Exploring the Sustainable Benefits of Adherence to the Mediterranean Diet during the COVID-19 Pandemic in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Methodology
2.2. Environmental and Economic Impact Analyses
2.3. Statistical Analyses
3. Results
3.1. The Interplay between BMI, Employment, and Environmental Impact
3.2. The Interplay between Employment, Environmental Impact, and MEDAS
3.3. The Interplay between BMI, MEDAS, and Food Cost
3.4. The Interplay between the Organic Market, MEDAS, and Environmental Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gussow, J.D.; Clancy, K.L. Dietary guidelines for sustainability. J. Nutr. Educ. 1986, 18, 1–5. [Google Scholar] [CrossRef]
- Burlingame, B.; Dernini, S. Sustainable Diets: Directions and Solutions for Policy, Research, and Action; FAO: Rome, Italy, 2012. [Google Scholar]
- Gustafson, D.; Gutman, A.; Leet, W.; Drewnowski, A.; Fanzo, J.; Ingram, J. Seven food system metrics of sustainable nutrition security. Sustainability 2016, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Cioccoloni, G.; Bernardini, S.; Abenavoli, L.; Aiello, V.; Marchetti, M.; Cammarano, A.; Alipourfard, I.; Ceravolo, I.; Gratteri, S. A Hazelnut-Enriched Diet Modulates Oxidative Stress and Inflammation Gene Expression without Weight Gain. Oxidative Med. Cell. Longev. 2019, 4, 4683723. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandevijvere, S.; Monteiro, C.; Krebs-Smith, S.M.; Lee, A.; Swinburn, B.; Kelly, B.; Neal, B.; Snowdon, W.; Sacks, G.; INFORMAS. Monitoring and benchmarking population diet quality globally: A step-wise approach. Obes. Rev. 2013, 14, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Dernini, S.; Berry, E.M.; Bach-Faig, A.; Belahsen, R.; Donini, L.; Lairon, D.; Serra-Majem, L. A dietary model constructed by scientists: The Mediterranean diet. In Mediterra 2012; CIHEAM–Les Presses de Sciences Po: Paris, France, 2012; pp. 71–88. [Google Scholar]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Foundation Expert Group Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of the Mediterranean Diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Cinelli, G.; Dri, M.; Gualtieri, P.; Attinà, A.; Leggeri, C.; Cenname, G.; Esposito, E.; Pujia, A.; Chiricolo, G.; et al. Mediterranean Personalized Diet Combined with Physical Activity Therapy for the Prevention of Cardiovascular Diseases in Italian Women. Nutrients 2020, 12, 3456. [Google Scholar] [CrossRef]
- Godoy-Izquierdo, D.; Ogallar, A.; Lara, R.; Rodríguez-Tadeo, A.; Arbinaga, F. Association of a Mediterranean Diet and Fruit and Vegetable Consumption with Subjective Well-Being among Adults with Overweight and Obesity. Nutrients 2021, 13, 1342. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Siclari, M.; Gratteri, S.; Romano, L.; Gualtieri, P.; Marchetti, M.; Merra, G.; Colica, C. Developing and cross-valid new equations to estimate fat mass in the Italian population. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 2513–2524. [Google Scholar] [CrossRef]
- Di Daniele, N.; Petramala, L.; Di Renzo, L.; Sarlo, F.; Della Rocca, D.G.; Rizzo, M.; Fondacaro, V.; Iacopino, L.; Pepine, C.J.; De Lorenzo, A. Body composition changes and cardiometabolic benefits of a balanced Italian Mediterranean Diet in obese patients with metabolic syndrome. Acta Diabetol. 2013, 50, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabozzi, G.; Cimadomo, D.; Allori, M.; Vaiarelli, A.; Colamaria, S.; Argento, C.; Amendola, M.G.; Innocenti, F.; Soscia, D.; Maggiulli, R.; et al. Maternal body mass index associated with blastocyst euploidy and live birth rates: The tip of an iceberg? Reprod. Biomed. Online 2021, 43, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Romano, L.; Marrone, G.; Noce, A.; Pujia, A.; Perrone, M.A.; Aiello, V.; Colica, C.; De Lorenzo, A. Role of Personalized Nutrition in Chronic-Degenerative Diseases. Nutrients 2019, 11, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Renzo, L.; Marchetti, M.; Rizzo, G.; Gualtieri, P.; Monsignore, D.; Dominici, F.; Mappa, I.; Cavicchioni, O.; Aguzzoli, L.; De Lorenzo, A.; et al. Adherence to Mediterranean Diet and Its Association with Maternal and Newborn Outcomes. Int. J. Environ. Res. Public Health 2022, 19, 8497. [Google Scholar] [CrossRef] [PubMed]
- Dernini, S.; Berry, E.M.; Serra-Majem, L.; La Vecchia, C.; Capone, R.; Medina, F.X.; Aranceta-Bartrina, J.; Belahsen, R.; Burlingame, B.; Calabrese, G.; et al. Med Diet 4.0: The Mediterranean diet with four sustainable benefits. Public Health Nutr. 2017, 20, 1322–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a Food Frequency Questionnaire for Use in Italian Adults Living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef]
- Di Renzo, L.; Tyndall, E.; Gualtieri, P.; Carboni, C.; Valente, R.; Ciani, A.S.; Tonini, M.G.; De Lorenzo, A. Association of body composition and eating behavior in the normal weight obese syndrome. Eat Weight Disord. 2016, 21, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Pernigotti, D. Carbon Footprint, 16th ed.; Ambiente Milano: Milano, Italy, 2011. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.H. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- World Wide Fund for Nature, Carrello della Spesa. Available online: http://www.improntawwf.it/carrello/ (accessed on 10 July 2022).
- Istituto Nazionale di Statistica, Prezzi 2020. Available online: https://www.istat.it/it/prezzi (accessed on 10 July 2022).
- Alissa, E.M.; Ferns, G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Crit. Rev. Food Sci. Nutr. 2017, 57, 1950–1962. [Google Scholar] [CrossRef]
- Crujeiras, A.B.; Parra, D.; Abete, I.; Martínez, J.A. A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic. Res. 2007, 41, 498–506. [Google Scholar] [CrossRef] [PubMed]
- De Punder, K.; Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gans, K.M.; Burkholder, G.J.; Risica, P.M.; Lasater, T.M. Baseline fat-related dietary behaviors of white, Hispanic, and black participants in a New England cholesterol screening and education project. J. Am. Diet Assoc. 2003, 103, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.H.; Harlan, L.C.; Block, G.; Kahle, L. Food choices of whites, blacks, and Hispanics: Data from the 1987 National Health Interview Survey. Nutr. Cancer 1995, 23, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Prattala, R.S.; Growth, M.V.; Oltersdorf, U.S.; Roos, G.M.; Sekula, W.; Tuomainen, H.M. Use of butter and cheese in 10 European countries: A case of contrasting educational differences. Eur. J. Public Health 2003, 13, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Galobardes, B.; Morabia, A.; Bernstein, M.S. Diet and socioeconomic position: Does the use of different indicators matter? Int. J. Epidemiol. 2001, 30, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Hulshof, K.F.; Brussaard, J.H.; Kruizinga, A.G.; Telman, J.; Lowik, M.R. Socioeconomic status, dietary intake, and 10-y trends: The Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 2003, 57, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Tognon, G.; Hebestreit, A.; Lanfer, A.; Moreno, L.A.; Pala, V.; Siani, A.; Tornaritis, M.; De Henauw, S.; Veidebaum, T.; Molnár, D.; et al. Mediterranean diet, overweight and body composition in children from eight European countries: Cross-sectional and prospective results from the IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 205–213. [Google Scholar] [CrossRef]
- Pischon, T. Use of obesity biomarkers in cardiovascular epidemiology. Dis. Markers 2009, 26, 757683. [Google Scholar] [CrossRef]
- Denoth, F.; Scalese, M.; Siciliano, V.; Di Renzo, L.; De Lorenzo, A.; Molinaro, S. Clustering eating habits: Frequent consumption of different dietary patterns among the general Italian population in the association with obesity, physical activity, sociocultural characteristics, and psychological factors. Eat Weight Disord. 2016, 21, 257–268. [Google Scholar] [CrossRef]
- Cobb, L.K.; Appel, L.J.; Franco, M.; Jones-Smith, J.C.; Nur, A.; Anderson, C.A. The relationship between the local food environment and obesity: A systematic review of methods, study quality, and results. Obesity 2015, 23, 1331–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, T.Y.N.; Imamura, F.; Monsivais, P.; Brage, S.; Griffin, S.J.; Wareham, N.J.; Forouhi, N.G. Dietary cost associated with adherence to the Mediterranean diet, and its variation by socio-economic factors in the UK Fenland Study. Br. J. Nutr. 2018, 119, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bôto, J.M.; Rocha, A.; Miguéis, V.; Meireles, M.; Neto, B. Sustainability Dimensions of the Mediterranean Diet: A Systematic Review of the Indicators used and Its Results. Adv. Nutr. 2022, 9, nmac066. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.; Nghiem, N.; Ni Mhurchu, C.; Eyles, H.; Baker, M.G.; Blakely, T. Foods and Dietary Patterns That Are Healthy, Low-Cost, and Environmentally Sustainable: A Case Study of Optimization Modeling for New Zealand. PLoS ONE 2013, 8, e59648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, E.M. Food Insecurity, Social Inequity, and Sustainability. World Rev. Nutr. Diet. 2020, 121, 95–104. [Google Scholar] [CrossRef]
- Gliessman, S.R. Agroecologia: Processos Ecolόgicos Em Agricultura Sustentável, 2nd ed.; Universidade UFRGS: Porto, Portugal, 2011. [Google Scholar]
- Downs, S.M.; Ahmed, S.; Fanzo, J.; Herforth, A. Food Environment Typology: Advancing an Expanded Definition, Framework, and Methodological Approach for Improved Characterization of Wild, Cultivated and Built Food Environments toward Sustainable Diets. Foods 2020, 9, 532. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
- Sobal, J.; Kettel Khan, L.; Bisogni, C. A conceptual model of the food and nutrition system. Soc. Sci. Med. 1998, 47, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.U.S. Organic agriculture gaining ground. Agric. Outlook 2000, 270, 9–14. [Google Scholar]
- Adolfi, T.; Lockeretz, W.; Niggli, U. IFOAM 2000—The World Grows Organic. In Proceedings of the 13th International IFOAM Scientific Conference, Basel, Switzerland, 28–31 August 2000. [Google Scholar]
- Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Organic food and its impact on human health. Crit. Rev. Food Sci. Nutr. 2019, 59, 704–714. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, A.; Noce, A.; Bigioni, M.; Calabrese, V.; Della Rocca, D.G.; Di Daniele, N.; Tozzo, C.; Di Renzo, L. The effects of Italian Mediterranean organic diet (IMOD) on health status. Curr. Pharm. Des. 2010, 16, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Vanni, G.; Vinci, D.; Lombardo, V.; Marchetti, M.; Capacci, A.; Merra, G. Patients’ decision-making process after one year from the outbreak of COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4644–4645. [Google Scholar] [CrossRef] [PubMed]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Renzo, L.; De Lorenzo, A.; Fontanari, M.; Gualtieri, P.; Monsignore, D.; Schifano, G.; Alfano, V.; Marchetti, M. Immunonutrients involved in regulating the inflammatory and oxidative processes: Implication for gamete competence. J. Assist. Reprod. Genet. 2022, 39, 817–846. [Google Scholar] [CrossRef]
- Di Renzo, L.; Marchetti, M.; Cioccoloni, G.; Gratteri, S.; Capria, G.; Romano, L.; Soldati, L.; Mele, M.C.; Merra, G.; Cintoni, M.; et al. Role of phase angle in the evaluation of effect of an immuno-enhanced formula in post-surgical cancer patients: A randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1322–1334. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Leggeri, C.; Cinelli, G.; Tarsitano, M.G.; Caparello, G.; Carrano, E.; et al. COVID-19: Is there a role for immunonutrition in the obese patient? J. Transl. Med. 2020, 18, 415. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica, Uso di Internet 2019. Available online: https://www.istat.it/donne-uomini/bloc-3c.html (accessed on 10 July 2022).
- Il Sole 24 Ore, 56° Rapporto CENSIS. Available online: https://www.sanita24.ilsole24ore.com/art/dal-governo/2022-12-02/-56-rapporto-censis-61percento-italiani-ottimista-futuro-ssn-migliorera-anche-grazie-lezione-pandemia-plebiscito-sanita-e-investimento-il-937percento-scenario-popolo-spaventato-guerra-che-ricerca-110017.php?uuid=AEPYZ0LC (accessed on 2 December 2022).
Parameters | Whole Sample (n = 3353) |
---|---|
Gender (F) | 2689 (76.1) |
Gender (M) | 664 (23.9) |
Age | 36.0 [18.0–86.0] 38.5 ± 14.2 |
18–30 years | 1228 (34.8) |
31–50 years | 1492 (42.2) |
51–65 years | 693 (19.6) |
>66 years | 120 (3.4) |
Weight (kg) | 65.0 [57.0–75.0] 67.34 ± 14.2 |
Height (cm) | 166.0 ± 12.0 |
BMI (kg/m2) | 24.00 ± 4.27 |
Underweight (≤18.4 kg/m2) | 142 (4.0) |
Normal weight (18.5–24.9 kg/m2) | 2243 (63.5) |
Pre-obese (25.0–29.9 kg/m2) | 814 (23.0) |
Obese | 334 (9.5) |
Unemployed (38.75 y) | 289 (8.2) |
Retired (67.25 y) | 159 (4.5) |
Students (21.54 y) | 674 (19.1) |
Employed (41.30 y) | 2411 (68.2) |
Purchase in the organic market | 137 (3.9) |
Purchase in the non-organic market | 3396 (96.1) |
CO2 (eq/Week) | H2O (L/Week) | |||
---|---|---|---|---|
BMI Groups | ||||
Median ± [minimum–maximum value] | p-value | Median ± [minimum–maximum value] | p-value | |
Overall population | <0.001 *** | <0.001 *** | ||
Normal weight vs. underweight | 22.1 ± [8.9–35.1] vs. 20.7 ± [10.1–31.6] | 0.004 ** | 30,410.7 ± [11,781.2–52,059.7] vs. 28,833.2 ± [15,409.3–48,093.1] | 0.009 ** |
Pre-obese vs. underweight | 22.6 ± [9.3–33.1] vs. 20.7 ± [10.1–31.6] | <0.001 *** | 32,904.4 ± [13,640.6–51,346.1] vs. 28,833.2 ± [15,409.3–48,093.1] | <0.001 *** |
Obese vs. underweight | 23.3 ± [11.0–35.3] vs. 20.7 ± [10.1–31.6] | <0.001 *** | 32,947.4 ± [13,618.6–52,359.9] vs. 28,833.2 ± [15,409.3–48,093.1] | <0.001 *** |
Pre-obese vs. normal weight | 22.6 ± [9.3–33.1] vs. 22.1 ± [8.9–35.1] | 0.01 * | 32,904.4 ± [13,640.6–51,346.1] vs. 30,410.7 ± [11,781.2–52,059.7] | 0.006 ** |
Obese vs. normal weight | 23.3 ± [11.0–35.3] vs. 22.1 ± [8.9–35.1] | 0.3 | 32,947.4 ± [13,618.6–52,359.9] vs. 30,410.7 ± [11,781.2–52,059.7] | 0.01 * |
Coefficients | Estimate | Std. Error | z-Value | p-Value |
Intercept | −1.19308 | 0.34785 | −3.430 | <0.001 *** |
BMI (kg/m2) | 0.04782 | 0.01239 | 3.859 | <0.001 *** |
CO2 (eq/week) | 0.08192 | 0.00996 | 8.226 | <0.001 *** |
Null deviance: 3021.5 on 3532 degrees of freedom Residual deviance: 2929.2 on 3530 degrees of freedom AIC: 2935.2 | ||||
Coefficients | Estimate | Std. Error | z-Value | p-Value |
Intercept | −2.20135 | 0.34748 | −6.335 | <0.001 *** |
BMI (kg/m2) | 0.03951 | 0.01254 | 3.151 | 0.001 ** |
H2O (L/week) | 0.00009 | 0.00007 | 13.922 | <0.001 *** |
Null deviance: 3021.5 on 3532 degrees of freedom Residual deviance: 2929.2 on 3530 degrees of freedom AIC: 2780.7 |
CO2 (eq/Week) | H2O (L/Week) | |||
---|---|---|---|---|
Occupation Groups | ||||
Median ± [minimum–maximum value] | p-value | Median ± [minimum–maximum value] | p-value | |
Overall population | <0.001 | <0.001 | ||
Unemployed vs. retired | 22.2 ± [10.3–32.8] vs. 24.3 ± [9.7–32.9] | 0.02 * | 32,180.9 ± [17,030.0 –49,159.0] vs. 36,296.1 ± [14,859.0–47,447.0] | 0.01 * |
Unemployed vs. students | 22.2 ± [10.3–32.8] vs. 20.9 ± [9.2–33.1] | 0.001 ** | 32,180.9 ± [17,030.0–49,159.0] vs. 28,816.0 ± [13,524.0–48,172.0] | <0.001 |
Unemployed vs. employed | 22.2 ± [10.3–32.8] vs. 22.5 ± [9.0–35.4] | 0.9 | 32,180.9 ± [17,030.0–49,159.0] vs. 31,382.3 ± [11,781.0–52,360.0] | 0.9 |
Retired vs. students | 24.3 ± [9.7–32.9] vs. 20.9 ± [9.2–33.1] | <0.001 *** | 36,296.1 ± [14,859.0–47,447.0] vs. 28,816.0 ± [13,524.0–48,172.0] | <0.001 *** |
Retired vs. employed | 24.3 ± [9.7–32.9] vs. 22.5 ± [9.0–35.4] | 0.006 ** | 36,296.1 ± [14,859.0–47,447.0] vs. 31,382.3 ± [11,781.0–52,360.0] | 0.001 ** |
Students vs. employed | 20.9 ± [9.2–33.1] vs. 22.5 ± [9.0–35.4] | <0.001 *** | 28,816.0 [13,524.0–48,172.0] vs. 31,382.3 ± [11,781.0–52,360.0] | <0.001 *** |
CO2 (eq/Week) | H2O (L/Week) | |||
---|---|---|---|---|
MEDAS Groups | ||||
Median ± [minimum–maximum value] | p-value | Median ± [minimum–maximum value] | p-value | |
Overall population | <0.001 *** | <0.001 *** | ||
Low adherence vs. high adherence | 23.6 ± [9.2–35.3] vs. 21.0 ± [10.0–32.0] | <0.001 *** | 36,364.5 ± [3618.6–52,359.9] vs. 27,296.7 ± [13,640.6–46,965.8] | <0.001 *** |
Medium adherence vs. high adherence | 22.4 ± [8.9–33.9] vs. 21.0 ± [10.0–32.0] | <0.001 *** | 31,015.5 ± [11,781.2–51,346.1] vs. 27,296.7 ± [13,640.6–46,965.8] | <0.001 *** |
Medium adherence vs. low adherence | 22.4 ± [8.9–33.9] vs. 23.6 ± [9.2–35.3] | <0.001 *** | 31,015.5 ± [11,781.2–51,346.1] vs. 36,364.5 ± [3618.6–52,359.9] | <0.001 *** |
MEDAS Score | ||
---|---|---|
Median ± [minimum–maximum value] | p-value | |
Overall population | 0.02 * | |
Unemployed vs. retired | 7.0 ± [1.0–8.0] vs. 7.0 ± [1.0–8.0] | 0.9 |
Unemployed vs. students | 7.0 ± [1.0–8.0] vs. 7.0 [1.0–9.0] | 0.02 * |
Unemployed vs. employed | 7.0 ± [1.0–8.0] vs. 7.0 [1.0–9.0] | 0.3 |
Retired vs. students | 7.0 [1.0–9.0] vs. 7.0 [1.0–9.0] | 0.8 |
Retired vs. employed | 7.0 ± [1.0–8.0] vs. 7.0 [1.0–9.0] | 0.9 |
Students vs. employed | 7.0 [1.0–9.0] vs. 7.0 [1.0–9.0] | 0.3 |
BMI (kg/m2) | CO2 (eq/Week) | H2O (L/Week) | Age | Weekly Food Cost (EUR/Week) | |
---|---|---|---|---|---|
MEDAS score | r2 = 0.70 | r2 = 0.97 | r2 = 0.87 | r2 = 0.09 | r2 = 0.98 |
p = 0.004 ** | p = 0.01 * | p < 0.001 *** | p = 0.7 | p = 0.006 ** |
Weekly Food Cost | ||
---|---|---|
Median ± [minimum–maximum value] | p-value | |
Overall population | <0.001 *** | |
Low adherence vs. medium adherence | 97.2 ± [46.2–137.9] vs. 94.2 ± [44.8–136.9] | 0.004 ** |
Low adherence vs. high adherence | 97.2 ± [46.2–137.9] vs. 90.0 ± [49.7–128.6] | <0.001 *** |
Medium adherence vs. high adherence | 94.2 ± [44.8–136.9] vs. 90.0 ± [49.7–128.6] | <0.001 *** |
Organic Market n = 137 (F = 114) | Non-Organic Market n = 3396 (F = 2576) | ||
---|---|---|---|
Parameters | |||
Median ± [minimum–maximum value] | Median ± [minimum–maximum value] | p-value | |
BMI (kg/m2) | 22.3 ± [16.8–45.3] | 23.3 ± [14.0–51.5] | <0.001 *** |
Weight (kg) | 61.0 ± [42.0–116.0] | 65.0 ± [34.0–154.0] | 0.02 * |
MEDAS score | 8.0 ± [3.0–13.0] | 7.0 ± [1.0–14.0] | <0.001 *** |
Weekly food cost (EUR/week) | 88.0 ± [57.1–141.6] | 80.5 ± [44.5–138.1] | <0.001 *** |
CO2 (eq/week) | 15.9 ± [8.1–25.0] | 18.6 ± [8.6–35.4] | <0.001 *** |
H2O (L/week) | 27,487.0 ± [13,753.4–46,015.2] | 28,689.2 ± [11,781.2–52,359.9] | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualtieri, P.; Marchetti, M.; Frank, G.; Cianci, R.; Bigioni, G.; Colica, C.; Soldati, L.; Moia, A.; De Lorenzo, A.; Di Renzo, L. Exploring the Sustainable Benefits of Adherence to the Mediterranean Diet during the COVID-19 Pandemic in Italy. Nutrients 2023, 15, 110. https://doi.org/10.3390/nu15010110
Gualtieri P, Marchetti M, Frank G, Cianci R, Bigioni G, Colica C, Soldati L, Moia A, De Lorenzo A, Di Renzo L. Exploring the Sustainable Benefits of Adherence to the Mediterranean Diet during the COVID-19 Pandemic in Italy. Nutrients. 2023; 15(1):110. https://doi.org/10.3390/nu15010110
Chicago/Turabian StyleGualtieri, Paola, Marco Marchetti, Giulia Frank, Rossella Cianci, Giulia Bigioni, Carmela Colica, Laura Soldati, Alessandra Moia, Antonino De Lorenzo, and Laura Di Renzo. 2023. "Exploring the Sustainable Benefits of Adherence to the Mediterranean Diet during the COVID-19 Pandemic in Italy" Nutrients 15, no. 1: 110. https://doi.org/10.3390/nu15010110
APA StyleGualtieri, P., Marchetti, M., Frank, G., Cianci, R., Bigioni, G., Colica, C., Soldati, L., Moia, A., De Lorenzo, A., & Di Renzo, L. (2023). Exploring the Sustainable Benefits of Adherence to the Mediterranean Diet during the COVID-19 Pandemic in Italy. Nutrients, 15(1), 110. https://doi.org/10.3390/nu15010110