertraline | 10 | Baseline Omega-3 index (DHA + EPA), % RBC: 4.6 ± 1.5 Week 10: 7.6 ± 1.8 | Change at 10 weeks of HAM-D, BDI-II between intervention and placebo | No improvement versus placebo |
Placebo | 60 (40) | 4 | 58.6 ± 8.5 | 2000 mg Corn oil + 50 mg Sertraline | [Omega-3 index (DHA + EPA), % RBC: stable in placebo arm] | |||||
[43] January 2016–March 2017 Taiwan | Intervention | 30 (18) | None reported | 61.1 ± 9.14 | CVD + MDD | 3000 mg (2000 mg EPA, 1000 mg DHA) | 12 | Week 12 total Omega-3 change: 1.96 ± 2.91 | Change at 12 weeks of HAMD (and subscale) and BDI between intervention and placebo groups | No improvement versus placebo |
Placebo | 29 (20) | 61.93 ± 8.95 | 3000 mg soybean oil | Week 12 total Omega-3 change: −0.58 ± 2.82 | ||||||
[44] June 2014–May 2016 United States | Intervention | Group 1 = 36 (21) Group 2 = 36 (16) | Group 1 = 1 Group 2 = 3 | Group 1 = 57.73 ± 16.14 Group 2 = 58.1 ± 10.16 | CHF with NYHA Class ≥II + MDD | Group 1 = 2000 mg (2:1 EPA/DHA) Group 2 = 2000 mg EPA | 12 | Baseline Omega-3 index (% in RBC): Group 1 = 4.46 ± 1.51 Group 2 = 4.47 ± 0.99 Week 12: Group 1 = 6.79 ± 0.22 Group 2 = 6.32 ± 0.26 | Change at 12 weeks of HAMD, BDI-II between intervention and placebo | No improvement versus placebo |
Placebo | 36 (13) | 4 | 57.91 ± 11.68 | 2000 mg Corn oil | Baseline Omega-3 index (% in RBC): 4.51 ± 1.29 Week 12: 4.61 ± 0.26 | |||||
[45] July 2014–January 2015 Iran | Intervention | 44 (29) | 0 | 51.15 ±7.4 | T2D | 2700 mg (2:1 EPA/ DHA) | 10 | Not measured or reported | Difference at 10 weeks in frequency of events (<5-unit decrease inBDI-II-PERSIAN) versus non-events (≥5-unit decrease in BDI-II-PERSIAN) | Favours intervention (p < 0.001)(Relative risk reduction of event: 47.93%, 95% CI: 24.89–63.98% |
Placebo | 44 (24) | 3 | 50.56 ± 7.2 | 3000 mg Edible paraffin | ||||||
[46] August 2010–February 2014 Canada | Intervention | 45 (35) | 5 | 63.8 ± 9.1 | CHD | 1900 mg (1200 mg EPA, 600 mg DHA) | 12 | Baseline: EPA: 26.7 ± 14.2 (μg/mL) DHA: 47.3 ± 20.1 (μg/mL) Week 12: EPA: 41.6 ± 34.4 (μg/mL) DHA: 53.6 ± 29.3 (μg/mL) | Change at 12 weeks of HAMD, BDI-II between intervention and placebo | No improvement versus placebo |
Placebo | 47 (35) | 5 | 61.7 ± 8.7 | 3000 mg 1:1 Soybean/corn oil blend | Baseline: EPA: 28.5 ± 16.6 (μg/mL) DHA: 52.8 ± 23.8 (μg/mL) Week 12: EPA: 23.4 ± 14.4 (μg/mL) DHA: 45.9 ± 20.4 (μg/mL) | |||||
[47] April 2005–June 2007 Germany | Intervention | 1046 (802) | None reported | 63 † (53, 70) | Post-acute MI admission (3–14 days) | 1000 mg (460 mg EPA, 380 mg DHA) | 48 | Measured but not reported | Change at 48 weeks of BDI-II between intervention and placebo | No improvement versus placebo |
Placebo | 1035 (797) | 64 † (54, 71) | 1000 mg Olive oil |
Trial | Group | Reported Side Effects/Adverse Events | Trial Author Conclusions |
---|---|---|---|
[41] | Not specified | Belching (n = 10), nausea (n = 6), diarrhoea (n = 5), rash and itching (n = 1) | No significant differences in number and type of side effects between Omega-3 and placebo groups |
[42] | Intervention | 19% (side effects: gastrointestinal complaints, diarrhoea, bloating, or prolonged bleeding) 4 cardiac (2 coronary angioplasty and 4 non-cardiac hospitalisations (worsening heart failure, injury from a fall, kidney stones) | No significant differences in side effects (p = 0.72) or adverse events between Omega-3 and placebo groups |
Placebo | 22% (side effects: gastrointestinal complaints, diarrhoea, bloating, or prolonged bleeding) 4 cardiac (1 acute MI, 1 coronary angioplasty, 1 cardiac ablation for atrial flutter, 1 implantation of an automatic cardioverter-defibrillator) and 4 non-cardiac hospitalisations (severe influenza, possible allergic reaction to non-study medication and minor accident) | ||
[43] | Intervention/Placebo | Not reported | No conclusion made |
[44] | Intervention | Group 1 (2:1 EPA/DHA): Gastrointestinal discomfort (n = 3), nausea (n = 4), fishy odour (n = 8), upset stomach (n = 3), other (n = 12) Group 2 (High EPA): Gastrointestinal discomfort (n = 2), nausea (n = 3), Fishy odour (n = 7), Upset stomach (n = 1), Other (n = 10) (Other: diarrhoea, itching/rash, burping) | No significant differences in side effects or adverse events between Omega-3 (Group 1 or Group 2) and placebo groups (p = 0.4) |
Placebo | Gastrointestinal discomfort (n = 2), nausea (n = 3), Fishy odour (n = 4), Upset stomach (n = 2), Other (n = 4) (Other: diarrhoea, itching/rash, burping) | ||
[45] | Not specified | Diarrhoea (n = 1) | No significant differences in side effects or adverse events between Omega-3 and placebo groups |
[46] | Intervention | Pain (n = 33) Headache (n = 27) Nasopharyngitis (n = 37) Upper respiratory tract infection (n = 12) Dyspepsia (n = 23) Fatigue (n = 40) Nausea (n = 19) Diarrhoea (n = 16) Epigastric discomfort(n = 18) Skin eruption (n = 15) Itching (n = 19) Exanthema (n = 8) Eczema (n = 8) Increased bruising/bleeding (n = 20) | No significant differences in side effects or adverse events between Omega-3 and placebo groups |
Placebo | Pain (n = 34) Headache (n = 31) Nasopharyngitis (n = 34) Upper respiratory tract infection (n = 16) Dyspepsia (n = 23) Fatigue (n = 37) Nausea (n = 21) Diarrhoea (n = 18 ) Epigastric discomfort(n = 21) Skin eruption (n = 16) Itching (n = 27) Exanthema (n = 12) Eczema (n = 11) Increased bruising/bleeding (n = 21) | ||
[47] | Intervention | Neoplasms (n = 19) Cardiac device therapeutic procedures (n = 16) Malignancies (n = 32) Rhythmologic events (n = 99) | No significant differences in total number of side effects or adverse events between Omega-3 (1769 events) and placebo (1804 events) groups (p = 0.27) Note: Side effects/adverse events of main study (n = 3851) reported. |
Placebo | Neoplasms (n = 8) Cardiac device therapeutic procedures (n = 2) Malignancies (n = 26) Rhythmologic events (n = 84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsenyadis, F.; Ahmad, E.; Redman, E.; Yates, T.; Davies, M.; Khunti, K. The Effects of Omega-3 Supplementation on Depression in Adults with Cardiometabolic Disease: A Systematic Review of Randomised Control Trials. Nutrients 2022, 14, 1827. https://doi.org/10.3390/nu14091827
Arsenyadis F, Ahmad E, Redman E, Yates T, Davies M, Khunti K. The Effects of Omega-3 Supplementation on Depression in Adults with Cardiometabolic Disease: A Systematic Review of Randomised Control Trials. Nutrients. 2022; 14(9):1827. https://doi.org/10.3390/nu14091827
Chicago/Turabian StyleArsenyadis, Franciskos, Ehtasham Ahmad, Emma Redman, Thomas Yates, Melanie Davies, and Kamlesh Khunti. 2022. "The Effects of Omega-3 Supplementation on Depression in Adults with Cardiometabolic Disease: A Systematic Review of Randomised Control Trials" Nutrients 14, no. 9: 1827. https://doi.org/10.3390/nu14091827
APA StyleArsenyadis, F., Ahmad, E., Redman, E., Yates, T., Davies, M., & Khunti, K. (2022). The Effects of Omega-3 Supplementation on Depression in Adults with Cardiometabolic Disease: A Systematic Review of Randomised Control Trials. Nutrients, 14(9), 1827. https://doi.org/10.3390/nu14091827