Association of the Dietary Inflammatory Index with Depressive Symptoms among Pre- and Post-Menopausal Women: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2010
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of Menopausal Status
2.2. Assessment of Exposure: Diet
2.3. Assessment of Outcome: Inflammation
2.4. Assessment of Outcome: Depression
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, R.C. Epidemiology of women and depression. J. Affect. Disord. 2003, 74, 5–13. [Google Scholar] [CrossRef]
- Derry, H.M.; Padin, A.C.; Kuo, J.L.; Hughes, S.; Kiecolt-Glaser, J.K. Sex differences in depression: Does inflammation play a role? Curr. Psychiatry Rep. 2015, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.N.; Zitek, B. Reproductive hormone sensitivity and risk for depression across the female life cycle: A continuum of vulnerability? J. Psychiatry Neurosci. 2008, 33, 331–343. [Google Scholar] [PubMed]
- Christensen, A.; Pike, C.J. Menopause, obesity and inflammation: Interactive risk factors for Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, L.S.; Soares, C.N.; Vitonis, A.F.; Otto, M.W.; Harlow, B.L. Risk for new onset of depression during the menopausal transition: The Harvard study of moods and cycles. Arch. Gen. Psychiatry 2006, 63, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, K.; Prud’homme, D.; Rabasa-Lhoret, R.; Strychar, I.; Brochu, M.; Lavoie, J.M.; Doucet, E. Effects of the menopausal transition on dietary intake and appetite: A MONET Group Study. Eur. J. Clin. Nutr. 2014, 68, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Sites, C.K.; Toth, M.J.; Cushman, M.; D L’Hommedieu, G.; Tchernof, A.; Tracy, R.P.; Poehlman, E.T. Menopause-related differences in inflammation markers and their relationship to body fat distribution and insulin-stimulated glucose disposal. Fertil. Steril. 2002, 77, 128–135. [Google Scholar] [CrossRef]
- Malutan, A.M.; Dan, M.; Nicolae, C.; Carmen, M. Proinflammatory and anti-inflammatory cytokine changes related to menopause. Prz. Menopauzalny 2014, 13, 162. [Google Scholar] [CrossRef] [Green Version]
- Vegeto, E.; Belcredito, S.; Etteri, S.; Ghisletti, S.; Brusadelli, A.; Meda, C.; Krust, A.; Dupont, S.; Ciana, P.; Chambon, P.; et al. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc. Natl. Acad. Sci. USA 2003, 100, 9614–9619. [Google Scholar] [CrossRef] [Green Version]
- Vegeto, E.; Benedusi, V.; Maggi, A. Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front. Neuroendocr. 2008, 29, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Skoczek-Rubinska, A.; Muzsik-Kazimierska, A.; Chmurzynska, A.; Jamka, M.; Walkowiak, J.; Bajerska, J. Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women. Nutrients 2021, 13, 2323. [Google Scholar] [CrossRef] [PubMed]
- Gava, G.; Orsili, I.; Alvisi, S.; Mancini, I.; Seracchioli, R.; Meriggiola, M.C. Cognition, mood, and sleep in menopausal transition: The role of menopause hormone therapy. Medicina 2019, 55, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.L.; Girdler, S.S. Hormone replacement therapy in the treatment of perimenopausal depression. Curr. Psychiatry Rep. 2014, 16, 517. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.; Schoenaker, D.A.; Joffe, H.; Mishra, G.D. Depressive symptoms across the menopause transition: Findings from a large population-based cohort study. Menopause 2016, 23, 1287–1293. [Google Scholar] [CrossRef]
- Shea, A.K.; Sohel, N.; Gilsing, A.; Mayhew, A.J.; Griffith, L.E.; Raina, P. Depression, hormone therapy, and the menopausal transition among women aged 45 to 64 years using the Canadian Longitudinal Study on aging baseline data. Menopause 2020, 27, 763–770. [Google Scholar] [CrossRef]
- Wirth, M.D.; Shivappa, N.; Davis, L.; Hurley, T.G.; Ortaglia, A.; Drayton, R.; Blair, S.N.; Hébert, J.R. Construct validation of the dietary inflammatory index among African Americans. J. Nutr. Health Aging 2017, 21, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Ekmekcioglu, C. Are proinflammatory cytokines involved in an increased risk for depression by unhealthy diets? Med. Hypotheses 2012, 78, 337–340. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hebert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; Gonzalez-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 1600707. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 2015, 113, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahid, F.; Shivappa, N.; Hekmatdoost, A.; Hebert, J.R.; Davoodi, S.H.; Sadeghi, M. Association between Maternal Dietary Inflammatory Index (DII) and abortion in Iranian women and validation of DII with serum concentration of inflammatory factors: Case-control study. Appl. Physiol. Nutr. Metab. 2017, 42, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.G.; Shivappa, N.; Berthon, B.S.; Gibson, P.G.; Hebert, J.R. Dietary inflammatory index is related to asthma risk, lung function and systemic inflammation in asthma. Clin. Exp. Allergy 2015, 45, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Azarmanesh, D.; Bertone-Johnson, E.R.; Pearlman, J.; Liu, Z.; Carbone, E.T. The dietary inflammatory index is inversely associated with depression, which is minimally mediated by C-reactive protein. Nutr. Res. 2022, 97, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.; Kerlau, C.; Wyart, M.; Chevallier, N.; Ndiaye, L.; Shivappa, N.; Hebert, J.R.; Kivimaki, M. Dietary inflammatory index and recurrence of depressive symptoms: Results from the Whitehall II Study. Clin. Psychol. Sci. 2016, 4, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.; Chocano-Bedoya, P.; Shulze, M.B.; Mirzaei, F.; O’Reilly, É.J.; Okereke, O.I.; Hu, F.B.; Willett, W.C.; Ascherio, A. Inflammatory dietary pattern and risk of depression among women. Brain Behav. Immun. 2014, 36, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Villegas, A.; Ruiz-Canela, M.; de la Fuente-Arrillaga, C.; Gea, A.; Shivappa, N.; Hebert, J.R.; Martinez-Gonzalez, M.A. Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br. J. Nutr. 2015, 114, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Schoenaker, D.A.; Hebert, J.R.; Mishra, G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016, 116, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Forbes, L.E.; Graham, J.E.; Berglund, C.; Bell, R.C. Dietary Change during Pregnancy and Women’s Reasons for Change. Nutrients 2018, 10, 1032. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011, 1221, 80. [Google Scholar] [CrossRef] [Green Version]
- Racicot, K.; Kwon, J.Y.; Aldo, P.; Silasi, M.; Mor, G. Understanding the complexity of the immune system during pregnancy. Am. J. Reprod. Immunol. 2014, 72, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Milis, L.; Misri, N. Depression during pregnancy. Can. Fam. Physician 2005, 51, 1087–1093. [Google Scholar] [PubMed]
- Karvetti, R.L.; Knuts, L.R. Validity of the 24-hour dietary recall. J. Am. Diet. Assoc. 1985, 85, 1437–1442. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L. The PHQ-9: A New Depression Diagnostic and Severity Measure; SLACK Incorporated: Thorofare, NJ, USA, 2002. [Google Scholar]
- Case, S.M.; Stewart, J.C. Race/ethnicity moderates the relationship between depressive symptom severity and C-reactive protein: 2005–2010 NHANES data. Brain Behav. Immun. 2014, 41, 101–108. [Google Scholar] [CrossRef]
- Freeman, E.W.; Sammel, M.D.; Liu, L.; Gracia, C.R.; Nelson, D.B.; Hollander, L. Hormones and menopausal status as predictors of depression in womenin transition to menopause. Arch. Gen. Psychiatry 2004, 61, 62–70. [Google Scholar] [CrossRef]
- Gordon, J.L.; Girdler, S.S.; Meltzer-Brody, S.E.; Stika, C.S.; Thurston, R.C.; Clark, C.T.; Prairie, B.A.; Moses-Kolko, E.; Joffe, H.; Wisner, K.L. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: A novel heuristic model. Am. J. Psychiatry 2015, 172, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; Group, S.C. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012, 97, 1159–1168. [Google Scholar] [CrossRef]
- Yanes, L.L.; Reckelhoff, J.F. Postmenopausal hypertension. Am. J. Hypertens 2011, 24, 740–749. [Google Scholar] [CrossRef] [Green Version]
- Castelao, J.E.; Gago-Dominguez, M. Risk factors for cardiovascular disease in women: Relationship to lipid peroxidation and oxidative stress. Med. Hypotheses 2008, 71, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Adjibade, M.; Andreeva, V.A.; Lemogne, C.; Touvier, M.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P.; Julia, C. The inflammatory potential of the diet is associated with depressive symptoms in different subgroups of the general population. J. Nutr. 2017, 147, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, D.; White, G.E.; Sekikawa, A.; Gianaros, P. Higher dietary inflammation is associated with increased odds of depression independent of Framingham Risk Score in the National Health and Nutrition Examination Survey. Nutr. Res. 2018, 54, 23–32. [Google Scholar] [CrossRef]
- Ridker, P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream to Identify Novel Targets for Atheroprotection. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Canela, M.; Bes-Rastrollo, M.; Martínez-González, M.A. The role of dietary inflammatory index in cardiovascular disease, metabolic syndrome and mortality. Int. J. Mol. Sci. 2016, 17, 1265. [Google Scholar] [CrossRef]
- Julia, C.; Assmann, K.E.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Hercberg, S.; Touvier, M.; Kesse-Guyot, E. Long-term associations between inflammatory dietary scores in relation to long-term C-reactive protein status measured 12 years later: Findings from the Supplementation en Vitamines et Mineraux Antioxydants (SU. VI. MAX) cohort. Br. J. Nutr. 2017, 117, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Skovlund, C.W.; Morch, L.S.; Kessing, L.V.; Lidegaard, O. Association of hormonal contraception with depression. JAMA Psychiatry 2016, 73, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, R.; Rizzo Pesci, N.; Quinton, A.; De Crescenzo, F.; Cowen, P.J.; Harmer, C.J. Statins in depression: An evidence-based overview of mechanisms and clinical studies. Front. Psychiatry 2021, 1250. [Google Scholar] [CrossRef]
- Borkoles, E.; Reynolds, N.; Thompson, D.R.; Ski, C.F.; Stojanovska, L.; Polman, R.C. The role of depressive symptomatology in peri- and post-menopause. Maturitas 2015, 81, 306–310. [Google Scholar] [CrossRef]
- Gibbs, Z.; Lee, S.; Kulkarni, J. Factors associated with depression during the perimenopausal transition. Womens Health Issues 2013, 23, e301–e307. [Google Scholar] [CrossRef] [PubMed]
- Appiah, D.; Nwabuo, C.C.; Ebong, I.A.; Wellons, M.F.; Winters, S.J. Trends in age at natural menopause and reproductive lifespan among US women, 1959–2018. JAMA 2021, 325, 1328–1330. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.M.; Currie, K.C. Depression, anxiety, and their relationship with chronic disease: A review of the epidemiology, risk and treatment evidence. Med. J. Aust. 2009, 190, S54–S60. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Adler, U.C.; Marques, A.H.; Calil, H.M. Inflammatory aspects of depression. Inflamm. Allergy Drug Targets 2008, 7, 19–23. [Google Scholar] [CrossRef]
- Allison, D.J.; Ditor, D.S. The common inflammatory etiology of depression and cognitive impairment: A therapeutic target. J. Neuroinflamm. 2014, 11, 151. [Google Scholar] [CrossRef] [Green Version]
DII a Quartiles | |||||
---|---|---|---|---|---|
n (%) | Q1 670 (26.7) | Q2 634 (25.3) | Q3 621 (24.7) | Q4 586 (23.3) | |
Range of DII scores | −4.83, −1.21 | −1.20, 0.18 | 0.19, 1.50 | 1.51, 4.49 | |
Subject Characteristics | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Age (y) | 37.9 (9.5) | 37.0 (9.6) | 35.4 (9.4) | 34.6 (9.7) | |
Physical Activity (PA) (MET-minutes) b | 942 (1392) | 759 (1277) | 579 (1179) | 648 (1400) | |
Poverty-to-Income Ratio (PIR) c | 3.1 (1.7) | 2.8 (1.6) | 2.4 (1.6) | 2.0 (1.5) | |
Dietary Inflammatory Index Scores | −2.1 (0.6) | −0.5 (0.4) | 0.8 (0.3) | 2.5 (0.7) | |
C-Reactive Protein | 2.0 (2.1) | 2.6 (2.4) | 2.4 (2.3) | 2.6 (2.4) | |
Subject Characteristics | n(%) | n(%) | n(%) | n(%) | |
Race | White | 222 (55.3) | 258 (44.8) | 302 (42.6) | 357 (43.2) |
Hispanic | 111 (27.6) | 189 (32.8) | 240 (33.9) | 235 (28.4) | |
Black | 42 (10.4) | 97 (16.8) | 125 (17.6) | 194 (23.5) | |
Multiracial | 27 (6.7) | 32 (5.6) | 41 (5.9) | 40 (4.8) | |
Smoking | Never Smoker | 277 (68.9) | 411 (71.3) | 484 (68.4) | 451 (54.6) |
Ever Smoker | 125 (31.1) | 165 (28.7) | 224 (31.6) | 375 (45.4) | |
Marital Status | Married/Partner | 257 (64.0) | 379 (65.8) | 429 (60.6) | 457 (55.3) |
Divorced/Widowed/Separated | 52 (12.9) | 81 (14.0) | 96 (13.5) | 119 (14.4) | |
Single (Never Married) | 93 (23.1) | 116 (20.2) | 183 (25.9) | 250 (30.3) | |
BMI | Underweight and Normal Weight | 200 (49.7) | 220 (38.1) | 280 (39.6) | 307 (37.1) |
Overweight and Obese | 202 (50.3) | 356 (61.9) | 428 (60.4) | 519 (62.9) | |
Waist Circumference | Low Risk (≤35″) | 225 (55.9) | 253 (43.9) | 320 (45.2) | 358 (43.4) |
High Risk (>35″) | 177 (44.1) | 323 (56.1) | 388 (54.8) | 468 (56.6) | |
Education Level | Below High School | 47 (11.7) | 97 (16.9) | 165 (23.3) | 240 (29.1) |
High School Degree | 56 (13.9) | 90 (15.6) | 153 (21.6) | 214 (25.9) | |
Some College/AA | 122 (30.3) | 205 (35.6) | 233 (32.9) | 272 (32.9) | |
College Graduate and Higher | 177 (44.1) | 184 (31.9) | 157 (22.2) | 100 (12.1) | |
Quartiles of PIR d | 1 | 80 (19.9) | 136 (23.6) | 199 (28.1) | 295 (35.7) |
2 | 68 (16.9) | 115 (20.0) | 163 (23.0) | 208 (25.2) | |
3 | 89 (22.1) | 142 (24.6) | 173 (24.4) | 177 (21.4) | |
4 | 141 (35.1) | 144 (25.0) | 130 (18.4) | 98 (11.9) | |
5 (Missing) | 24 (6.0) | 39 (6.8) | 43 (6.1) | 48 (5.8) | |
Quartiles of PA e | 1 | 94 (23.4) | 190 (33.0) | 275 (38.9) | 311 (37.7) |
2 | 49 (12.2) | 85 (14.8) | 89 (12.6) | 108 (13.1) | |
3 | 100 (24.9) | 121 (21.0) | 157 (22.1) | 163 (19.7) | |
4 | 137 (34.1) | 138 (23.9) | 131 (18.5) | 155 (18.8) | |
5 (Missing) | 22 (5.4) | 42 (7.3) | 56 (7.9) | 89 (10.7) | |
Diabetes | Not Present | 394 (98.0) | 555 (96.4) | 678 (95.7) | 782 (94.6) |
Prediabetic/Diabetic | 8 (2.0) | 21 (3.6) | 30 (4.3) | 44 (5.4) |
DII a Quartiles | |||||
---|---|---|---|---|---|
n (%) | Q1 641 (26.8) | Q2 605 (25.2) | Q3 592 (24.7) | Q4 558 (23.3) | |
Range of DII scores | −4.49, −1.25 | −1.24, 0.08 | 0.09, 1.47 | 1.48, 4.49 | |
Subject Characteristics | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Age (y) | 64.0 (9.3) | 62.5 (9.8) | 62.8 (9.7) | 62.5 (10.5) | |
Physical Activity (PA) (MET-minutes) b | 653 (1069) | 457 (768) | 384 (830) | 270 (609) | |
Poverty-to-Income Ratio (PIR) c | 3.2 (1.5) | 2.9 (1.5) | 2.6 (1.5) | 2.1 (1.4) | |
Dietary Inflammatory Index Scores | −2.2 (0.7) | −0.5 (0.4) | 0.7 (0.4) | 2.4 (0.7) | |
C-Reactive Protein | 2.3 (2.0) | 2.7 (2.2) | 3.0 (2.3) | 3.1 (2.4) | |
Subject Characteristics | n(%) | n(%) | n(%) | n(%) | |
Race | White | 302 (69.4) | 309 (57.8) | 327 (49.7) | 356 (46.5) |
Hispanic | 65 (14.9) | 133 (24.9) | 170 (25.8) | 218 (28.5) | |
Black | 49 (11.3) | 78 (14.6) | 146 (22.2) | 173 (22.6) | |
Multiracial | 19 (4.4) | 14 (2.6) | 15 (2.3) | 18 (2.4) | |
Smoking | Never Smoker | 259 (59.5) | 317 (59.3) | 391 (59.4) | 396 (51.7) |
Ever Smoker | 176 (40.5) | 217 (40.7) | 267 (40.6) | 369 (48.3) | |
Marital Status | Married/Partner | 253 (58.1) | 313 (58.6) | 362 (55.0) | 402 (52.5) |
Divorced/Widowed/Separated | 153 (35.2) | 194 (36.3) | 256 (38.9) | 318 (41.6) | |
Single (Never Married) | 29 (6.7) | 27 (5.1) | 40 (6.1) | 45 (5.9) | |
BMI | Underweight and Normal Weight | 153 (35.1) | 143 (26.7) | 146 (22.2) | 183 (23.9) |
Overweight and Obese | 282 (64.9) | 391 (73.3) | 512 (77.8) | 582 (76.1) | |
Waist Circumference | Low Risk (≤35”) | 147 (33.8) | 122 (22.8) | 140 (21.3) | 171 (22.3) |
High Risk (>35”) | 288 (66.2) | 412 (77.2) | 518 (78.7) | 594 (77.7) | |
Education Level | Below High School | 70 (16.1) | 111 (20.8) | 200 (30.4) | 319 (41.7) |
High School Degree | 98 (22.5) | 143 (26.8) | 170 (25.9) | 214 (28.0) | |
Some College/AA | 123 (28.3) | 163 (30.5) | 191 (29.0) | 169 (22.1) | |
College Graduate and Higher | 144 (33.1) | 117 (21.9) | 97 (14.7) | 63 (8.2) | |
Quartiles of PIR d | 1 | 47 (10.8) | 92 (17.2) | 131 (19.9) | 250 (32.7) |
2 | 98 (22.5) | 118 (22.1) | 176 (26.7) | 214 (28.0) | |
3 | 95 (22.9) | 138 (25.8) | 148 (22.5) | 144 (18.8) | |
4 | 154 (35.4) | 152 (28.5) | 142 (21.6) | 102 (13.3) | |
5 (Missing) | 41 (9.4) | 34 (6.4) | 61 (9.3) | 55 (7.2) | |
Quartiles of PA e | 1 | 141 (32.4) | 212 (39.7) | 319 (48.5) | 392 (51.3) |
2 | 43 (9.9) | 62 (11.6) | 65 (9.9) | 82 (10.7) | |
3 | 122 (28.0) | 115 (21.5) | 116 (17.6) | 125 (16.3) | |
4 | 100 (23.0) | 87 (16.3) | 82 (12.4) | 51 (6.7) | |
5 (Missing) | 29 (6.7) | 58 (10.9) | 76 (11.5) | 115 (15.0) | |
Diabetes | Not Present | 376 (86.4) | 425 (79.6) | 516 (78.4) | 589 (77.0) |
Prediabetic/Diabetic | 59 (13.6) | 109 (20.4) | 142 (21.6) | 176 (23.0) |
Model 1 a | Model 2 b | ||||
---|---|---|---|---|---|
Mean PHQ-9 Score (SD) c | Odds Ratio | 95% CI | Odds Ratio | 95% CI | |
Pre-menopause (n = 2512) | |||||
Quartile 1 | 2.7 (3.1) | 1 | – | 1 | – |
Quartile 2 | 3.3 (3.9) | 3.8 | 1.3, 11.3 | 3.2 | 1.1, 9.7 |
Quartile 3 | 3.6 (4.5) | 6.6 | 2.4, 18.7 | 5.0 | 1.7, 14.3 |
Quartile 4 | 4.2 (5.0) | 10.3 | 3.7, 28.4 | 6.3 | 2.2, 17.9 |
p-trend | – | <0.001 | <0.001 | ||
Post-menopause (n = 2392) | |||||
Quartile 1 | 2.6 (3.2) | 1 | – | 1 | – |
Quartile 2 | 3.2 (4.2) | 1.8 | 0.8, 3.7 | 1.6 | 0.8, 3.5 |
Quartile 3 | 3.4 (4.3) | 2.4 | 1.2, 4.8 | 1.7 | 0.8, 3.4 |
Quartile 4 | 4.4 (5.2) | 3.7 | 1.9, 7.2 | 2.1 | 1.1, 4.3 |
p-trend | – | <0.001 | 0.026 |
DII Quartiles | Total Effect Coefficient (SE) | 95% CI | Direct Effect Coefficient (SE) | 95% CI | Indirect Effect Coefficient (SE) (CRP) | 95% CI | Indirect-to-Total Effect Ratio |
---|---|---|---|---|---|---|---|
Pre-menopause (n = 2512) | |||||||
Adjusted for Age | |||||||
1 (reference) | – | – | – | – | – | – | – |
2 | 0.64 (0.22) | 0.20, 1.09 | 0.58 (0.22) | 0.13, 1.02 | 0.06 (0.02) | 0.01, 0.12 | 0.09 |
3 | 0.99 (0.23) | 0.54, 1.45 | 0.94 (0.23) | 0.49, 1.40 | 0.05 (0.02) | 0.006, 0.09 | 0.05 |
4 | 1.58 (0.24) | 1.11, 2.06 | 1.51 (0.24) | 1.04, 1.99 | 0.07 (0.02) | 0.01, 0.12 | 0.04 |
p-trend | <0.001 | <0.001 | 0.024 | – | |||
Fully Adjusted * | |||||||
1 (reference) | – | – | – | – | – | – | – |
2 | 0.37 (0.22) | −0.06, 0.80 | 0.36 (0.22) | −0.7, 0.80 | 0.005 (0.01) | −0.02, 0.03 | 0.01 |
3 | 0.46 (0.22) | 0.02, 0.91 | 0.46 (0.22) | 0.02, 0.91 | 0.003 (0.007) | −0.01, 0.01 | 0.006 |
4 | 0.70 (0.24) | 0.22, 1.18 | 0.69 (0.24) | 0.21, 1.17 | 0.003 (0.009) | −0.1, 0.02 | 0.004 |
p-trend | 0.010 | 0.10 | 0.684 | – | |||
Post-menopause (n = 2392) | |||||||
Adjusted for Age | |||||||
1 (reference) | – | – | – | – | – | – | – |
2 | 0.48 (0.23) | 0.02, 0.94 | 0.43 (0.23) | −0.02, 0.89 | 0.04 (0.02) | 0.0003, 0.09 | 0.08 |
3 | 0.77 (0.22) | 0.33, 1.21 | 0.68 (0.22) | 0.24, 1.13 | 0.08 (0.03) | 0.02, 0.15 | 0.10 |
4 | 1.70 (0.23) | 1.24, 2.17 | 1.60 (0.23) | 1.13, 2.07 | 0.10 (0.04) | 0.03, 0.18 | 0.05 |
p-trend | <0.001 | <0.001 | 0.006 | – | |||
Fully Adjusted * | |||||||
1 (reference) | – | – | – | – | – | – | – |
2 | 0.15 (0.22) | −0.28, 0.59 | 0.14 (0.22) | −0.29, 0.58 | 0.004 (0.007) | −0.01, 0.02 | 0.02 |
3 | 0.23 (0.24) | −0.21, 0.66 | 0.21 (0.22) | −0.22, 0.66 | 0.01 (0.01) | −0.01, 0.04 | 0.04 |
4 | 0.86 (0.24) | 0.39, 1.34 | 0.85 (0.24) | 0.37, 1.32 | 0.01 (0.02) | −0.02, 0.05 | 0.01 |
p-trend | <0.001 | <0.001 | 0.468 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azarmanesh, D.; Bertone-Johnson, E.R.; Pearlman, J.; Liu, Z.; Carbone, E.T. Association of the Dietary Inflammatory Index with Depressive Symptoms among Pre- and Post-Menopausal Women: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2010. Nutrients 2022, 14, 1980. https://doi.org/10.3390/nu14091980
Azarmanesh D, Bertone-Johnson ER, Pearlman J, Liu Z, Carbone ET. Association of the Dietary Inflammatory Index with Depressive Symptoms among Pre- and Post-Menopausal Women: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2010. Nutrients. 2022; 14(9):1980. https://doi.org/10.3390/nu14091980
Chicago/Turabian StyleAzarmanesh, Deniz, Elizabeth R. Bertone-Johnson, Jessica Pearlman, Zhenhua Liu, and Elena T. Carbone. 2022. "Association of the Dietary Inflammatory Index with Depressive Symptoms among Pre- and Post-Menopausal Women: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2010" Nutrients 14, no. 9: 1980. https://doi.org/10.3390/nu14091980
APA StyleAzarmanesh, D., Bertone-Johnson, E. R., Pearlman, J., Liu, Z., & Carbone, E. T. (2022). Association of the Dietary Inflammatory Index with Depressive Symptoms among Pre- and Post-Menopausal Women: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2010. Nutrients, 14(9), 1980. https://doi.org/10.3390/nu14091980