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Abstract: Inflammatory bowel disease (IBD) is a group of diseases with a chronic course, characterized
by periods of exacerbation and remission. One of the elements that could potentially predispose to
IBD is, among others, a low-fiber diet. Dietary fiber has many functions in the human body. One
of the most important is its influence on the composition of the intestinal microflora. Intestinal
dysbiosis, as well as chronic inflammation that occurs, are hallmarks of IBD. Individual components
of dietary fiber, such as β-glucan, pectin, starch, inulin, fructooligosaccharides, or hemicellulose,
can significantly affect preventive effects in IBD by modulating the composition of the intestinal
microbiota or sealing the intestinal barrier, among other things. The main objective of the review is
to provide information on the effects of individual fiber components of the diet on the risk of IBD,
including, among other things, altering the composition of the intestinal microbiota.
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1. Introduction

Inflammatory bowel diseases (IBDs) are a group of diseases with a chronic course,
characterized by periods of exacerbation and remission of the disease. The etiology of IBD
is not fully understood; however, many researchers point to a predisposition to the onset
of the disease with the existence of certain genetic, environmental, immunological, and
microbiological factors [1–3]. IBD can occur in both men and women of all ages. Western
lifestyles are causing an increase in the incidence of IBD year after year. Researchers predict
that their prevalence will increase significantly in the next few years [4].

A potentially predisposing component to IBD is a Western-type diet, which is, among
other things, low in dietary fiber.

Dietary fiber is a broad concept, so different classifications are used to describe it.
A division by origin, physicochemical properties, and chemical composition is used [5].
Depending on the solubility of dietary fiber in water, it can be classified as soluble (SDF)
and insoluble (IDF). These groups differ in their functionality and mode of action after in-
gestion [6]. Soluble fiber includes fructooligosaccharides, galactooligosaccharides, pectins,
β-glucans and inulin [7]. The second group includes cellulose, hemicellulose, and lignins,
among others [8]. Dietary fiber is found in various proportions and in many foods, such as
vegetables, fruits, pulses, nuts, seeds, and cereals. However, not all types of fiber are found
in the same food groups; pectin is more abundant in fruits and some types of vegetables,
and β-glucans are found in cereals [9]. Starchy foods that contain resistant starch include
pulses, cereals, and potatoes [10]. Insoluble fiber functions as a means of increasing fecal
weight and reducing intestinal transit time, which consequently contributes to relief from
constipation [11]. Both soluble and insoluble fibers are indigestible. However, soluble
in the presence of water can be quickly and easily fermented by intestinal bacteria into
products that act favorably on the intestinal microbiome, mainly short-chain fatty acids
(SCFAs) [12]. Therefore, ultimately, it may have some prebiotic functions, but it may also
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positively impact health by reducing the risk of gastrointestinal diseases, such as irritable
bowel syndrome (IBS), inflammatory bowel disease (IBD), or constipation [13].

β-glucans are a natural group of polysaccharides consisting of D-glucose monomer
units linked by β-glycosidic bonds (1,3, 1,4, 1,6). β-glucans can be found in yeast, fungi,
some bacteria, seaweed, and cereals, mainly in oats and barley [14]. The diversity and
biological activity of these compounds depend on their molecular structure, the conforma-
tion of each polymer, and their solubility [15]. β-glucans from oats have actions typical of
dietary fiber through which they improve metabolic health parameters, that is, cholesterol
and glucose levels [16,17]. β-glucans from yeast and fungi act as immunomodulators.
These compounds work by activating the immune system by initiating the inflammatory
process, increasing the response to infections, and through antitumor effects [18]. β-glucans
appear to be an interesting option to support drug therapy in various diseases. In this
review, we describe current knowledge on the effects of dietary fiber components with
special emphasis on disruting the composition of the intestinal microbiota.

2. Influence of Fiber on the Intestinal Microbiota

The intestinal microbiota is all the microorganisms that inhabit the intestines. They
include bacteria, viruses, fungi, archaeons, and selected unicellular eukaryotes. On the
contrary, the definition of the gut microbiome is the entire collection of genes from mi-
croorganisms that reside in the intestines [19]. The human gut microbiome population
includes more than 1000 microbial species. The most numerous species are Bacteroidetes
and Firmicutes and slightly less numerous are Proteobacteria, Actinobacteria, Verrucomicrobia,
Fusobacteria, Cyanobacteria, and others [20]. Most bacteria that live in the intestines are
anaerobic microorganisms. The presence of aerobic bacteria has been observed primarily in
the cecum.

There are several factors that modulate the composition of the intestinal microbiota.
One factor is the use of antibiotics. These are prescription drugs that are often given to
children from the first days of life. Due to the dynamic development of the intestinal
microbiota in children, it is particularly sensitive to antibiotics. The use of these drugs can
affect a decrease in Bifidobacteriaceae and Lactobacillales spp., while it can predispose to an
increase in Enterobacteriaceae [21]. In their work, Ianiro et al. point out that the effect of
antibiotics on the gut microbiota depends on the type of drug, its dose, and the route of
administration, as well as factors that are directly related to humans. However, antibiotic
administration can also have a eubiotic effect on the host, that is, it can stimulate the growth
of beneficial bacteria [22]. However, the use of this group of drugs is most often associated
with the appearance of intestinal dysbiosis, i.e., abnormalities in the composition/function
of intestinal microorganisms, which can lead to the development of certain diseases or the
appearance of exacerbations [23]. The adverse effects of inadequate antibiotic therapy can
also include drug resistance, and thus the development of pathogenic microorganisms and
a reduction in the commensal microbiota and its diversity [24].

Another factor that modulates gut microbiota is host genetics [25,26]. The heritability
of the microbiome ranges from 2% to 8%. However, the authors of some studies show
that environmental factors outweigh the genetic factors responsible for the composition
of the host microbiota [27]. In their study, Matsumoto et al. showed, excluding genetic
factors, that individual dietary components affect certain bacterial species [28]. Polyphenols,
proteins, fats, and dietary fiber are essential components of the metabolic pathways of the
intestinal microbiota [29].

There are also scientific reports that highlight the effects of specific types of diet on
the intestinal microbiota, so, for example, a vegan diet has a beneficial effect in increasing
the number of beneficial microorganisms, while following a low FODMAP diet changes
the ratio of Firmicutes to Bacteroidetes and decreases the number of Bifidobacterium [30,31].
Other researchers have also indicated the beneficial effects of a plant-based diet on the gut
microbiota [32,33]. Reddel et al. point out that when using low-FODMAP, gluten-free, or
ketogenic diets in various pathological conditions, supplementation with selected nutrients
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should be considered, as these diets can significantly exacerbate already existing changes
in the gut microbiota [34]. Other authors also point to the effect of age on the composition
of the intestinal microbiota [35,36].

Dietary fiber has a variety of functions in the human body. One of the most important
aspects is its effect on the intestinal microbiome and consequently on the prevention of the
occurrence of certain diseases. The utilization of dietary fiber by the intestinal microbiota
depends on several factors (Figure 1) [37].
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Dietary fiber, which is only available to the intestinal microbiota, is called MAC
(microbiota-accessible carbohydrates). It is mainly a source of energy for the intestinal mi-
crobiota. MAC is lower when following a Western-type diet, that is, one with low amounts
of dietary fiber. Low MAC can reduce the abundance of some commensal bacterial taxa,
which is detrimental to the host [38]. In their work, Usuda et al. indicate that decreased
MAC can lead to increased intestinal permeability and the induction of colitis [39]. The
reason for this may be a decrease in the production of the receptor agonists of glucagon-like
peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2), which are required for intestinal
regeneration after the appearance of mucosal inflammation [40]. Increasing the MAC may
favorably influence the increase in the abundance of Bacteroides thetaiotaomicron, Bifidobac-
terium spp. [39]. The failure to include dietary fiber can lead to an increase in Clostridium
spp., mucinophilic bacteria, and thus increase the risk of inflammation [41]. In turn, a higher
content of this dietary component increases the synthesis of SCFA (short chain fatty acids).
Myhrstad et al. indicate that this is due to an increase in bacteria such as Ruminococcus,
Lachnospira, Akkermannsia, Bifidobacterium, Lactobacillus, and Roseburia [42]. Furthermore,
Angelis et al. indicate that it can also reduce the secretion of pro-inflammatory substances,
such as trimethylamine N-oxide (low molecular weight uremic toxin), indoxyl sulfate
(metabolic product of tryptophan breakdown), and p-cresyl sulfate (product of metabolism
of tyrosine and phenylalanine by intestinal bacteria) [29].

Adequate mucus production is essential to maintain complete intestinal health. Dietary
fiber has the ability to stimulate the intestinal epithelium to secrete mucus through a
mechanical action on the epithelium. Acetate, butyrate, and propionate, which belong to
the SCFA group, show the ability to regulate pH in the intestinal lumen and are essential
for the supply of energy to enterocytes [43]. In addition, they affect the production of
mucus in the intestines. Propionate can be synthesized through three different pathways
by intestinal bacteria that reside in the human gut: the acrylate, propanediol, and succinate
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pathways, with succinate being the most common. Butyrate is synthesized from two
molecules, the latter of which is CoA-transferase in the presence of acetate, which is
essential for efficient synthesis of the compound. On the other hand, acetate production
occurs from acetyl-coenzyme A through acetyl-CoA to produce the substance [44–46].
Increasing the amount of dietary fiber in the daily diet predisposes to increased amounts
of Lactobacillus spp. and Bifidobacterium. This is mainly due to an increase in the intake of
fructans and galactooligosaccharides [47]. In a study by Fischer et al. in animal models,
it was shown that indirectly through adequate fiber, the intestinal microflora containing
A. finegoldii, among others, showed that increased intestinal expression of IL-22. IL-22 is
responsible, among other things, for maintaining adequate intestinal barrier function due
to the separation of microorganisms from the intestinal epithelium [48]. A high-fiber diet
also reduces pro-inflammatory cytokines [49].

The soluble fraction of dietary fiber is used by intestinal microbes to obtain energy
through its breakdown into oligosaccharides/monosaccharides [50]. The soluble fraction of
dietary fiber includes β-glucans, which are increasingly being studied for their effects on the
intestinal microbiome [51]. These polymers composed of D-glucose linked by a β-glycosidic
bond show the ability to decrease Enterobacteriaceae, while increasing Bifidobacteria and
Lactobacilli [50]. In their study, Wang et al. indicate that β-glucan has the ability to modulate
intestinal microflora; however, this depends on its molecular weight. The authors note that
for microflora modulation, the use would be to introduce a compound of high molecular
weight, since supplementation with 3 g of high-molecular-weight β-glucan increased
Bacteroidetes, while it decreased Firmicutes, although diets with 3 g of supplementation
per day and 5 g of low molecular weight β-glucan did not change the composition of the
intestinal microflora [52]. Carlson et al. analyzed the fermentation of various prebiotics,
including β-glucan. They showed that β-glucan and oatmeal containing 28% β-glucan
had a significant increase in propionate concentration compared to other compounds they
studied (Xyloligosaccharide (XOS) and Inulin, a mixture of dried chicory root containing
inulin, pectin, hemi/cellulose) [53]. In another study, the researchers compared the fecal
microbiota and metabolomics after a 2-month intervention using 3 g of barley β-glucans.
They showed a significant increase in SCFA such as acetic, 2-methylpropanoic, propionic,
and butyric acids, suggesting modulation of the composition and metabolic pathways of
the intestinal microbiota [54].

Intestinal dysbiosis is one of the features attributed to IBD. It is characterized by a de-
crease in microbial diversity, an increase in unfavorable pathogenic bacteria, and a decrease
in beneficial anaerobic bacteria [55]. Patients with IBD patients show a decrease in the
number of bacteria, mainly Firmicutes, while an increase in the population of Proteobacteria.
There is a lack of information on whether intestinal dysbiosis in IBD is the cause or one
of the consequences of the disease [56]. Intestinal dysbiosis and the associated loss of
bacterial diversity can lead to the loss of key functions of the normal intestinal barrier. The
result can be a dysregulation of the immune system. These dysfunctions can potentially
cause inflammation and a stimulated immune response. As a result, they can contribute to
IBD [57]. The fermentation of dietary fiber promotes the formation of short-chain fatty acids
(SCFA). These acids have anti-inflammatory effects that protect the intestinal epithelium.
One of the bacteria that produce SCFA is F. prauznitzii. Interestingly, a study shows that a
lower percentage of these bacteria in the ileum of CD patients is associated with endoscopic
recurrence after a period of 6 months. Sokol et al. propose the use of F prausnitzii as a po-
tential probiotic for the treatment of CD [58]. Chiba reports that the amount of F. prausnitzii
in CD patients is significantly lower than in healthy individuals. He suggests that a diet
rich in fiber does not harm but supports and benefits CD patients [59]. The breakdown of
fiber in SCFA by intestinal microbes contributes to a favorable regulation of the intestinal
microbiome [60]. Interestingly, it seems that CD patients have a much more pronounced
intestinal dysbiosis compared to UC. Lower microbial diversity and poorer stability are
observed. Even in the context of the microbiome, CD and UC are distinct disease entities
at the microbiome level [61]. UC patients have been found to have a reduced number of
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butyrate-producing bacteria R. intestinalis and F. prausnitzii. This appears to be strongly
correlated with reduced SCFA in patients with UC [62]. Patients with CD showed an
increase in Ruminococcus gnavus and a decrease in F. prausnitzii, Bifidobacterium adolescentis,
Dialister invisus, and other bacteria that produce butyrates in stool samples. These findings
encourage researchers to further investigate the use of SCFA as a complementary treatment
for patients with IBD [63]. Currently, the analysis of the gut microbiota has led researchers
to the possibility of using microflora transplants as a therapeutic modality for patients with
IBD [64].

3. Link between Dietary Fiber and IBD

The development of inflammatory bowel disease (IBD) is believed to be influenced
by environmental factors, genetic conditions, a weak immune system, and changes in the
microbiota. Recently, there has been increasing interest in the dietary factor, which plays
an important role in the etiopathogenesis and course of the disease. It is important that
a properly selected diet can reduce the risk of developing IBD. Controlling the patient’s
diet allows the prolongation of remission, which consequently increases the patient’s
quality of life [65]. The pro-inflammatory Western diet found in highly developed countries
can increase the risk of inflammatory bowel disease by promoting intestinal dysbiosis,
disrupting the immune system, and compromising intestinal permeability. Therefore, many
researchers have investigated the diet and its specific nutrients as a potential therapeutic
agent for patients with IBD [66].

A crossover study was recently published that included patients with ulcerative colitis
in remission or mild exacerbation. The purpose of the study was to determine the effect of
a low-fat, high-fiber diet compared to the typical American diet (SAD) and the improved
version of the American diet (iSAD). Patients on a low-fat, high-fiber diet (LFD) showed a
tendency to improve their microbiota due to an increase in Bacteroidetes, F prausnitzii, and
Prevotella and a decrease in Actinobacteria. Furthermore, there was a tendency to decrease
the CRP compared to the baseline result. Interestingly, LFD, as well as iSAD, significantly
improved the clinical symptoms of the patients. Despite the presence of high-fat products
and the high prevalence of meat products in iSAD, the results improved. This is attributed
to an increase in the intake of fiber and monounsaturated fatty acids in the diet or a placebo
effect due to the perception of care of the diet caterer. Importantly, this study shows that
patients with UC in remission and mild exacerbation can be treated with a high-fiber diet
without side effects and with the possibility of favorable results [67].

Chronic inflammation in the intestine is a hallmark of inflammatory bowel disease.
Reducing inflammation and completely treating the affected area is undoubtedly a goal of
physicians but also a huge challenge [68]. A published review by Swann et al. suggests that
high fiber intake may be beneficial in preventing and reducing inflammation. This probably
occurs by modifying pH and intestinal permeability [69]. Patients with IBD are found to
have an increased risk of cancer, which accounts for about 10 to 15% of deaths annually.
This occurs due to the chronic inflammation of the gut and impaired immune function [70].
There are studies showing that a diet rich in dietary fiber may have a preventive effect
on the appearance of cancer [71,72]. Recent studies have shown that high fiber intake,
especially cereals, is correlated with a reduced risk of developing and the progression of
colorectal cancer [73–75].

3.1. β-Glucan

Liu et al. tested the effect of β-glucan from oats on intestinal inflammation induced by
dextran sulfate sodium (DSS) in animal models. They showed that the administration of β-
glucan was able to reduce the expression of IL-1β, TNF-α, and IL-6 and decrease the activity
of myeloperoxidase (MPO) and malondialdehyde (MDA), thus reducing the severity of
inflammation. In addition, the authors noted a beneficial effect in reducing the activity of
clinical symptoms [76]. On the other hand, Bai et al. indicated that β-glucan treatment
increases the concentration of butyrate, acetate, and propionate, which has a beneficial
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effect on the metabolism of commensal microorganisms, thus promoting anti-inflammatory
effects [77]. In addition, in their study, Chen et al. showed that β-glucan derived from
mountain barley can increase the transcription of genes responsible for encoding ZO-1,
occludin, mucin2 (MUC2), and claudin-1, thus enhancing the intestinal barrier in a mouse
model of DSS-induced UC [78]. Furthermore, many authors of the study also point to the
important role of β-glucan in modulating the intestinal microflora in the presence of other
disorders, such as obesity [79–81].

Faghfoori et al. showed in their study that β-glucan from barley in patients with
ulcerative colitis (UC) causes a reduction in C-reactive protein (CRP) levels. Improvements
in clinical symptoms were also observed compared to the control group. Importantly, no
side effects were found in β-glucan intake [82]. The mechanism of this effect appears to
be the production of butyrate by β-glucan from barley, which may alleviate inflammation
in patients with UC. However, more research is needed on this issue [83]. As a result,
diet fiber can regulate intestinal mechanisms and improve patients’ quality of life. One
such mechanism is the regulation of bowel movements. This is acheived with the help
of water absorption by fiber, stool softening, and the formation of adequate fecal mass.
The result is, among other things, the prevention of hemorrhoids and diverticulitis [60].
An adequate amount of dietary fiber in the diet and regular intake can help modulate
digestion. This has the effect of reducing intestinal transit time, which contributes to the
control of carbohydrate and lipid metabolism [84]. This is found especially in the effects of
high-viscosity fibers (e.g., gelatinous β-glucan, plantain) [85]. In recent years, a study was
conducted involving IBD patients with IBS symptoms. The effect of a mixture of β-glucan,
inositol, and digestive enzymes on gastrointestinal symptoms was studied in patients
taking mesalazine. Patients in the mixed supplemented group compared to the control
group (mesalazine only) showed a reduction in abdominal pain and bloating but also an
improvement in their general condition. Spagnuolo et al. suggest that the improvement
in gastrointestinal symptoms may be due to the anti-inflammatory effects of β-glucan.
β-glucan reduces the production of pro-inflammatory cytokines, such as IL-10, IL-12, and
TNF-α. The improvement in side effects was certainly enhanced by the prebiotic effect of
fiber through its effect on modulating intestinal microflora. A limitation of this study is
the small number of subjects (n = 23) [86]. In addition to the beneficial effects of β-glucan
on the gut, it can also have positive effects on organs. An example is the beneficial effect
of β-glucan, extracted from oats, on gastritis by, among other things, reducing mucosal
damage [87].

3.2. Pectin

A diet enriched with orange pectin in mice with experimentally induced UC may
exert additional protective effects against the development of the disease. This is due
in part to the inhibition of reactive oxygen species (ROS) production by pectin-derived
oligosaccharides. This may inhibit Th17 accumulation, which is often found in the colon
of UC patients. Despite this, it appears that Th17 suppression is insufficient to alleviate
symptoms of colitis, if only because citrus pectin applied to mice showed an exacerbation
of the disease compared to a control sample. It was also found that mice fed orange pectin
had an increase in Th1 in the colon. Th1 does not appear to inhibit the anti-inflammatory
effects of SCFA [88]. Another study shows that pectin reduces the severity of colitis in
mice [89].

In another prospective human study (Nurses Health Study), Ananthakrishnan et al.
showed that the consumption of fruits rich in dietary fiber may be a protective factor
in the appearance of CD, while it had no effect on the risk of UC [90]. However, in the
Nurses Health Study II, Ananthakrishnan et al. found that a diet high in dietary fiber and
fish during highschool can have a protective effect against the appearance of CD. Such
relationships were not confirmed for UC [91]. In a review, Wu et al. demonstrated the
potential mechanisms of pectins through which they exert their protective effects against
IBD. They mention, among other things, the positive effects on intestinal dysbiosis, the
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regulation of the immune system, and the inhibition of pathogen adhesion [92]. Pectins are
also used in studies as drug carriers [93,94].

3.3. Starch

Another example of a substance that shows beneficial effects on IBD is resistant starch
(RS), which may be associated with reduced mucosal damage.

The study presented by Shinde et al. is an observation of the effects of resistant starch
derived from green bananas and the spores of the probiotic Bacillus coagulans MTCC5856 on
colitis in mice induced by DSS (sodium sulfate). The authors showed that both compounds
showed beneficial effects in reducing colon inflammation [86]. In another study involving
animal models, the authors fed mice a diet rich in wheat flour and showed that they had
milder colitis [88]. On the contrary, Zhang et al. studied the effects of type 2 resistant starch
(RS2) on inflammation and intestinal permeability in mice that received a high-fat diet. The
study showed that RS2 exhibited an effect on reducing the amount of Lachnoclostridium,
Oscillibacter, Alistipes, and Helicobacteria, among others—bacteria that are responsible for
the cause of inflammation and are involved in the aging process [95]. Ren et al. came
to similar conclusions by studying the effects of Arenga pinnata starch (APS), Arenga
pinnata retrograded starch (APRS), and whole Arenga pinnata flour (APF) on intestinal
microflora in aged mice. They observed, after exposure to each of the compounds tested,
that the expression of p53 gene mRNA decreased and the expression of Sirt1 increased,
which may indicate an “anti-aging” effect of starch [96]. Researchers also point to other
benefits associated with the introduction of resistant starch into the diet. Keenan et al.
point out that resistant starch plays a very important role not only in intestinal health
but also in insulin resistance and obesity. Equal mechanisms are involved in increasing
insulin sensitivity, including increased levels of glucagon-like peptide 1 (GLP-1) but also
intestinal gluconeogenesis [97]. Resistance potato starch (RPS) has also been shown in
animal models to increase the normal function of the mucosal barrier and commensal
microorganisms [98]. Furthermore, the proportion of starch in the diet can reduce intestinal
epithelial cell apoptosis [99]. Resistant starch has also been shown to have the ability
to lower pH in the large intestine and therefore may reduce the risk of proliferation of
pathogenic microorganisms [100].

Shen et al. concluded in their meta-analysis that resistant starch has a positive effect
on colonic function [101]. One of the few human studies indicates that RS contributes
to the maintenance of clinical remission in patients with IBD and reduces the intensity
of symptoms associated with active disease. It is also associated with an increase in
SCFA production [102]. In another study, Rose et al. presented that starch-entrapped
microspheres, due to their maintenance of low pH and their involvement in butyrate
production, can reduce harmful bacteria, for example Bacteroides and Fusobacterium [103].
The results of interviews with CD patients who had consumed wheat bran in the last 4
weeks showed a reduction in abdominal pain, cramps, and diarrhea [104].

3.4. Inulin

Another component of dietary fiber with beneficial effects on IBD is inulin. It is an
indigestible carbohydrate that belongs to the fructan group. Some of the main sources of
inulin in foods are chicory, artichokes, garlic, asparagus, and barley [105]. This compound,
due to its prebiotic effect, shows the ability to change the intestinal microflora to a favorable
one, such as the growth of Bifidobacterium. Liu et al. investigated the effect of L. rhamnosus
1.0320-supplied inulin on intestinal inflammation in DSS-induced animal models. They
observed that the mixture showed the ability to reduce inflammatory activity and regulate
the expression of pro-inflammatory cytokines, e.g., IL-1β and TNF-α. The authors also
noted that inflammation caused adverse changes in the intestinal microflora, both in its
composition and in the number of commensal bacteria, so the studied ingredients appear to
be desirable for rebuilding a normal intestinal microflora [106]. Furthermore, a recent study
showed that inulin has a regulatory effect on the microbiota in mice with DSS-induced
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colitis. Furthermore, it significantly reduced IL-1β and TNF-α [107]. Inulin also shows
beneficial effects on intestinal barrier function in mice [108,109]. Prebiotics, including inulin,
may be useful in IBD to support the therapeutic process. They show beneficial effects not
only by changing the intestinal microflora to the desired ones but also indirectly promoting
SCFA production. This is observed in preclinical and clinical studies [110]. In addition,
inulin has been found to have a protective effect against colon cancer in mice [111].

Some authors also indicate that inulin, as a non-digestible oligosaccharide (NDO),
could potentially be used as an immunomodulator in the treatment of patients with
IBD [112]. Casellas et al. showed that patients with active UC had reduced fecal cal-
protectin levels, as well as relief from dyspeptic symptoms, after taking a 7-day supplement
of oligofructose-enriched inulin. This study was well tolerated by patients and it appears
that oligofructose-enriched inulin may be an effective support to reduce intestinal inflam-
mation in patients undergoing active UC [113]. In another study, inulin was shown to
modulate the gut microbiota of patients by increasing the number of bifidobacteria by 2–3
times [114]. Inulin is also increasingly being used to produce drugs with applications in
IBD [115,116].

3.5. Fructooligosaccharides

Fructooligosaccharides are prebiotic fibers that are used most frequently in the food in-
dustry [117]. In rat studies, oral FOS supplementation was found to have a beneficial effect
on intestinal inflammation. Reduce anorexia and weight loss associated with inflammation.
In addition, it promotes the healing of the intestinal epithelium [118]. Another study shows
that fructooligosaccharides increased SCFA (butyrate) production, decreased pH, and stim-
ulated lactate production in mice with TNBS-induced colitis [118]. Kim et al. showed that
FOS can be an effective strategy to increase F. prausnitzii colonization, butyrate production,
and alleviate symptoms associated with DSS-induced colitis in mice [119]. Increased Bifi-
dobacteria and Enterobacteriaceae were also observed in rats after FOS supplementation with
inulin [120].

Another study involving 303 patients, which were divided into groups with active
CD, inactive CD, and a group of healthy subjects, compared the common intake of fructans
and oligofructose. Analysis shows that patients with active CD consumed significantly less
fructans and oligosaccharides compared to other groups. This is especially observed in
those with severe abdominal pain, increased CRP, and worse mood [121]. In one study, 10
CD patients received 15 g of fructooligosaccharides (FOS) for 3 weeks. FOS reduced the
Harvey–Bradshaw index, and there was a significant increase in fecal bifidobacteria [122].
On the other hand, Benjamin et al. studied supplementation with 15 g/day of FOS in 103
patients with active CD. The patients were divided into two groups: FOS supplementation
and placebo. The analysis of the results after 4 weeks did not show significant differences
in clinical response between the groups [123]. Caviglia et al. investigated the effectiveness
of a mixture of calcium butyrate, Bifidobaterium bifidum, Bifidobacterium lactis, and fruc-
tooligosaccharides in prolonging remission in 21 UC patients who received mesalazine
(5-ASA). They showed that mixture supplementation resulted in prolonged remission in
patients compared to the 5-ASA-only group. Improvements in quality of life, abdominal
pain, and stool consistency were also observed, as well as in inflammatory markers [124].

3.6. Hemicellulose

Hemicellulose is found in germinated barley fiber (GBF), among others. A study
involving rats with experimentally induced UC shows that intestinal mucosal damage
and associated bloody diarrhea are prevented by using GBF in the diet of rats. GBF was
shown to significantly increase butyric and acetic acid levels. Furthermore, a tendency was
observed to increase the number of Bifidobacteria and Eubacteria [125].

Oligosaccharides, which are derived from hemicellulose, namely xyloligosaccharides
(XOS) and mannooligosaccharides (MOS), are probiotics that are increasingly popular
on the market but also manifest bioactive properties similar to FOS [126]. XOS has been
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shown to reduce intestinal inflammation by reducing the ratio of Firmicutes/Bacteroidetes
and Enterobacteriaceae in obese rats [127]. MOS, on the other hand, reduces inflammation by
reducing Clostridium in the microbiota of piglets [128].

There is a study involving patients with mild to moderate UC who received 30 g of GBF
three times a day for 4 weeks. The analysis of the results showed that GBF supplementation
reduced intestinal inflammation. GBF also showed a strong supportive effect on colon
epithelial reconstruction. Despite continuing traditional UC treatment, patients experienced
an exacerbation 4 weeks after discontinuing GBF [129]. In contrast, Kanauchi et al. showed
that the use of GBF at 4 weeks significantly reduced clinical activity parameters in patients
with UC [130]. A study found that hemicellulose influences a selective advantage in the
human microflora but also increases protection against noncommunicable diseases [5].

The components of the fiber diet and their biological functions are shown in Table 1.

Table 1. Components of the fiber diet and their biological roles [76–105].

Component Biological Role

β-glucan

Reduction of CRP (C reactive protein) in patients with UC (ulcerative colitis).
Improvement in gastrointestinal symptoms in patients taking mesalazine.
Control of lipid and carbohydrate metabolism.
Reduction of pro-inflammatory cytokine production.
Modulation of the intestinal microbiota.

Pectin Preventive effect of IBD (inflammatory bowel diseases).

Starch

Maintain clinical remission in patients with IBD.
Reduction of symptoms associated with active disease.
Increase in the production of SCFA (short-chain fatty acids) production.
Reduction of inflammation in the colon.
Reduction of harmful bacteria.

Inulin

Positive effect on the intestinal microbiota by increasing Bifidobacteria.
Reduction of inflammation.
Decrease in fecal calprotectin concentration.
Alleviation of dyspeptic symptoms.
Indirect production of SCFAs.
Potential immunomodulator in IBD.

Fructooligosaccharides

Growth of fecal Bifidobacteria.
Reduction of inflammation, indirectly affecting the reduction of anorexia and weight loss
Reduction in the Harvey–Bradshaw index.
Improving quality of life by reducing pain and improving stool consistency.
Promoting the healing of the intestinal epithelium.

Hemicellulose

Reduction of inflammation in the intestines.
Assist in the reconstruction of the intestinal epithelium.
Increase the production of butyric acid and acetic acid.
Increasing the number of bifidobacteria and eubacteria.
Reduction in the level of clinical activity of patients with UC.

Intake of fiber in the diet provides many health benefits. Natural sources of fiber
contribute minerals, vitamins, water, and a variety of phytonutrients. However, dietary
fiber is not only natural food sources but also dietary supplements. According to the
latest guidelines, fiber supplementation is indicated as first-line treatment for chronic
constipation [131]. One of the studies shows that fiber supplementation effectively relieves
constipation. In particular, psyllium, doses > 10 g/d, and treatment durations of at least 4
weeks seem optimal, although caution should be exercised in interpreting the results due
to the significant heterogeneity of the study group [132].

Fiber supplements can play an important role in helping fiber intake reach recom-
mended guidance levels. The available clinical trial data suggest that the use of fiber
supplements is more effective than the use of high-fiber foods to improve serum lipoprotein
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values, improve weight loss, and improve gastrointestinal function. This may be due to
the fact that it is easier to use tablets or powders as a secondary source of fiber than to
implement proper eating practices [133]. A study indicates that whole-fiber high-fiber
diet interventions resulted in more beneficial microbiome outcomes compared to low-fiber
diets and fiber supplements [134]. Fiber supplementation causes moderate gastrointestinal
side effects, such as flatulence, bloating, diarrhea, and abdominal discomfort, which were
significantly higher with fiber supplementation compared to placebo. A review suggests
that medical workers should continue to recommend that their patients eat high-fiber
foods, such as fruits, vegetables, whole grains, and nuts. Possibly supplement their diet
with functional fibers, such as psyllium or β-glucan. This is especially relevant as the
mean dietary fiber intake by adults in the USA, it is only 17 g/d, which is clearly under
the recommendation of 14 g/1000 kcal or 25 to 38 g/d, as recommended by the National
Academy of Medicine [135].

4. Limitations

A limitation of the review may be that there are too few human and animal studies on
the effects of selected components of dietary fiber on specific bacterial strains in intestinal
microflora and on the effects of individual components in exacerbation and in remission in
patients with IBD. Additionally, studies very often lack homogeneous groups of patients in
terms of gender, age, or drugs used. However, in the above review, we selected the most
reliable research and articles.

5. Summary

Due to one of the etiological factors of IBD, which is the alteration of the intestinal
microbiota, care must be taken to ensure an adequate diet, both during the exacerbation
and remission of the disease. One of the main dietary components that have a beneficial
effect on the intestinal microbiota is dietary fiber. As a result of the range of action of
this component, it is divided into insoluble and soluble. Increasingly, researchers are
focusing on studying specific components of dietary fiber—β-glucan, pectin, starch, inulin,
fructooligosaccharides, or hemicellulose—due to their individual effects in the context
of IBD. Dietary fiber has been suggested to be important in the prevention of IBD by
reducing pro-inflammatory cytokines, modulating the intestinal microbiota, and reducing
gastrointestinal side effects. The introduction of dietary fiber in patients with IBD in
remission or exacerbation should be individualized according to the individual needs and
digestive capacity of the body. However, research on the properties of various components
of dietary fiber and their therapeutic potential is still ongoing.
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Leśniowskiego-Crohna. Przegląd astroenterol. 2007, 2, 201–213.
128. Araki, Y.; Andoh, A.; Koyana, S.; Fujiyama, Y.; Kanauchi, O.; Bamba, T. Effects of germinated barley foodstuff on microflora

and short chain fatty acid production in dextran sulfate sodium-induced coltis in rats. Bioscence Biotechnol. Biochem. 2000, 64,
1794–1800. [CrossRef]

129. Kanauchi, O.; Suga, T.; Tochihara, M.; Hibi, T.; Naganuma, M.; Homma, T.; Asakura, H.; Nakano, H.; Takahama, K.; Fujiyama, Y.;
et al. Treatment of ulcerative coltis by feeding with germinated barley foodstuff: First report of a multcenter open control trial. J.
Gastroenterol. 2002, 37, 67–72. [CrossRef]
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